1
|
Guan Y, Lu L, Liu J, Lyu M, Xu X, Xing Y, Feng Z, Liu C, Xie H, Ni W, Wang H, Zhang R, Wu W, Guo Z, Ding Y, Zhu Z, Jiang Y, Ge S. Zinc promotes nitrogen uptake and plant growth by regulating the antioxidant system and carbon-nitrogen metabolism under drought condition in apple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109619. [PMID: 39952158 DOI: 10.1016/j.plaphy.2025.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Zn plays an important role in plant defense against abiotic stress, but the underlying mechanism of Zn alleviates drought stress in apple plants remains unclear. Here, we investigated the effects of Zn on plant growth, antioxidant system, C-N metabolism, and N uptake under drought stress through a hydroponic experiment. Drought stress induced the production of H2O2, hindered photosynthesis, disturbed C-N metabolism, and ultimately reduced total dry weight and N accumulation. Compared to the drought treatment, the total dry weight and N accumulation in Zn-treated plants increased by 33.85% and 40.54%, respectively. Zn increased antioxidant enzyme activities under drought stress, which reduced the H2O2 content, thereby decreasing the accumulation of MDA, ultimately protecting plant cells from oxidative damage. Additionally, Zn up-regulated the expression of aquaporin genes (MdPIP1;1, MdPIP1;2) under drought stress and increased leaf relative water content. Under drought stress, the photosynthetic rate of Zn-treated plants was 60.30% higher than that of non-treated plants, due to an increased proportion of photosynthetic nitrogen and a reduction in photosynthetic limitations. Furthermore, Zn promoted the transport of photosynthetic products (sucrose, sorbitol) from the leaves to roots. Regarding N metabolism, the activities of NR, NiR, GS, and GOGAT in Zn-treated plants were significantly higher than those in non-treated plants under drought stress. Zn-treated plants also exhibited significantly higher expression of nitrate transporter genes (MdNRT1.1, MdNRT2.4) and NO3- ion influx flow rate in root. Overall, our results demonstrate that Zn promotes N uptake and plant growth by regulating the antioxidant system and C-N metabolism under drought conditions in apple plants.
Collapse
Affiliation(s)
- Yafei Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Lei Lu
- Yili Kazak Autonomous Prefecture Academy of Forestry Sciences, Yining, Xinjiang, 835000, China
| | - Jingquan Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Mengxue Lyu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Xinxiang Xu
- Yantai Academy of Agricultural Sciences, Institute of Pomology, Yantai, Shandong, 265500, China
| | - Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Ziquan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Chunling Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Hongmei Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Wei Ni
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Hongguo Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Ruirui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Wenju Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Zisen Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Yanfeng Ding
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China
| | - Zhanling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China.
| | - Yuanmao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China.
| | - Shunfeng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Apple Technology Innovation Center of Shandong Province, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production of Shandong Province, Taian, Shandong, 271018, China.
| |
Collapse
|
2
|
Huang S, Jin S. Enhancing drought tolerance in horticultural plants through plant hormones: a strategic coping mechanism. FRONTIERS IN PLANT SCIENCE 2025; 15:1502438. [PMID: 39902215 PMCID: PMC11788359 DOI: 10.3389/fpls.2024.1502438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025]
Abstract
Abiotic stresses are considered as a significant factor restricting horticultural crop productivity and quality. Drought stress is a major environmental constraint among the emerging concerns. Plants have significant susceptibility to drought stress, resulting in a marked decline in production during the last several decades. The development of effective strategies to mitigate drought stress is essential for sustainable agriculture and food security, especially considering the continuous growth of the world population. Several studies suggested that exogenous application of phytohormone to plants can improve drought stress tolerance by activating molecular and physiological defense systems. Phytohormone pretreatment is considered a potential approach for alleviating drought stress in horticultural plants. In addition, melatonin, salicylic acid, jasmonates, strigolactones, brassinosteroids, and gamma-aminobutyric acid are essential phytohormones that function as growth regulators and mitigate the effects of drought stress. These hormones frequently interact with one another to improve the survival of plants in drought-stressed environments. To sum up, this review will predominantly elucidate the role of phytohormones and related mechanisms in drought tolerance across various horticulture crop species.
Collapse
Affiliation(s)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, China
| |
Collapse
|
3
|
Mohammad A, Verma S, Mahmooduzzafar, Iqbal M. Morpho-Anatomical Variations in Sisymbrium irio L. Plants Raised from Seeds Treated with γ Radiation. ACS OMEGA 2024; 9:41446-41455. [PMID: 39398157 PMCID: PMC11465646 DOI: 10.1021/acsomega.4c04781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
This study determines the effect of γ irradiation on seed germination, growth, and morpho-anatomical traits of the Sisymbrium irio L. (London rocket) plant. Seeds irradiated with 2.5, 5, 10, 15, and 20 kGy of γ radiation showed a reduced germination percentage (13.68-56.84%) with reference to the control, showing an inverse relationship with radiation dose. Observations recorded at preflowering, flowering, and postflowering stages of plant growth showed a significant (P < 0.05%) dose-dependent decline in many growth parameters, such as root length, shoot length, shoot dry weight, number of leaves, and pods per plant, due to the radiation effect. However, root dry weight, leaf length, leaf dry weight, number of branches, and number of flowers per plant increased at the lowest dose (2.5 kGy) and then declined steadily with the increasing level of radiation. Likewise, several anatomical features (length of fibers and vessel elements, diameter of vessel elements, proportion of cortex, and vasculature in the stem) showed a consistent decrease with increasing γ irradiation in treated plants compared with the control. However, the pith area and the number of vessels per microscopic field decreased significantly with the lowest radiation dose (2.5 kGy) and then increased gradually with higher doses at each ontogenetic stage. The vulnerability factor in the control as well as treated plants increased with increasing plant age. In treated plants, vulnerability was higher under the effect of low-level radiation than in the control, but it showed an inverse relationship with the increasing level of radiation, thus being the lowest at 20 kGy radiation dose. Mesomorphy also showed an almost similar variation pattern with reference to the radiation dose.
Collapse
Affiliation(s)
- Anish Mohammad
- Department of Botany, School
of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sarita Verma
- Department of Botany, School
of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mahmooduzzafar
- Department of Botany, School
of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Muhammad Iqbal
- Department of Botany, School
of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
4
|
Li W, Wu H, Hua J, Zhu C, Guo S. Arbuscular mycorrhizal fungi enhanced resistance to low-temperature weak-light stress in snapdragon ( Antirrhinum majus L.) through physiological and transcriptomic responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1330032. [PMID: 38681217 PMCID: PMC11045995 DOI: 10.3389/fpls.2024.1330032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Introduction Low temperature (LT) and weak light (WL) seriously affects the yield and quality of snapdragon in winter greenhouse. Arbuscular mycorrhizal fungi (AMF) exert positive role in regulating growth and enhancing abiotic stress tolerance in plants. Nevertheless, the molecular mechanisms by AMF improve the LT combined with WL (LTWL) tolerance in snapdragon remain mostly unknown. Methods We compared the differences in root configuration, osmoregulatory substances, enzymatic and non-enzymatic antioxidant enzyme defense systems and transcriptome between AMF-inoculated and control groups under LT, WL, low light, and LTWL conditions. Results Our analysis showed that inoculation with AMF effectively alleviated the inhibition caused by LTWL stress on snapdragon root development, and significantly enhanced the contents of soluble sugars, soluble proteins, proline, thereby maintaining the osmotic adjustment of snapdragon. In addition, AMF alleviated reactive oxygen species damage by elevating the contents of AsA, and GSH, and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR). RNA-seq analysis revealed that AMF regulated the expression of genes related to photosynthesis (photosystem I related proteins, photosystem II related proteins, chlorophyll a/b binding protein), active oxygen metabolism (POD, Fe-SOD, and iron/ascorbate family oxidoreductase), plant hormone synthesis (ARF5 and ARF16) and stress-related transcription factors gene (bHLH112, WRKY72, MYB86, WRKY53, WRKY6, and WRKY26) under LTWL stress. Discussion We concluded that mycorrhizal snapdragon promotes root development and LTWL tolerance by accumulation of osmoregulatory substances, activation of enzymatic and non-enzymatic antioxidant defense systems, and induction expression of transcription factor genes and auxin synthesis related genes. This study provides a theoretical basis for AMF in promoting the production of greenhouse plants in winter.
Collapse
Affiliation(s)
- Wei Li
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haiying Wu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Junkai Hua
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chengshang Zhu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaoxia Guo
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Qiao M, Lv S, Qiao Y, Lin W, Gao Z, Tang X, Yang Z, Chen J. Exogenous Streptomyces spp. enhance the drought resistance of naked oat ( Avena nuda) seedlings by augmenting both the osmoregulation mechanisms and antioxidant capacities. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23312. [PMID: 38588711 DOI: 10.1071/fp23312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Drought is a major obstacle to the development of naked oat industry. This work investigated mechanisms by which exogenous Streptomyces albidoflavus T4 and Streptomyces rochei D74 improved drought tolerance in naked oat (Avena nuda ) seedlings. Results showed that in the seed germination experiment, germination rate, radicle and hypocotyl length of naked oat seeds treated with the fermentation filtrate of T4 or D74 under PEG induced drought stress increased significantly. In the hydroponic experiment, the shoot and root dry weights of oat seedlings increased significantly when treated with the T4 or D74 fermentation filtrate under the 15% PEG induced drought stress (S15). Simultaneously, the T4 treatment also significantly increased the surface area, volume, the number of tips and the root activity of oat seedlings. Both T4 and D74 treatments elicited significant increases in proline and soluble sugar contents, as well as the catalase and peroxidase activities in oat seedlings. The results of comprehensive drought resistance capacity (CDRC) calculation of oat plants showed that the drought resistance of oat seedlings under the T4 treatment was better than that under the D74 treatment, and the effect was better under higher drought stress (S15). Findings of this study may provide a novel and effective approach for enhancing plant defenses against drought stress.
Collapse
Affiliation(s)
- Meixia Qiao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Siyuan Lv
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuejing Qiao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Wen Lin
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Xiwang Tang
- Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao, Hebei 066102, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| | - Jie Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China; and Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu, Shanxi 030801, China
| |
Collapse
|
6
|
Kaya C, Akin S, Sarioğlu A, Ashraf M, Alyemeni MN, Ahmad P. Enhancement of soybean tolerance to water stress through regulation of nitrogen and antioxidant defence mechanisms mediated by the synergistic role of salicylic acid and thiourea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108320. [PMID: 38183901 DOI: 10.1016/j.plaphy.2023.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Water stress (WS) poses a significant threat to global food and energy security by adversely affecting soybean growth and nitrogen metabolism. This study explores the synergistic effects of exogenous salicylic acid (SA, 0.5 mM) and thiourea (TU, 400 mg L-1), potent plant growth regulators, on soybean responses under WS conditions. The treatments involved foliar spraying for 3 days before inducing WS by reducing soil moisture to 50% of field capacity, followed by 2 weeks of cultivation under normal or WS conditions. WS significantly reduced plant biomass, chlorophyll content, photosynthetic efficiency, water status, protein content, and total nitrogen content in roots and leaves. Concurrently, it elevated levels of leaf malondialdehyde, H2O2, proline, nitrate, and ammonium. WS also triggered an increase in antioxidant enzyme activity and osmolyte accumulation in soybean plants. Application of SA and TU enhanced the activities of key enzymes crucial for nitrogen assimilation and amino acid synthesis. Moreover, SA and TU improved plant growth, water status, chlorophyll content, photosynthetic efficiency, protein content, and total nitrogen content, while reducing oxidative stress and leaf proline levels. Indeed, the simultaneous application of SA and TU demonstrated a heightened impact compared to their separate use, suggesting a synergistic interaction. This study underscores the potential of SA and TU to enhance WS tolerance in soybean plants by modulating nitrogen metabolism and mitigating oxidative damage. These findings hold significant promise for improving crop productivity and quality in the face of escalating water limitations due to climate change.
Collapse
Affiliation(s)
- Cengiz Kaya
- Harran University, Department of Soil Science and Plant Nutrition, Sanliurfa, Turkey.
| | - Sabri Akin
- Harran University, Department of Agricultural Structures and Irrigation, Sanliurfa, Turkey
| | - Ali Sarioğlu
- Harran University, Department of Soil Science and Plant Nutrition, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | | | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Waseem M, Muhammad Aslam M, Kumar Sahu S. Understanding the mechanistic basis of plant adaptation to salinity and drought. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23216. [PMID: 38347662 DOI: 10.1071/fp23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 04/04/2024]
Abstract
Plant growth and development is adversely affected by environmental constraints, particularly salinity and drought. Climate change has escalated the effect of salinity and drought on crops in varying ways, affecting agriculture and most importantly crop productivity. These stressors influence plants across a wide range of levels, including their morphology and physiological, biochemical, and molecular processes. Plant responses to salinity and drought stress have been the subject of intense research being explored globally. Considering the importance of the impact that these stresses can have on agriculture in the short term, novel strategies are being sought and adopted in breeding programs. Better understanding of the molecular, biochemical, and physiological responses of agriculturally important plants will ultimately help promote global food security. Moreover, considering the present challenges for agriculture, it is critical to consider how we can effectively transfer the knowledge generated with these approaches in the laboratory to the field, so as to mitigate these adversities. The present collection discusses how drought and salinity exert effects on plants.
Collapse
Affiliation(s)
- Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China; and Key Laboratory of Tropical Horticultural Crop Quality Regulation, College of Horticulture, Hainan University, Haikou, Hainan, China; and Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China; and Fang Zhiyuan Academician Team Innovation Center of Hainan Province, Haikou 570228, China
| | - Mehtab Muhammad Aslam
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, China; and College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, MO, USA
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| |
Collapse
|
8
|
Torun H, Cetin B, Stojnic S, Petrík P. Salicylic acid alleviates the effects of cadmium and drought stress by regulating water status, ions, and antioxidant defense in Pterocarya fraxinifolia. FRONTIERS IN PLANT SCIENCE 2024; 14:1339201. [PMID: 38283971 PMCID: PMC10811004 DOI: 10.3389/fpls.2023.1339201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Introduction Pterocarya fraxinifolia (Poiret) Spach (Caucasian wingnut, Juglandaceae) is a relict tree species, and little is known about its tolerance to abiotic stress factors, including drought stress and heavy metal toxicity. In addition, salicylic acid (SA) has been shown to have a pivotal role in plant responses to biotic and abiotic stresses. Methods The current study is focused on evaluating the impact of foliar application of SA in mediating Caucasian wingnut physiological and biochemical responses, including growth, relative water content (RWC), osmotic potential (Ψs), quantum yield (Fv/Fm), electrolyte leakage, lipid peroxidation, hydrogen peroxide, and antioxidant enzymes, to cadmium (Cd; 100 µM) and drought stress, as well as their interaction. Moreover, the antioxidant activity (e.g., ascorbate peroxidase, catalase, glutathione reductase, peroxidase, and superoxide dismutase activities) of the stressed trees was investigated. The study was conducted on 6-month-old seedlings under controlled environmental conditions in a greenhouse for 3 weeks. Results and discussion Leaf length, RWC, Ψs, and Fv/Fm were decreased under all treatments, although the effect of drought stress was the most pronounced. An efficient antioxidant defense mechanism was detected in Caucasian wingnut. Moreover, SA-treated Caucasian wingnut plants had lower lipid peroxidation, as one of the indicators of oxidative stress, when compared to non-SA-treated groups, suggesting the tolerance of this plant to Cd stress, drought stress, and their combination. Cadmium and drought stress also changed the ion concentrations in Caucasian wingnut, causing excessive accumulation of Cd in leaves. These results highlight the beneficial function of SA in reducing the negative effects of Cd and drought stress on Caucasian wingnut plants.
Collapse
Affiliation(s)
- Hülya Torun
- Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Bilal Cetin
- Faculty of Forestry, Düzce University, Düzce, Türkiye
| | - Srdjan Stojnic
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Peter Petrík
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| |
Collapse
|
9
|
Li N, Pu K, Ding D, Yang Y, Niu T, Li J, Xie J. Foliar Spraying of Glycine Betaine Alleviated Growth Inhibition, Photoinhibition, and Oxidative Stress in Pepper ( Capsicum annuum L.) Seedlings under Low Temperatures Combined with Low Light. PLANTS (BASEL, SWITZERLAND) 2023; 12:2563. [PMID: 37447123 DOI: 10.3390/plants12132563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Low temperature combined with low light (LL stress) is a typical environmental stress that limits peppers' productivity, yield, and quality in northwestern China. Glycine betaine (GB), an osmoregulatory substance, has increasingly valuable effects on plant stress resistance. In this study, pepper seedlings were treated with different concentrations of GB under LL stress, and 20 mM of GB was the best treatment. To further explore the mechanism of GB in response to LL stress, four treatments, including CK (normal temperature and light, 28/18 °C, 300 μmol m-2 s-1), CB (normal temperature and light + 20 mM GB), LL (10/5 °C, 100 μmol m-2 s-1), and LB (10/5 °C, 100 μmol m-2 s-1 + 20 mM GB), were investigated in terms of pepper growth, biomass accumulation, photosynthetic capacity, expression levels of encoded proteins Capsb, cell membrane permeability, antioxidant enzyme gene expression and activity, and subcellular localization. The results showed that the pre-spraying of GB under LL stress significantly alleviated the growth inhibition of pepper seedlings; increased plant height by 4.64%; increased root activity by 63.53%; and decreased photoinhibition by increasing the chlorophyll content; upregulating the expression levels of encoded proteins Capsb A, Capsb B, Capsb C, Capsb D, Capsb S, Capsb P1, and Capsb P2 by 30.29%, 36.69%, 18.81%, 30.05%, 9.01%, 6.21%, and 16.45%, respectively; enhancing the fluorescence intensity (OJIP curves), the photochemical efficiency (Fv/Fm, Fv'/Fm'), qP, and NPQ; improving the light energy distribution of PSΠ (Y(II), Y(NPQ), and Y(NO)); and increasing the photochemical reaction fraction and reduced heat dissipation, thereby increasing plant height by 4.64% and shoot bioaccumulation by 13.55%. The pre-spraying of GB under LL stress also upregulated the gene expression of CaSOD, CaPOD, and CaCAT; increased the activity of the ROS-scavenging ability in the pepper leaves; and coordinately increased the SOD activity in the mitochondria, the POD activity in the mitochondria, chloroplasts, and cytosol, and the CAT activity in the cytosol, which improved the LL resistance of the pepper plants by reducing excess H2O2, O2-, MDA, and soluble protein levels in the leaf cells, leading to reduced biological membrane damage. Overall, pre-spraying with GB effectively alleviated the negative effects of LL stress in pepper seedlings.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Dongxia Ding
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|