1
|
Rathjen FG, Jüttner R. The IgSF Cell Adhesion Protein CLMP and Congenital Short Bowel Syndrome (CSBS). Int J Mol Sci 2023; 24:5719. [PMID: 36982793 PMCID: PMC10056934 DOI: 10.3390/ijms24065719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The immunoglobulin-like cell adhesion molecule CLMP is a member of the CAR family of cell adhesion proteins and is implicated in human congenital short-bowel syndrome (CSBS). CSBS is a rare but very severe disease for which no cure is currently available. In this review, we compare data from human CSBS patients and a mouse knockout model. These data indicate that CSBS is characterized by a defect in intestinal elongation during embryonic development and impaired peristalsis. The latter is driven by uncoordinated calcium signaling via gap junctions, which is linked to a reduction in connexin43 and 45 levels in the circumferential smooth muscle layer of the intestine. Furthermore, we discuss how mutations in the CLMP gene affect other organs and tissues, including the ureter. Here, the absence of CLMP produces a severe bilateral hydronephrosis-also caused by a reduced level of connexin43 and associated uncoordinated calcium signaling via gap junctions.
Collapse
Affiliation(s)
- Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany;
| | | |
Collapse
|
2
|
Li K, Diakite D, Austin J, Lee J, Lantvit DD, Murphy BT, Burdette JE. The Flavonoid Baicalein Negatively Regulates Progesterone Target Genes in the Uterus in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:237-247. [PMID: 34935393 PMCID: PMC9164990 DOI: 10.1021/acs.jnatprod.1c01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Baicalein is a flavonoid extracted from the root of Scutellaria baicalensis (Chinese skullcap) and is consumed as part of this botanical dietary supplement to reduce oxidative stress, pain, and inflammation. We previously reported that baicalein can also modify receptor signaling through the progesterone receptor (PR) and glucocorticoid receptor (GR) in vitro, which is interesting due to the well-established roles of both PR and GR in reducing inflammation. To understand the effects of baicalein on PR and GR signaling in vivo in the uterus, ovariectomized CD-1 mice were treated with DMSO, progesterone (P4), baicalein, P4 with baicalein, and P4 with RU486, a PR antagonist, for a week. The uteri were collected for histology and RNA sequencing. Our results showed that baicalein attenuated the antiproliferative effect of P4 on luminal epithelium as well as on the PR target genes HAND2 and ZBTB16. Baicalein did not change levels of PR or GR RNA or protein in the uterus. RNA sequencing data indicated that many transcripts significantly altered by baicalein were regulated in the opposite direction by P4. Similarly, a large portion of GO/KEGG terms and GSEA gene sets were altered in the opposite direction by baicalein as compared to P4 treatment. Treatment of baicalein did not change body weight, organ weight, or blood glucose level. In summary, baicalein functioned as a PR antagonist in vivo and therefore may oppose P4 action under certain conditions such as uterine hyperplasia, fibroids, and uterine cancers.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Djeneba Diakite
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Julia Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jeongho Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D. Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|