1
|
Gomathi R, Kohila S, Viswanathan R, Krishnapriya V, Appunu C, Kumar RA, Alagupalamuthirsolai M, Manimekalai R, Elayaraja K, Kaverinathan K. Comparative Proteomic Analysis of High-Temperature Response in Sugarcane (Saccharum spp.). SUGAR TECH 2025; 27:193-207. [DOI: 10.1007/s12355-024-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 01/11/2025]
|
2
|
Wang Z, Wan W, Shi M, Ji S, Zhang L, Wang X, Zhang L, Cui H, Liu X, Sun H, Yang F, Jin S. GDSL in Lilium pumilum (LpGDSL) Confers Saline-Alkali Resistance to the Plant by Enhancing the Lignin Content and Balancing the ROS. Int J Mol Sci 2024; 25:9319. [PMID: 39273269 PMCID: PMC11395047 DOI: 10.3390/ijms25179319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In order to explore the response mechanism of Lilium pumilum (L. pumilum) to saline-alkali stress, we successfully cloned LpGDSL (GDSL lipase, Gly-Asp-Ser-Leu) from L. pumilum. The qRT-PCR results indicated that the LpGDSL expression was higher in the leaves of L. pumilum, and the expression of the LpGDSL reached the highest level at 12 h in leaves under 11 mM H2O2, 200 mM NaCl, 25 mM Na2CO3, and 20 mM NaHCO3. The bacteriophage overexpressing LpGDSL was more tolerant than the control under different NaHCO3 contents. Overexpressed and wild-type plants were analyzed for phenotype, chlorophyll content, O2- content, H2O2 content, lignin content, and so on. Overexpressed plants had significantly higher resistance than the wild type and were less susceptible to saline-alkali stress. The yeast two-hybrid and BiFC assays demonstrated the existence of an interaction between LpGDSL and LpBCP. The yeast one-hybrid assay and transcriptional activation assay confirmed that B3 transcription factors could act on LpGDSL promoters. Under saline-alkali stress, L. pumilum will promote the expression of LpGDSL, which will then promotes the accumulation of lignin and the scavenging of reactive oxygen species (ROS) to reduce its damage, thus improving the saline-alkali resistance of the plant.
Collapse
Affiliation(s)
- Zongying Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Wenhao Wan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Miaoxin Shi
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Shangwei Ji
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Ling Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Xiaolu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Lingshu Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Huitao Cui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Xingyu Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Hao Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shumei Jin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150000, China
| |
Collapse
|
3
|
Li AM, Liao F, Wang M, Chen ZL, Qin CX, Huang RQ, Verma KK, Li YR, Que YX, Pan YQ, Huang DL. Transcriptomic and Proteomic Landscape of Sugarcane Response to Biotic and Abiotic Stressors. Int J Mol Sci 2023; 24:ijms24108913. [PMID: 37240257 DOI: 10.3390/ijms24108913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ruo-Qi Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Xiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Fiorillo A, Manai M, Visconti S, Camoni L. The Salt Tolerance-Related Protein (STRP) Is a Positive Regulator of the Response to Salt Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1704. [PMID: 37111928 PMCID: PMC10145591 DOI: 10.3390/plants12081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Salt stress is a major abiotic stress limiting plant survival and crop productivity. Plant adaptation to salt stress involves complex responses, including changes in gene expression, regulation of hormone signaling, and production of stress-responsive proteins. The Salt Tolerance-Related Protein (STRP) has been recently characterized as a Late Embryogenesis Abundant (LEA)-like, intrinsically disordered protein involved in plant responses to cold stress. In addition, STRP has been proposed as a mediator of salt stress response in Arabidopsis thaliana, but its role has still to be fully clarified. Here, we investigated the role of STRP in salt stress responses in A. thaliana. The protein rapidly accumulates under salt stress due to a reduction of proteasome-mediated degradation. Physiological and biochemical responses of the strp mutant and STRP-overexpressing (STRP OE) plants demonstrate that salt stress impairs seed germination and seedling development more markedly in the strp mutant than in A. thaliana wild type (wt). At the same time, the inhibitory effect is significantly reduced in STRP OE plants. Moreover, the strp mutant has a lower ability to counteract oxidative stress, cannot accumulate the osmocompatible solute proline, and does not increase abscisic acid (ABA) levels in response to salinity stress. Accordingly, the opposite effect was observed in STRP OE plants. Overall, obtained results suggest that STRP performs its protective functions by reducing the oxidative burst induced by salt stress, and plays a role in the osmotic adjustment mechanisms required to preserve cellular homeostasis. These findings propose STRP as a critical component of the response mechanisms to saline stress in A. thaliana.
Collapse
Affiliation(s)
- Anna Fiorillo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| | - Michela Manai
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| | - Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (A.F.); (M.M.)
| |
Collapse
|
5
|
Vineeth T, Krishna G, Pandesha P, Sathee L, Thomas S, James D, Ravikiran K, Taria S, John C, Vinaykumar N, Lokeshkumar B, Jat H, Bose J, Camus D, Rathor S, Krishnamurthy S, Sharma P. Photosynthetic machinery under salinity stress: Trepidations and adaptive mechanisms. PHOTOSYNTHETICA 2023; 61:73-93. [PMID: 39650121 PMCID: PMC11515832 DOI: 10.32615/ps.2023.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 12/11/2024]
Abstract
Chloroplasts and photosynthesis are the physiologically fateful arenas of salinity stress. Morphological and anatomical alterations in the leaf tissue, ultrastructural changes in the chloroplast, compromise in the integrity of the three-layered chloroplast membrane system, and defects in the light and dark reactions during the osmotic, ionic, and oxidative phases of salt stress are conversed in detail to bring the salinity-mediated physiological alterations in the chloroplast on to a single platform. Chloroplasts of salt-tolerant plants have evolved highly regulated salt-responsive pathways. Thylakoid membrane remodeling, ion homeostasis, osmoprotection, upregulation of chloroplast membrane and stromal proteins, chloroplast ROS scavenging, efficient retrograde signalling, and differential gene and metabolite abundance are the key attributes of optimal photosynthesis in tolerant species. This review throws light into the comparative mechanism of chloroplast and photosynthetic response to salinity in sensitive and tolerant plant species.
Collapse
Affiliation(s)
- T.V. Vineeth
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - G.K. Krishna
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - P.H. Pandesha
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - L. Sathee
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - S. Thomas
- Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, 686 563 Kumarakom, Kerala, India
| | - D. James
- Forest Genetics and Biotechnology Division, KSCSTE-Kerala Forest Research Institute, Peechi, 680 653 Thrissur, Kerala, India
| | - K.T. Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 226 002 Lucknow, Uttar Pradesh, India
| | - S. Taria
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
- Indian Council of Agricultural Research-Central Agroforestry Research Institute (ICAR-CAFRI), 284 003 Jhansi, Uttar Pradesh, India
| | - C. John
- School of Natural Resource Management, Central Agricultural University-College of Post Graduate Studies in Agricultural Sciences (CAU), 793 103 Umiam, Meghalaya, India
| | - N.M. Vinaykumar
- Department of Biotechnology, Kuvempu University, Shankaraghatta, 577 451 Shivamogga, Karnataka, India
| | - B.M. Lokeshkumar
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - H.S. Jat
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - J. Bose
- School of Science, Western Sydney University, Penrith NSW, 275 1, Australia
| | - D. Camus
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S. Rathor
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S.L. Krishnamurthy
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - P.C. Sharma
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| |
Collapse
|
6
|
Proteomic Approaches to Uncover Salt Stress Response Mechanisms in Crops. Int J Mol Sci 2022; 24:ijms24010518. [PMID: 36613963 PMCID: PMC9820213 DOI: 10.3390/ijms24010518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Salt stress is an unfavorable outcome of global climate change, adversely affecting crop growth and yield. It is the second-biggest abiotic factor damaging the morphological, physio-biochemical, and molecular processes during seed germination and plant development. Salt responses include modulation of hormonal biosynthesis, ionic homeostasis, the antioxidant defense system, and osmoprotectants to mitigate salt stress. Plants trigger salt-responsive genes, proteins, and metabolites to cope with the damaging effects of a high salt concentration. Enhancing salt tolerance among crop plants is direly needed for sustainable global agriculture. Novel protein markers, which are used for crop improvement against salt stress, are identified using proteomic techniques. As compared to single-technique approaches, the integration of genomic tools and exogenously applied chemicals offers great potential in addressing salt-stress-induced challenges. The interplay of salt-responsive proteins and genes is the missing key of salt tolerance. The development of salt-tolerant crop varieties can be achieved by integrated approaches encompassing proteomics, metabolomics, genomics, and genome-editing tools. In this review, the current information about the morphological, physiological, and molecular mechanisms of salt response/tolerance in crops is summarized. The significance of proteomic approaches to improve salt tolerance in various crops is highlighted, and an integrated omics approach to achieve global food security is discussed. Novel proteins that respond to salt stress are potential candidates for future breeding of salt tolerance.
Collapse
|
7
|
Segura A, Molina L. Plant salt tolerance: ACC deaminase-producing endophytes change plant proteomic profiles. Environ Microbiol 2022; 24:3310-3312. [PMID: 35254736 DOI: 10.1111/1462-2920.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Segura
- Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - Lázaro Molina
- Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
8
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|