1
|
Kumar KN, Veerappa VG, Kumaresan A, Lavanya M, King JES, Sulochana M, Patil S, Jeyakumar S. Localization and expression analysis of sperm-specific glyceraldehyde 3-phosphate dehydrogenase in bull spermatozoa with contrasting sperm motility. Andrology 2024. [PMID: 39587844 DOI: 10.1111/andr.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Poor sperm motility leading to male infertility has become a profound crisis to be addressed in this contemporary era. In many cases, the origin of poor sperm motility remains unexplained. Few studies reported the indispensable role of sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDHS) in sperm motility, however, studies on GAPDHS are severely confined. OBJECTIVES The present study aimed to assess the localization patterns, expression levels, and enzyme activity of GAPDHS in normal and asthenozoospermic bulls and to examine their association with sperm functional parameters. MATERIALS AND METHODS The bull semen samples were classified into high-motile and low-motile groups (n = 7 per each group) based on the ejaculate rejection rate. Sperm kinetic parameters were assessed using computer-assisted sperm analysis (CASA). Sperm viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and intracellular calcium levels were measured through flow cytometry. Subsequently, GAPDHS localization was observed via immunocytochemistry. The expression levels and enzyme activity of GAPDHS were estimated using western blotting and a GAPDHS activity assay kit. RESULTS AND DISCUSSION Sperm viability, MMP, ROS, and live sperm intracellular calcium levels did not differ significantly between high and low motile groups. A significant positive correlation was found between MMP and sperm viability, whereas no significant association was found between MMP and sperm progressive motility. The GAPDHS was localized in the principal piece, head-midpiece junction, and at the acrosome region of bull sperm. GAPDHS localization intensity, expression levels, and enzyme activity were found significantly (p < 0.05) higher in the high motile group than in low motile group. Furthermore, we noticed a significant positive correlation between GAPDHS activity and sperm kinetic parameters. CONCLUSIONS The analysis of GAPDHS localization patterns, expression levels, and enzyme activity indicated its potential role in sperm motility, suggesting that GAPDHS could serve as a candidate biomarker for sperm motility and male fertility.
Collapse
Affiliation(s)
- K Naresh Kumar
- Semen Technology Laboratory, Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, India
| | - Vedamurthy G Veerappa
- Semen Technology Laboratory, Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research, Institute, Adugodi, Bengaluru, India
| | - Maharajan Lavanya
- Semen Technology Laboratory, Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, India
| | - J Ebenezer Samuel King
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research, Institute, Adugodi, Bengaluru, India
| | - M Sulochana
- Semen Technology Laboratory, Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Adugodi, Bengaluru, India
| | - Shivanagouda Patil
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research, Institute, Adugodi, Bengaluru, India
| | - Sakthivel Jeyakumar
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research, Institute, Adugodi, Bengaluru, India
| |
Collapse
|
2
|
Qian Y, Liu Y, Wang T, Wang S, Chen J, Li F, Zhang M, Hu X, Wang J, Li Y, James A, Hou R, Cai K. Effects of Cryptorchidism on the Semen Quality of Giant Pandas from the Perspective of Seminal Plasma Proteomics. Genes (Basel) 2024; 15:1288. [PMID: 39457412 PMCID: PMC11507308 DOI: 10.3390/genes15101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Giant pandas are an endangered species with low reproductive rates. Cryptorchidism, which can negatively affect reproduction, is also often found in pandas. Seminal plasma plays a crucial role in sperm-environment interactions, and its properties are closely linked to conception potential in both natural and assisted reproduction. The research sought to identify seminal fluid protein content variations between normal and cryptorchid giant pandas. Methods: Using a label-free MS-based method, the semen proteomes of one panda with cryptorchidism and three normal pandas were studied, and the identified proteins were compared and functionally analyzed. Results: Mass spectrometry identified 2059 seminal plasma proteins, with 361 differentially expressed proteins (DEPs). Gene ontology (GO) analysis revealed that these DEPs are mainly involved in the phosphate-containing compound metabolic, hydrolase activity, and kinase activity areas (p ≤ 0.05). The KEGG functional enrichment analysis revealed that the top 20 pathways were notably concentrated in the adipocyte lipolysis and insulin metabolism pathway, with a significance level of p ≤ 0.05. Further analysis through a protein-protein interaction (PPI) network identified nine key proteins that may play crucial roles, including D2GXH8 (hexokinase Fragment), D2HSQ6 (protein tyrosine phosphatase), and G1LHZ6 (Calmodulin 2). Conclusions: We suspect that the high abundance of D2HSQ6 in cryptorchid individuals is associated with metabolic pathways, especially the insulin signal pathway, as a typical proteomic feature related to its pathological features. These findings offer insight into the ex situ breeding conditions of this threatened species.
Collapse
Affiliation(s)
- Yicheng Qian
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (Y.Q.); (T.W.)
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Tao Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; (Y.Q.); (T.W.)
| | - Shenfei Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Jiasong Chen
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Feiping Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Mengshi Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Xianbiao Hu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Juan Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Ayala James
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Y.L.); (S.W.); (J.C.); (F.L.); (M.Z.); (X.H.); (J.W.); (Y.L.); (A.J.); (R.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| |
Collapse
|
3
|
Faggi M, Vanzetti A, Teijeiro JM. Effect of glucose and reactive oxygen species on boar sperm induced-acrosome exocytosis. Res Vet Sci 2023; 164:105013. [PMID: 37742485 DOI: 10.1016/j.rvsc.2023.105013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Ejaculated boar spermatozoa can be liquid preserved for several days and be easily activated to produce physiological changes. One of the major changes is acrosome exocytosis that is physiologically related to capacitation. Glycolysis and reactive oxygen species (ROS) were studied regarding several boar sperm functions, but data available about their effect on boar sperm acrosome exocytosis are scarce. The objective of this work was to evaluate the effect of glucose and ROS on boar sperm acrosome exocytosis. We evaluated acrosome exocytosis by progesterone induction of capacitated sperm and assess viability, kinematics parameters, ROS levels, ATP content and Protein Kinase A activity in media with or without glucose and hydrogen peroxide or potassium chromate, as source of ROS. Our results show that glucose has no effect on acrosome exocytosis and also, it is not necessary for boar sperm capacitation, although it has a positive effect in the presence of ROS. On the other hand, ROS effects are related to spontaneous acrosome reaction. We conclude that glycolysis may function as a metabolic pathway that provides sustain but is not directly involved in boar sperm acrosome exocytosis and capacitation. Also, ROS do not promote capacitation in boar sperm, but affect spontaneous acrosome exocytosis.
Collapse
Affiliation(s)
- Melina Faggi
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Agustín Vanzetti
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina; CONICET.
| |
Collapse
|
4
|
Naletova I, Schmalhausen E, Tomasello B, Pozdyshev D, Attanasio F, Muronetz V. The role of sperm-specific glyceraldehyde-3-phosphate dehydrogenase in the development of pathologies-from asthenozoospermia to carcinogenesis. Front Mol Biosci 2023; 10:1256963. [PMID: 37711387 PMCID: PMC10499166 DOI: 10.3389/fmolb.2023.1256963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
The review considers various aspects of the influence of the glycolytic enzyme, sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) on the energy metabolism of spermatozoa and on the occurrence of several pathologies both in spermatozoa and in other cells. GAPDS is a unique enzyme normally found only in mammalian spermatozoa. GAPDS provides movement of the sperm flagellum through the ATP formation in glycolytic reactions. Oxidation of cysteine residues in GAPDS results in inactivation of the enzyme and decreases sperm motility. In particular, reduced sperm motility in diabetes can be associated with GAPDS oxidation by superoxide anion produced during glycation reactions. Mutations in GAPDS gene lead in the loss of motility, and in some cases, disrupts the formation of the structural elements of the sperm flagellum, in which the enzyme incorporates during spermiogenesis. GAPDS activation can be used to increase the spermatozoa fertility, and inhibitors of this enzyme are being tried as contraceptives. A truncated GAPDS lacking the N-terminal fragment of 72 amino acids that attaches the enzyme to the sperm flagellum was found in melanoma cell lines and then in specimens of melanoma and other tumors. Simultaneous production of the somatic form of GAPDH and sperm-specific GAPDS in cancer cells leads to a reorganization of their energy metabolism, which is accompanied by a change in the efficiency of metastasis of certain forms of cancer. Issues related to the use of GAPDS for the diagnosis of cancer, as well as the possibility of regulating the activity of this enzyme to prevent metastasis, are discussed.
Collapse
Affiliation(s)
- Irina Naletova
- Institute of Crystallography, National Council of Research, Catania, Italy
| | - Elena Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Denis Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Butlerov Chemical Institute, Kazan Federal University, Kazan, Russia
| |
Collapse
|
5
|
Xiong X, Wu Q, Zhang L, Gao S, Li R, Han L, Fan M, Wang M, Liu L, Wang X, Zhang C, Xin Y, Li Z, Huang C, Yang J. Chronic stress inhibits testosterone synthesis in Leydig cells through mitochondrial damage via Atp5a1. J Cell Mol Med 2022; 26:354-363. [PMID: 34894202 PMCID: PMC8743653 DOI: 10.1111/jcmm.17085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022] Open
Abstract
Stress is one of the leading causes of male infertility, but its exact function in testosterone synthesis has scarcely been reported. We found that adult male rats show a decrease in bodyweight, genital index and serum testosterone level after continual chronic stress for 21 days. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-MS analysis identified 10 differentially expressed proteins in stressed rats compared with controls. A strong protein interaction network was found to be centred on Atp5a1 among these proteins. Atp5a1 expression significantly decreased in Leydig cells after chronic stress. Transfection of Atp5a1 siRNAs decreased StAR, CYP11A1, and 17β-HSD expression by damaging the structure of mitochondria in TM3 cells. This study confirmed that chronic stress plays an important role in testosterone synthesis by regulating Atp5a1 expression in Leydig cells.
Collapse
Affiliation(s)
- Xiaofan Xiong
- Western China Science and Technology Innovation Port in Precision Medicine InstituteThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Cell Biology and Genetics, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Qiuhua Wu
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of China, Xi’an Jiaotong UniversityXi’anChina
- Center of Medical GeneticsNorthwest Women’s and Children’s HospitalXi’anChina
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Shanfeng Gao
- Department of Cell Biology and Genetics, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Lin Han
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of China, Xi’an Jiaotong UniversityXi’anChina
| | - Meiyang Fan
- Department of Cell Biology and Genetics, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Miaomiao Wang
- Department of Cell Biology and Genetics, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Liying Liu
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of China, Xi’an Jiaotong UniversityXi’anChina
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of China, Xi’an Jiaotong UniversityXi’anChina
| | - Chunli Zhang
- Western China Science and Technology Innovation Port in Precision Medicine InstituteThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yanlong Xin
- Western China Science and Technology Innovation Port in Precision Medicine InstituteThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zongfang Li
- Western China Science and Technology Innovation Port in Precision Medicine InstituteThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of China, Xi’an Jiaotong UniversityXi’anChina
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of China, Xi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
6
|
Zhang J, Wang J, Zhang X, Zhao C, Zhou S, Du C, Tan Y, Zhang Y, Shi K. Transcriptome profiling identifies immune response genes against porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in the lungs of piglets. J Vet Sci 2022. [DOI: 10.4142/jvs.2022.23.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jing Zhang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Jing Wang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Xiong Zhang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Chunping Zhao
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Sixuan Zhou
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Chunlin Du
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Ya Tan
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611830, China
| | - Yu Zhang
- College of Animal Science, Guizhou University, Guiyang 550002, China
| | - Kaizhi Shi
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| |
Collapse
|
7
|
Zhang J, Wang J, Zhang X, Zhao C, Zhou S, Du C, Tan Y, Zhang Y, Shi K. Transcriptome profiling identifies immune response genes against porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in the lungs of piglets. J Vet Sci 2021; 23:e2. [PMID: 34931503 PMCID: PMC8799943 DOI: 10.4142/jvs.21139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background Co-infections of the porcine reproductive and respiratory syndrome virus (PRRSV) and the Haemophilus parasuis (HPS) are severe in Chinese pigs, but the immune response genes against co-infected with 2 pathogens in the lungs have not been reported. Objectives To understand the effect of PRRSV and/or HPS infection on the genes expression associated with lung immune function. Methods The expression of the immune-related genes was analyzed using RNA-sequencing and bioinformatics. Differentially expressed genes (DEGs) were detected and identified by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and western blotting assays. Results All experimental pigs showed clinical symptoms and lung lesions. RNA-seq analysis showed that 922 DEGs in co-challenged pigs were more than in the HPS group (709 DEGs) and the PRRSV group (676 DEGs). Eleven DEGs validated by qRT-PCR were consistent with the RNA sequencing results. Eleven common Kyoto Encyclopedia of Genes and Genomes pathways related to infection and immune were found in single-infected and co-challenged pigs, including autophagy, cytokine-cytokine receptor interaction, and antigen processing and presentation, involving different DEGs. A model of immune response to infection with PRRSV and HPS was predicted among the DEGs in the co-challenged pigs. Dual oxidase 1 (DUOX1) and interleukin-21 (IL21) were detected by IHC and western blot and showed significant differences between the co-challenged pigs and the controls. Conclusions These findings elucidated the transcriptome changes in the lungs after PRRSV and/or HPS infections, providing ideas for further study to inhibit ROS production and promote pulmonary fibrosis caused by co-challenging with PRRSV and HPS.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Jing Wang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Xiong Zhang
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Chunping Zhao
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Sixuan Zhou
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Chunlin Du
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China
| | - Ya Tan
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China.,College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611830, China
| | - Yu Zhang
- College of Animal Science, Guizhou University, Guiyang 550002, China
| | - Kaizhi Shi
- Key Laboratory of Livestock and Poultry Major Epidemic Disease Monitoring and Prevention, Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550002, China.
| |
Collapse
|
8
|
Stanishevskaya O, Silyukova Y, Pleshanov N, Kurochkin A. Role of Mono- and Disaccharide Combination in Cryoprotective Medium for Rooster Semen to Ensure Cryoresistance of Spermatozoa. Molecules 2021; 26:molecules26195920. [PMID: 34641464 PMCID: PMC8511987 DOI: 10.3390/molecules26195920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
The combination of saccharides in the composition of a cryopreservation medium may represent a promising method for the preservation of the reproductive cells of male birds. In the current study, cryoprotective media with a combined composition of mono- and di-saccharides were developed. The degree of penetration of reducing saccharide molecules (maltose—Mal20 medium) and non-reducing disaccharide molecules (trehalose—Treh20 medium) from the cryoprotective medium into the cytosol of rooster spermatozoa was studied. LCM control media without disaccharides were used as the control. The number of maltose molecules penetrating from the outside into the cytosol of the spermatozoon was 1.06 × 104, and the number of trehalose molecules was 3.98 × 104. Using a combination of maltose and fructose, the progressive motility of frozen/thawed semen and the fertility rates of eggs were significantly higher ((p < 0.05) 40.2% and 68.5%, respectively) than when using a combination of trehalose and fructose in a cryoprotective diluent (33.4% and 62.4%, respectively). A higher rate of chromatin integrity at the level of 92.4% was obtained when using Treh20 versus 74.5% Mal20 (p < 0.05). Maltose positively affected the preservation of frozen/thawed sperm in the genital tract of hens. On the seventh day from the last insemination when using Mal20, the fertilization of eggs was 42.6% and only 27.3% when using Treh20. Despite the same molecular weight, maltose and trehalose have different physicochemical and biological properties that determine their function and effectiveness as components of cryoprotective media.
Collapse
Affiliation(s)
- Olga Stanishevskaya
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Moskovskoe Shosse, 55a, 196625 St. Petersburg, Russia
| | - Yulia Silyukova
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Moskovskoe Shosse, 55a, 196625 St. Petersburg, Russia
| | - Nikolai Pleshanov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Moskovskoe Shosse, 55a, 196625 St. Petersburg, Russia
| | - Anton Kurochkin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Moskovskoe Shosse, 55a, 196625 St. Petersburg, Russia
| |
Collapse
|
9
|
Transgenerational Effects of Di(2-Ethylhexyl) Phthalate on Anogenital Distance, Sperm Functions and DNA Methylation in Rat Offspring. Int J Mol Sci 2021; 22:ijms22084131. [PMID: 33923623 PMCID: PMC8073582 DOI: 10.3390/ijms22084131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/03/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in the manufacture of polyvinylchloride plastics and has been associated with concerns regarding male reproductive toxicity. In this study, we hypothesized that maternal exposure to DEHP induces transgenerational inheritance of adult-onset adverse reproductive outcomes through the male germline in the F1, F2, and F3 generations of male offspring. Pregnant rats were treated with 5 or 500 mg of DEHP/kg/day through gavage from gestation day 0 to birth. The offspring body weight, anogenital distance (AGD), anogenital index (AGI), sperm count, motility, and DNA fragmentation index (DFI) were measured for all generations. Methyl-CpG binding domain sequencing was performed to analyze sperm DNA methylation status in the F3. DEHP exposure at 500 mg/kg affected AGD, AGI, sperm count, mean DFI, and %DFI in the F1; AGD, sperm count, and mean DFI in the F2; and AGD, AGI, mean DFI, and %DFI in the F3. DEHP exposure at 5 mg/kg affected AGD, AGI, sperm count, and %DFI in the F1; sperm count in the F2; and AGD and AGI in F3. Compared with the control group, 15 and 45 differentially hypermethylated genes were identified in the groups administered 5 mg/kg and 500 mg/kg DEHP, respectively. Moreover, 130 and 6 differentially hypomethylated genes were observed in the groups administered 5 mg/kg and 500 mg/kg DEHP. Overall, these results demonstrated that prenatal exposure to DEHP caused transgenerational epigenetic effects, which may explain the observed phenotypic changes in the male reproductive system.
Collapse
|
10
|
Fang C, Guo F, Zhao X, Zhang Z, Lu J, Pan H, Xu T, Li W, Yang M, Huang Y, Zhao Y, Zhao S. Biological mechanisms of growth performance and meat quality in porcine muscle tissue. Anim Biotechnol 2021; 33:1246-1254. [PMID: 33704018 DOI: 10.1080/10495398.2021.1886939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Growth performance and meat quality are important traits for pig production. The aim of the present study was to investigate the molecular mechanisms underlying growth performance and meat quality, and to identify novel target molecules for predicting the growth performance and meat quality. The differentially expressed genes (DEGs) in Diannan small ears pigs (DSP) and Landrace pigs (LP) were assessed by RNA-sequencing analyzing technology. A total of 339 DEGs were obtained between DSP and LP. 146 DEGs were upregulated in LP compared with DSP and 193 DEGs were upregulated in DSP compared with LP. The DEGs were significantly enriched in 26 GO and 3 KEGG pathways. The protein-protein interaction (PPI) network with 201 nodes and 382 edges was constructed and 5 modules were extracted from the entire network. The identified upregulated expression of genes involved in glycolysis and myogenesis as well as extracellular matrix may be associated with fast body and muscle deposition rates in LP. Increased expression of genes involved in PPAR signaling pathway and fatty acid metabolism as well as oxidative phosphate processes could be related to the intramuscular fat deposition and meat quality in DSP. The present study may provide an improved understanding of the growth performance and meat quality.
Collapse
Affiliation(s)
- Chen Fang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Fei Guo
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Xiaoqi Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China.,Institute of Herbivorous Livestock, Yunnan Academy of Animal Sciences, Kunming, China
| | - Zining Zhang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Junlan Lu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Taojie Xu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Yanguang Zhao
- Research Institute of Pig and Animal Nutrition, Yunnan Academy of Animal Sciences, Kunming, China
| | - Sumei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Maekura K, Tsukamoto S, Hamada-Kanazawa M, Takano M. Rimklb mutation causes male infertility in mice. Sci Rep 2021; 11:4604. [PMID: 33633267 PMCID: PMC7907349 DOI: 10.1038/s41598-021-84105-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Rimklb is a mammalian homologue of the E. coli enzyme RimK, which catalyzes addition of glutamic acid to the ribosomal protein S6. To date, no previous studies have shown any physiological role for Rimklb in mammals. In this study, using Western blotting, we found that Rimklb is distributed and expressed in mouse testis and heart. Rimklb was subsequently localized to the testicular Leydig cells using immunohistochemistry with an anti-Rimklb antibody. We generated a Rimklb mutant mouse in which a three-base deletion results in deletion of Ala 29 and substitution of Leu 30 with Val, which we named the RimklbA29del, L30V mutant mouse. RimklbA29del, L30V mutant mice show a decrease in testicular size and weight, and in vitro fertilization demonstrates complete male infertility. Furthermore, we found that a key factor in the mammalian target of the rapamycin/ribosomal protein S6 transcriptional pathway is hyperphosphorylated in the seminiferous tubules of the mutant testis. We conclude that Rimklb has important roles that include spermatogenesis in seminiferous tubules. In summary, male RimklbA29del, L30V mice are infertile.
Collapse
Affiliation(s)
- Koji Maekura
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Michiko Hamada-Kanazawa
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Masaoki Takano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
12
|
Setiawan R, Priyadarshana C, Tajima A, Travis AJ, Asano A. Localisation and function of glucose transporter GLUT1 in chicken (Gallus gallus domesticus) spermatozoa: relationship between ATP production pathways and flagellar motility. Reprod Fertil Dev 2021; 32:697-705. [PMID: 32317094 DOI: 10.1071/rd19240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Glucose plays an important role in sperm flagellar motility and fertility via glycolysis and oxidative phosphorylation, although the primary mechanisms for ATP generation vary between species. The glucose transporter 1 (GLUT1) is a high-affinity isoform and a major glucose transporter in mammalian spermatozoa. However, in avian spermatozoa, the glucose metabolic pathways are poorly characterised. This study demonstrates that GLUT1 plays a major role in glucose-mediated motility of chicken spermatozoa. Using specific antibodies and ligand, we found that GLUT1 was specifically localised to the midpiece. Sperm motility analysis showed that glucose supported sperm movement during incubation for 0-80min. However, this was abolished by the addition of a GLUT1 inhibitor, concomitant with a substantial decrease in glucose uptake and ATP production, followed by elevated mitochondrial activity in response to glucose addition. More potent inhibition of ATP production and mitochondrial activity was observed in response to treatment with uncouplers of oxidative phosphorylation. Because mitochondrial inhibition only reduced a subset of sperm movements, we investigated the localisation of the glycolytic pathway and showed glyceraldehyde-3-phosphate dehydrogenase and hexokinase I at the midpiece and principal piece of the flagellum. The results of this study provide new insights into the mechanisms involved in ATP production pathways in avian spermatozoa.
Collapse
Affiliation(s)
- Rangga Setiawan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Alexander J Travis
- Baker Institute for Animal Health, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; and Corresponding author.
| |
Collapse
|
13
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
14
|
Corredor FA, Sanglard LP, Leach RJ, Ross JW, Keating AF, Serão NVL. Genetic and genomic characterization of vulva size traits in Yorkshire and Landrace gilts. BMC Genet 2020; 21:28. [PMID: 32164558 PMCID: PMC7068987 DOI: 10.1186/s12863-020-0834-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Reproductive performance is critical for efficient swine production. Recent results indicated that vulva size (VS) may be predictive of reproductive performance in sows. Study objectives were to estimate genetic parameters, identify genomic regions associated, and estimate genomic prediction accuracies (GPA) for VS traits. RESULTS Heritability estimates of VS traits, vulva area (VA), height (VH), and width (VW) measurements, were moderately to highly heritable in Yorkshire, with 0.46 ± 0.10, 0.55 ± 0.10, 0.31 ± 0.09, respectively, whereas these estimates were low to moderate in Landrace, with 0.16 ± 0.09, 0.24 ± 0.11, and 0.08 ± 0.06, respectively. Genetic correlations within VS traits were very high for both breeds, with the lowest of 0.67 ± 0.29 for VH and VW for Landrace. Genome-wide association studies (GWAS) for Landrace, reveled genomic region associated with VS traits on Sus scrofa chromosome (SSC) 2 (154-157 Mb), 7 (107-110 Mb), 8 (4-6 Mb), and 10 (8-19 Mb). For Yorkshire, genomic regions on SSC 1 (87-91 and 282-287 Mb) and 5 (67 Mb) were identified. All regions explained at least 3.4% of the genetic variance. Accuracies of genomic prediction were moderate in Landrace, ranging from 0.30 (VH) to 0.61 (VA), and lower for Yorkshire, with 0.07 (VW) to 0.11 (VH). Between-breed and multi-breed genomic prediction accuracies were low. CONCLUSIONS Our findings suggest that VS traits are heritable in Landrace and Yorkshire gilts. Genomic analyses show that major QTL control these traits, and they differ between breed. Genomic information can be used to increase genetic gains for these traits in gilts. Additional research must be done to validate the GWAS and genomic prediction results reported in our study.
Collapse
Affiliation(s)
| | | | | | - Jason W. Ross
- Department of Animal Science, Iowa State University, IA50010, Ames, USA
- Iowa Pork Industry Center, Iowa State University, Ames, IA 50010 USA
| | - Aileen F. Keating
- Department of Animal Science, Iowa State University, IA50010, Ames, USA
| | - Nick V. L. Serão
- Department of Animal Science, Iowa State University, IA50010, Ames, USA
| |
Collapse
|
15
|
Huang Z, Danshina PV, Mohr K, Qu W, Goodson SG, O’Connell TM, O’Brien DA. Sperm function, protein phosphorylation, and metabolism differ in mice lacking successive sperm-specific glycolytic enzymes†. Biol Reprod 2017; 97:586-597. [DOI: 10.1093/biolre/iox103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
|
16
|
Makshakova ON, Semenyuk PI, Kuravsky ML, Ermakova EA, Zuev YF, Muronetz VI. Structural basis for regulation of stability and activity in glyceraldehyde-3-phosphate dehydrogenases. Differential scanning calorimetry and molecular dynamics. J Struct Biol 2015; 190:224-35. [PMID: 25869789 DOI: 10.1016/j.jsb.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
Abstract
Tissue specific isoforms of human glyceraldehyde-3-phosphate dehydrogenase, somatic (GAPD) and sperm-specific (GAPDS), have been reported to display different levels of both stability and catalytic activity. Here we apply MD simulations to investigate molecular basis of this phenomenon. The protein is a tetramer where each subunit consists of two domains - catalytic and NAD-binding one. We demonstrated key residues responsible for intersubunit and interdomain interactions. Effect of several residues was studied by point mutations. Overall we considered three mutations (Glu96Gln, Glu244Gln and Asp311Asn) disrupting GAPDS-specific salt bridges. Comparison of calculated interaction energies with calorimetric enthalpies confirmed that intersubunit interactions were responsible for enhanced thermostability of GAPDS whereas interdomain interactions had indirect influence on intersubunit contacts. Mutation Asp311Asn was around 10Å far from the active center and corresponded to the closest natural substitution in the isoenzymes. MD simulations revealed that this residue had slight interaction with catalytic residues but influenced the hydrogen bond net and dynamics in active site. These effects can be responsible for a strong influence of this residue on catalytic activity. Overall, our results provide new insight into glyceraldehyde-3-phosphate dehydrogenase structure-function relationships and can be used for the engineering of mutant proteins with modified properties and for development of new inhibitors with indirect influence on the catalytic site.
Collapse
Affiliation(s)
- Olga N Makshakova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia.
| | - Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail L Kuravsky
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Moscow, Russia
| | - Elena A Ermakova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Ajao C, Andersson MA, Teplova VV, Nagy S, Gahmberg CG, Andersson LC, Hautaniemi M, Kakasi B, Roivainen M, Salkinoja-Salonen M. Mitochondrial toxicity of triclosan on mammalian cells. Toxicol Rep 2015; 2:624-637. [PMID: 28962398 PMCID: PMC5598359 DOI: 10.1016/j.toxrep.2015.03.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 01/08/2023] Open
Abstract
Effects of triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol) on mammalian cells were investigated using human peripheral blood mono nuclear cells (PBMC), keratinocytes (HaCaT), porcine spermatozoa and kidney tubular epithelial cells (PK-15), murine pancreatic islets (MIN-6) and neuroblastoma cells (MNA) as targets. We show that triclosan (1-10 μg ml-1) depolarised the mitochondria, upshifted the rate of glucose consumption in PMBC, HaCaT, PK-15 and MNA, and subsequently induced metabolic acidosis. Triclosan induced a regression of insulin producing pancreatic islets into tiny pycnotic cells and necrotic death. Short exposure to low concentrations of triclosan (30 min, ≤1 μg/ml) paralyzed the high amplitude tail beating and progressive motility of spermatozoa, within 30 min exposure, depolarized the spermatozoan mitochondria and hyperpolarised the acrosome region of the sperm head and the flagellar fibrous sheath (distal part of the flagellum). Experiments with isolated rat liver mitochondria showed that triclosan impaired oxidative phosphorylation, downshifted ATP synthesis, uncoupled respiration and provoked excessive oxygen uptake. These exposure concentrations are 100-1000 fold lower that those permitted in consumer goods. The mitochondriotoxic mechanism of triclosan differs from that of valinomycin, cereulide and the enniatins by not involving potassium ionophoric activity.
Collapse
Key Words
- Acidosis
- BCF, bioconcentration factor
- EC50, concentration that diminishes the respective vitality parameter by ≥50%
- Electric transmembrane potential
- Glycolysis
- HaCaT, a spontaneously immortalized (non-neoplastic) keratinocyte cell line
- JC-1, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide
- MIC, minimal inhibitory concentration
- MIN-6, a murine pancreatic beta cell line
- MNA, a murine neuroblastoma cells
- Oxidative phosphorylation
- PBMC, monocyte-enriched peripheral blood mononuclear cells
- PI, propidium iodide
- PK-15, a porcine kidney tubular epithelial cell line
- PN, pyridine nucleotides
- RLM, rat liver mitochondria
- Sperm motility
- TPP+, tetraphenylphosphonium
- Uncoupler
- ΔΨ, electric transmembrane potential
- ΔΨm, membrane potential of the mitochondrial membrane
- ΔΨp, membrane potential of the plasma membrane
Collapse
Affiliation(s)
- Charmaine Ajao
- Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland
| | - Maria A. Andersson
- Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland
| | - Vera V. Teplova
- Institute of Theoretical and Experimental Biophysics, RAS, Puschino, Moscow Region, Russia
| | - Szabolcs Nagy
- Department of Animal Science and Animal Husbandry, University of Pannonia, Georgikon Faculty, Deak F. u.,16, H8360 Keszthely, Hungary
| | - Carl G. Gahmberg
- Dept. of Bio- and Environmental Sciences, Haartman Institute, University of Helsinki, FI-00014, Finland
| | - Leif C. Andersson
- Dept. of Pathology, Haartman Institute, University of Helsinki, FI-00014, Finland
| | - Maria Hautaniemi
- Finnish Food Safety Authority (EVIRA), Research and Laboratory Department, Veterinary Virology Research Unit, Mustialankatu 3, FI 00790 Helsinki, Finland
| | - Balazs Kakasi
- Institute of Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprem, Hungary
| | - Merja Roivainen
- National Institute for Health and Welfare, Department of Virology, Mannerheimintie 166, 00300 Helsinki, Finland
| | - Mirja Salkinoja-Salonen
- Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland
| |
Collapse
|
18
|
Kasvandik S, Sillaste G, Velthut-Meikas A, Mikelsaar AV, Hallap T, Padrik P, Tenson T, Jaakma Ü, Kõks S, Salumets A. Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment. Proteomics 2015; 15:1906-20. [PMID: 25603787 DOI: 10.1002/pmic.201400297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/01/2014] [Accepted: 01/15/2015] [Indexed: 12/27/2022]
Abstract
A significant proportion of mammalian fertilization is mediated through the proteomic composition of the sperm surface. These protein constituents can present as biomarkers to control and regulate breeding of agricultural animals. Previous studies have addressed the bovine sperm cell apical plasma membrane (PM) proteome with nitrogen cavitation enrichment. Alternative workflows would enable to expand the compositional data more globally around the entire sperm's surface. We used a cell surface biotin-labeling in combination with differential centrifugation to enrich sperm surface proteins. Using nano-LC MS/MS, 338 proteins were confidently identified in the PM-enriched proteome. Functional categories of sperm-egg interaction, protein turnover, metabolism as well as molecular transport, spermatogenesis, and signal transduction were represented by proteins with high quantitative signal in our study. A highly significant degree of enrichment was found for transmembrane and PM-targeted proteins. Among them, we also report proteins previously not described on bovine sperm (CPQ, CD58, CKLF, CPVL, GLB1L3, and LPCAT2B) of which CPQ and CPVL cell surface localization was further validated. A descriptive overview of the bovine sperm PM integral and peripheral proteins is provided to complement future studies on animal reproduction and its relation to sperm cell surface. All MS data have been deposited in the ProteomeXchange with identifier PXD001096 (http://proteomecentral.proteomexchange.org/dataset/PXD001096).
Collapse
Affiliation(s)
- Sergo Kasvandik
- Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Estonia.,Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia
| | - Gerly Sillaste
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
| | - Agne Velthut-Meikas
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,Center for Biology of Integrated Systems, Tallinn University of Technology, Tallinn, Estonia
| | - Aavo-Valdur Mikelsaar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Triin Hallap
- Department of Reproductive Biology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Peeter Padrik
- Animal Breeders Association of Estonia, Keava, Kehtna vald, Raplamaa, Estonia
| | - Tanel Tenson
- Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülle Jaakma
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.,Department of Reproductive Biology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Sulev Kõks
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Margaryan H, Dorosh A, Capkova J, Manaskova-Postlerova P, Philimonenko A, Hozak P, Peknicova J. Characterization and possible function of glyceraldehyde-3-phosphate dehydrogenase-spermatogenic protein GAPDHS in mammalian sperm. Reprod Biol Endocrinol 2015; 13:15. [PMID: 25888749 PMCID: PMC4369841 DOI: 10.1186/s12958-015-0008-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sperm proteins are important for the sperm cell function in fertilization. Some of them are involved in the binding of sperm to the egg. We characterized the acrosomal sperm protein detected by a monoclonal antibody (MoAb) (Hs-8) that was prepared in our laboratory by immunization of BALB/c mice with human ejaculated sperms and we tested the possible role of this protein in the binding assay. METHODS Indirect immunofluorescence and immunogold labelling, gel electrophoresis, Western blotting and protein sequencing were used for Hs-8 antigen characterization. Functional analysis of GAPDHS from the sperm acrosome was performed in the boar model using sperm/zona pellucida binding assay. RESULTS Monoclonal antibody Hs-8 is an anti-human sperm antibody that cross-reacts with the Hs-8-related protein in spermatozoa of other mammalian species (boar, mouse). In the immunofluorescence test, Hs-8 antibody recognized the protein localized in the acrosomal part of the sperm head and in the principal piece of the sperm flagellum. In immunoblotting test, MoAb Hs-8 labelled a protein of 45 kDa in the extract of human sperm. Sequence analysis identified protein Hs-8 as GAPDHS (glyceraldehyde 3-phosphate dehydrohenase-spermatogenic). For this reason, commercial mouse anti-GAPDHS MoAb was applied in control tests. Both antibodies showed similar staining patterns in immunofluorescence tests, in electron microscopy and in immunoblot analysis. Moreover, both Hs-8 and anti-GAPDHS antibodies blocked sperm/zona pellucida binding. CONCLUSION GAPDHS is a sperm-specific glycolytic enzyme involved in energy production during spermatogenesis and sperm motility; its role in the sperm head is unknown. In this study, we identified the antigen with Hs8 antibody and confirmed its localization in the apical part of the sperm head in addition to the principal piece of the flagellum. In an indirect binding assay, we confirmed the potential role of GAPDHS as a binding protein that is involved in the secondary sperm/oocyte binding.
Collapse
Affiliation(s)
- Hasmik Margaryan
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, v. v. i, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Andriy Dorosh
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, v. v. i, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Jana Capkova
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, v. v. i, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Pavla Manaskova-Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, v. v. i, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Anatoly Philimonenko
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics AS CR, v. v. i, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Hozak
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics AS CR, v. v. i, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Jana Peknicova
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, v. v. i, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
20
|
Zilli L, Beirão J, Schiavone R, Herraez MP, Gnoni A, Vilella S. Comparative proteome analysis of cryopreserved flagella and head plasma membrane proteins from sea bream spermatozoa: effect of antifreeze proteins. PLoS One 2014; 9:e99992. [PMID: 24941006 PMCID: PMC4062426 DOI: 10.1371/journal.pone.0099992] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/21/2014] [Indexed: 01/19/2023] Open
Abstract
Cryopreservation induces injuries to fish spermatozoa that in turn affect sperm quality in terms of fertilization ability, motility, DNA and protein integrity and larval survival. To reduce the loss of sperm quality due to freezing-thawing, it is necessary to improve these procedures. In the present study we investigated the ability of two antifreeze proteins (AFPI and AFPIII) to reduce the loss of quality of sea bream spermatozoa due to cryopreservation. To do so, we compared viability, motility, straight-line velocity and curvilinear velocity of fresh and (AFPs)-cryopreserved spermatozoa. AFPIII addition to cryopreservation medium improved viability, motility and straight-line velocity with respect to DMSO or DMSO plus AFPI. To clarify the molecular mechanism(s) underlying these findings, the protein profile of two different cryopreserved sperm domains, flagella and head plasma membranes, was analysed. The protein profiles differed between fresh and frozen-thawed semen and results of the image analysis demonstrated that, after cryopreservation, out of 270 proteins 12 were decreased and 7 were increased in isolated flagella, and out of 150 proteins 6 showed a significant decrease and 4 showed a significant increase in head membranes. Mass spectrometry analysis identified 6 proteins (4 from isolated flagella and 2 present both in flagella and head plasma membranes) within the protein spots affected by the freezing-thawing procedure. 3 out of 4 proteins from isolated flagella were involved in the sperm bioenergetic system. Our results indicate that the ability of AFPIII to protect sea bream sperm quality can be, at least in part, ascribed to reducing changes in the sperm protein profile occurring during the freezing-thawing procedure. Our results clearly demonstrated that AFPIII addition to cryopreservation medium improved the protection against freezing respect to DMSO or DMSO plus AFPI. In addition we propose specific proteins of spermatozoa as markers related to the procedures of fish sperm cryopreservation.
Collapse
Affiliation(s)
- Loredana Zilli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- * E-mail:
| | - José Beirão
- Department of Molecular Biology, University of León, León, Spain
| | - Roberta Schiavone
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Sebastiano Vilella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
21
|
Multiple models of porcine teschovirus pathogenesis in endemically infected pigs. Vet Microbiol 2013; 168:69-77. [PMID: 24268804 DOI: 10.1016/j.vetmic.2013.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 11/22/2022]
Abstract
Porcine teschoviruses (PTVs) belong to the genus Teschovirus within the family Picornaviridae. PTVs are universal contaminants in pig herds in endemic and multi-infection status. To further the understanding of PTV pathogenesis in endemically infected pigs, a set of samples was studied by real time reverse transcription PCR (qRT-PCR) to quantitate viral loads in tissues and by in situ hybridization (ISH) to locate PTV signals in target cells, both targeting the 5'-NTR. cRNA of PTV-1 and PTV-7, in vitro transcribed from cloned fragments of 5'-NTR of 2 viruses, was used to construct standard curves and to run parallel in qRT-PCR, which had detection limits of 10(1) copies/per reaction, with a linearity in between 10(1) and 10(7) copies/per reaction and correlation coefficients of 0.997-0.9988. The qRT-PCR specifically amplified RNA from PTV-1 to -11, while excluding those of Sapelovirus, PEV-9 and PEV-10. Inguinal lymph node (LN) had the highest viral load of all (assuming 100%), followed by ileac LN (89-91%), tonsil (66-68%), ileum (59-60%), spleen (38-40%), and kidney (30-31%), with the least in brain (22.9%) of the inguinal LN. The 22.9% load in brain was higher than that anticipated from a simple fecal-oral-viremia operative model. The results suggested in addition that intranasal infection and retrograding axonal infection from the tonsils were equally operative and significant. ISH revealed PTV signals in a wider variety of tissue cell types than before. PTV signals were noted most impressively in neurons of the cerebral cortex and hippocampus and in the dark zone of the germinal center and adjacent paracortex of regional LN. Multiple operative models indicated that PTVs seemed to have no difficulty invading the brain. The key to whether encephalitis would ensue resided in the animal's immune status and topographic differences of neurons' susceptibilities to PTVs. When common co-infected agents are present, as is typical in the field, PTVs may synergize in causing diseases.
Collapse
|
22
|
Petit FM, Serres C, Bourgeon F, Pineau C, Auer J. Identification of sperm head proteins involved in zona pellucida binding. Hum Reprod 2013; 28:852-65. [DOI: 10.1093/humrep/des452] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
23
|
Mannowetz N, Wandernoth PM, Wennemuth G. Glucose is a pH-dependent motor for sperm beat frequency during early activation. PLoS One 2012; 7:e41030. [PMID: 22911736 PMCID: PMC3401232 DOI: 10.1371/journal.pone.0041030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/16/2012] [Indexed: 12/17/2022] Open
Abstract
To reach the egg in the ampulla, sperm have to travel along the female genital tract, thereby being dependent on external energy sources and substances to maintain and raise the flagellar beat. The vaginal fluid is rich in lactate, whereas in the uterine fluid glucose is the predominant substrate. This evokes changes in the lactate content of sperm as well as in the intracellular pH (pH(i)) since sperm possess lactate/proton co-transporters. It is well documented that glycolysis yields ATP and that HCO(3)- is a potent factor in the increase of beat frequency. We here show for the first time a pathway that connects both parts. We demonstrate a doubling of beat frequency in the mere presence of glucose. This effect can reversibly be blocked by 2-deoxy-D-glucose, dichloroacetate and aminooxyacetate, strongly suggesting that it requires both glycolysis and mitochondrial oxidation of glycolytic end products. We show that the glucose-mediated acceleration of flagellar beat and ATP production are hastened by a pH(i) ≥7.1, whereas a pH(i) ≤7.1 leaves both parameters unchanged. Since we observed a diminished rise in beat frequency in the presence of specific inhibitors against carbonic anhydrases, soluble adenylyl cyclase and protein kinase, we suggest that the glucose-mediated effect is linked to CO(2) hydration and thus the production of HCO(3)- by intracellular CA isoforms. In summary, we propose that, in sperm, glycolysis is an additional pH(i)-dependent way to produce HCO(3)-, thus enhancing sperm beat frequency and contributing to fertility.
Collapse
Affiliation(s)
- Nadja Mannowetz
- Department of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Petra M. Wandernoth
- Department of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Gunther Wennemuth
- Department of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
24
|
Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase: Structural basis for enhanced stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2207-12. [DOI: 10.1016/j.bbapap.2010.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/22/2022]
|
25
|
Sironen A, Hansen J, Thomsen B, Andersson M, Vilkki J, Toppari J, Kotaja N. Expression of SPEF2 during mouse spermatogenesis and identification of IFT20 as an interacting protein. Biol Reprod 2009; 82:580-90. [PMID: 19889948 DOI: 10.1095/biolreprod.108.074971] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SPEF2 is expressed in all ciliated cells and is essential for correct sperm tail development and male fertility. We have previously identified a mutation within the SPEF2 gene as the cause for infertility because of immotile and malformed sperm tails in pigs. This mutation in pigs alters the testis-specific long SPEF2 isoform and exclusively affects the sperm tail development. In infertile boars, axonemal and all accessory structures of the sperm tail are affected; thus, SPEF2 seems to participate in the organization of these structures. In the present study, we have investigated the expression of SPEF2 during mouse spermatogenesis. SPEF2 mRNA and protein products appear to be localized both in germ cells and in Sertoli cells. In differentiating germ cells, SPEF2 protein is localized in the Golgi complex, manchette, basal body, and midpiece of the sperm tail. In mature murine sperm, SPEF2 is present in the distal part of the sperm tail midpiece. Using yeast two-hybrid assay and coimmunoprecipitation experiments, we identified an interaction between SPEF2 and the intraflagellar transport protein IFT20 in the testis. Furthermore, these two proteins colocalize in differentiating male germ cells. These results support the crucial importance of SPEF2 in sperm differentiation and involvement of SPEF2 in structuring of the sperm tail.
Collapse
Affiliation(s)
- Anu Sironen
- Biotechnology and Food Research, Animal Genomics, MTT Agrifood Research Finland, Jokioinen, Finland
| | | | | | | | | | | | | |
Collapse
|