1
|
You L, Huang Z, He W, Zhang L, Yu H, Zeng Y, Huang Y, Zeng S, Zheng L. Dietary alpha-lipoic acid alleviates heat stress by modulating insulin-like signaling to maintain homeostasis in C. elegans. Food Funct 2025; 16:2824-2839. [PMID: 40095598 DOI: 10.1039/d4fo05301j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Prolonged exposure to high temperatures can cause oxidative stress in the body, negatively impacting human health. Alpha-lipoic acid (ALA) is a naturally occurring antioxidant prevalent in both plant and animal foods, exhibiting bioactivity comparable to that of vitamins. Although its roles in antioxidant defense and metabolic regulation have been extensively studied, its potential to mitigate heat stress in organisms is less explored and deserves further study. Our research demonstrates that ALA significantly improves the survival rates of Caenorhabditis elegans under heat stress. ALA achieves this by activating heat shock factor 1 (HSF-1) and promoting mitochondrial fission and mitophagy through the transcription factor HLH-30. These processes help alleviate oxidative damage from heat stress, maintain mitochondrial function, and stabilize cellular energy metabolism. Furthermore, the activation of HSF-1 and enhanced mitophagy by dietary ALA depend on the insulin-like signaling peptide 19 (INS-19), suggesting that ALA may target the insulin-like signaling pathway to combat heat stress and maintain homeostasis. These findings indicate that ALA could serve as a valuable dietary supplement for enhancing heat stress resistance in organisms and may inspire the development of novel food ingredients with protective properties against thermal challenges.
Collapse
Affiliation(s)
- Longnong You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zirui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenyuan He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lizhu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Haiyang Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaoyong Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Gómez-Guzmán JA, Parra-Bracamonte GM, Velazquez MA. Impact of Heat Stress on Oocyte Developmental Competence and Pre-Implantation Embryo Viability in Cattle. Animals (Basel) 2024; 14:2280. [PMID: 39123806 PMCID: PMC11311040 DOI: 10.3390/ani14152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Rectal and vaginal temperatures are utilised in both in vivo and in vitro models to study the effects of heat stress on oocyte competence and embryo viability in cattle. However, uterine temperature increases by only 0.5 °C in heat-stressed cows, significantly lower than simulated increases in in vitro models. Temperature variations within oviducts and ovarian follicles during heat stress are poorly understood or unavailable, and evidence is lacking that oocytes and pre-implantation embryos experience mild (40 °C) or severe (41 °C) heat stress inside the ovarian follicle and the oviduct and uterus, respectively. Gathering detailed temperature data from the reproductive tract and follicles is crucial to accurately assess oocyte competence and embryo viability under realistic heat stress conditions. Potential harm from heat stress on oocytes and embryos may result from reduced nutrient availability (e.g., diminished blood flow to the reproductive tract) or other unidentified mechanisms affecting tissue function rather than direct thermal effects. Refining in vivo stress models in cattle is essential to accurately identify animals truly experiencing heat stress, rather than assuming heat stress exposure as done in most studies. This will improve model reliability and aid in the selection of heat-tolerant animals.
Collapse
Affiliation(s)
- Javier A. Gómez-Guzmán
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Gaspar M. Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Miguel A. Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
3
|
Contreras-Méndez LA, Medrano JF, Thomas MG, Enns RM, Speidel SE, Luna-Nevárez G, López-Castro PA, Rivera-Acuña F, Luna-Nevárez P. The Anti-Müllerian Hormone as Endocrine and Molecular Marker Associated with Reproductive Performance in Holstein Dairy Cows Exposed to Heat Stress. Animals (Basel) 2024; 14:213. [PMID: 38254382 PMCID: PMC10812537 DOI: 10.3390/ani14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is proposed as a biomarker for fertility in cattle, yet this associative relationship appears to be influenced by heat stress (HS). The objective was to test serum AMH and AMH-related single nucleotide polymorphisms (SNPs) as markers potentially predictive of reproductive traits in dairy cows experiencing HS. The study included 300 Holstein cows that were genotyped using BovineSNP50 (54,000 SNP). A genome-wide association study was then executed. Nine intragenic SNPs within the pathways that influence the AMH gene were found important with multiple comparisons adjustment tests (p < 1.09 × 10-6). A further validation study was performed in an independent Holstein cattle population, which was divided into moderate (MH; n = 152) and severe heat-stressed (SH; n = 128) groups and then subjected to a summer reproductive management program. Serum AMH was confirmed as a predictor of fertility measures (p < 0.05) in MH but not in the SH group. Cows were genotyped, which revealed four SNPs as predictive markers for serum AMH (p < 0.01), reproductive traits (p < 0.01), and additional physiological variables (p < 0.05). These SNPs were in the genes AMH, IGFBP1, LGR5, and TLR4. In conclusion, serum AMH concentrations and AMH polymorphisms are proposed as predictive markers that can be used in conjunction with genomic breeding value approaches to improve reproductive performance in Holstein cows exposed to summer HS conditions.
Collapse
Affiliation(s)
- Luis A. Contreras-Méndez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Juan F. Medrano
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - R. Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E. Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pedro A. López-Castro
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Fernando Rivera-Acuña
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
4
|
Wang S, Hou K, Gui S, Ma Y, Wang S, Zhao S, Zhu X. Insulin-like growth factor 1 in heat stress-induced neuroinflammation: novel perspective about the neuroprotective role of chromium. STRESS BIOLOGY 2023; 3:23. [PMID: 37676529 PMCID: PMC10441889 DOI: 10.1007/s44154-023-00105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 09/08/2023]
Abstract
Heat stress (HS) can cause a series of stress responses, resulting in numerous negative effects on the body, such as the diminished food intake, carcass quality and reproductive capacity. In addition to the negative effects on the peripheral system, HS leads to central nervous system (CNS) disorders given its toll on neuroinflammation. This neuroinflammatory process is mainly mediated by microglia and astrocytes, which are involved in the activation of glial cells and the secretion of cytokines. While the regulation of inflammatory signaling has a close relationship with the expression of heat shock protein 70 (Hsp70), HS-induced neuroinflammation is closely related to the activation of the TLR4/NF-κB pathway. Moreover, oxidative stress and endoplasmic reticulum (ER) stress are key players in the development of neuroinflammation. Chromium (Cr) has been widely shown to have neuroprotective effects in both humans and animals, despite the lack of mechanistic evidence. Evidence has shown that Cr supplementation can increase the levels of insulin-like growth factor 1 (IGF-1), a major neurotrophic factor with anti-inflammatory and antioxidant effects. This review highlights recent advances in the attenuating effects and potential mechanisms of Cr-mediated IGF-1 actions on HS-induced neuroinflammation, providing presently existing evidence supporting the neuroprotective role of Cr.
Collapse
Affiliation(s)
- Songlin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kanghui Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Siqi Gui
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Barrera SS, Naranjo-Gomez JS, Rondón-Barragán IS. Thermoprotective molecules: Effect of insulin-like growth factor type I (IGF-1) in cattle oocytes exposed to high temperatures. Heliyon 2023; 9:e14375. [PMID: 36967889 PMCID: PMC10036656 DOI: 10.1016/j.heliyon.2023.e14375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The adverse effects of heat stress (HS) on the welfare and productivity of cattle are the result of the associated hyperthermia and the physiological and behavioral mechanisms performed by the animal to regulate body temperature. The negative effects of HS on in vitro oocyte maturation and in vitro bovine embryo production have been reported; being one of the major concerns due to economic and productive losses, and several mechanisms have been implemented to reduce its impact. These mechanisms include supplementation of the medium with hormones, adjuvants, identification of protective genes, among others. This review aims to explore the cellular and molecular mechanisms of insulin-like growth factor-1 (IGF-1) during in vitro and in vivo maturation of bovine oocytes and its thermoprotective effect under HS. Although the supplementation of the culture medium during oocyte maturation with IGF-1 has been implemented during the last years, there are still controversial results, however, supplementation with low concentration showed a positive effect on maturation and thermoprotection of oocytes exposed to higher temperatures. Additionally, IGF-1 is involved in multiple cellular pathways, and it may regulate cell apoptosis in cases of HS and protect oocyte competence under in vitro conditions.
Collapse
|
6
|
Abstract
Heat stress can have severe deleterious effects on embryo development and survival. The present study evaluated whether CSF2 can protect the developmental competence of the bovine embryo following exposure to a heat shock of 41°C at the zygote and morula stages. In the first experiment, putative zygotes and 2-cell embryos were assigned to receive either 10 ng/ml CSF2 or vehicle, and then cultured for 15 h at either 38.5°C or 41°C and then at 38.5°C until day 7.5. Heat shock reduced blastocyst development for embryos treated with vehicle but not for embryos cultured with CSF2. In the second experiment, day 5 embryos (morula) were treated with CSF2 or vehicle and then cultured for 15 h at either 38.5°C or 41°C and then at 38.5°C until day 7.5. Temperature treatment did not affect development to the blastocyst stage and there was no effect of CSF2 treatment or the interaction. Results indicate that CSF2 can reduce the deleterious effects of heat shock at the zygote or two-cell stage when the embryo is transcriptionally inactive.
Collapse
Affiliation(s)
- Froylan Sosa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida32611-0910, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida32611-0910, USA
| |
Collapse
|
7
|
Silva DFD, Rodrigues TA, da Silveira JC, Gonella-Diaza A, Binelli M, Lopes J, Moura MT, Feitosa WB, Paula-Lopes FF. Cellular responses and microRNA profiling in bovine spermatozoa under heat shock. Reproduction 2022; 164:155-168. [PMID: 35950706 DOI: 10.1530/rep-21-0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
Sperm function is susceptible to adverse environmental conditions. It has been demonstrated that in vivo and in vitro exposure of bovine sperm to elevated temperature reduces sperm motility and fertilizing potential. However, the cascade of functional, cellular and molecular events triggered by elevated temperature in the mature sperm cell remains not fully understood. Therefore, the aim of this study was to determine the effect of heat shock on mature sperm cells. Frozen-thawed Holstein sperm were evaluated immediately after Percoll purification (0 h non-incubation control) or after incubation at 35°C, 38.5°C, and 41°C for 4 h. Heat shock reduced sperm motility after 3 - 4 h at 41°C while mitochondrial activity was reduced by 38.5 and 41°C when compared to the control. Heat shock also increased sperm reactive oxygen species production and caspase activity. Heat-shocked sperm had lower fertilizing ability, which led to diminished cleaved and blastocyst rates. Preimplantation embryo developmental kinetics was also slowed and reduced by sperm heat shock. The microRNA (miR) profiling identified >300 miRs in bovine sperm. Among these, three and seven miRs were exclusively identified in sperm cells exposed to 35 and 41°C, respectively.
Collapse
Affiliation(s)
- Daniela Franco da Silva
- D Silva, Pharmacology and Biotechnology, Sao Paulo State University Julio de Mesquita Filho Botucatu Campus Institute of Biosciences, Botucatu, Brazil
| | - Thaís Alves Rodrigues
- T Rodrigues, Department of Biological Sciences, Federal University of Sao Paulo, Diadema, Brazil
| | - Juliano C da Silveira
- J da Silveira, Department of Veterinary Medicine, University of Sao Paulo, Pirassununga, Brazil
| | - Angela Gonella-Diaza
- A Gonella-Diaza, Department of Animal Reproduction, University of Sao Paulo, Pirassununga, Brazil
| | - Mario Binelli
- M Binelli, Department of Animal Reproduction, University of Sao Paulo, Pirassununga, Brazil
| | - Juliana Lopes
- J Lopes, Department of Biological Sciences, Federal University of Sao Paulo, Diadema, Brazil
| | - Marcelo Tigre Moura
- M Moura, Department of Biological Sciences, Federal University of Sao Paulo, Diadema, Brazil
| | - Weber Beringui Feitosa
- W Feitosa, Department of Biological Sciences, Federal University of Sao Paulo, Diadema, Brazil
| | | |
Collapse
|
8
|
Báez F, López Darriulat R, Rodríguez-Osorio N, Viñoles C. Effect of season on germinal vesicle stage, quality, and subsequent in vitro developmental competence in bovine cumulus-oocyte complexes. J Therm Biol 2022; 103:103171. [PMID: 35027190 DOI: 10.1016/j.jtherbio.2021.103171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
Although the reproductive performance of grazing cattle is lower in summer compared to winter, the effect of season on oocyte developmental competence has not been thoroughly examined. We measured the effect of season on oocyte chromatin compaction, cumulus cell quality, and embryonic development after in vitro fertilization. Cumulus oocytes-complexes (COCs) were collected from abattoir cows' ovaries during the winter and summer months. First, we evaluated the degree of chromatin compaction in germinal vesicle (GV) oocytes (GV1 through GV3), which is associated with different degrees of developmental competence. Then, we determined the apoptotic index in cumulus cells from immature and in vitro matured COCs. Finally, in vitro matured oocytes were fertilized to determine blastocyst rate and embryo quality. During the summer months, we observed a significantly lower proportion of oocytes reaching the GV3 stage and higher levels of DNA fragmentation in cumulus cell. As a result, blastocyst yield and quality were reduced during the summer months. In conclusion, summer negatively affected oocyte GV stage progression, cumulus cell quality, and embryo development. Increased cumulus cell DNA fragmentation during summer, may partially explain the reduced oocyte maturation capacity, considering the relevance of cumulus-oocyte communication during this stage.
Collapse
Affiliation(s)
- Francisco Báez
- Polo de Desarrollo Universitario (PDU) Instituto Superior de la Carne, Centro Universitario Regional Noreste, UdelaR, Ruta 5, km 386, Tacuarembó 45000, Uruguay.
| | - Ramiro López Darriulat
- Polo de Desarrollo Universitario (PDU) Instituto Superior de la Carne, Centro Universitario Regional Noreste, UdelaR, Ruta 5, km 386, Tacuarembó 45000, Uruguay
| | - Nélida Rodríguez-Osorio
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, UdelaR, Rivera 1350, Salto 50000, Uruguay
| | - Carolina Viñoles
- PDU Centro de Salud Reproductiva de Rumiantes en Sistemas Agroforestales, Centro Universitario Regional Noreste, UdelaR, Ruta 26, km 408, Cerro Largo 37000, Uruguay
| |
Collapse
|
9
|
Pöhland R, Souza-Cácares MB, Datta TK, Vanselow J, Martins MIM, da Silva WAL, Cardoso CJT, Melo-Sterza FDA. Influence of long-term thermal stress on the
in vitro maturation on embryo development and Heat Shock Protein abundance in zebu cattle. Anim Reprod 2020; 17:e20190085. [PMID: 33029207 PMCID: PMC7534571 DOI: 10.1590/1984-3143-ar2019-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the influence of long-term temperature stress during the in vitro maturation (IVM) of oocytes on the in vitro embryo production (IVP) and the abundance of HSP70 and HSP90 in zebu cattle. Viable cumulus-oocyte complexes (COCs) were incubated for 24 h at 37 °C, 38.5 °C, or 40 °C for the low-, physiological, and high-temperature stress treatments, respectively. Thereafter, they were subjected to in vitro fertilization and culture. Temperature did not affect the polar body extrusion. However, IVP was adversely affected when IVM took place at 37 °C and 40 °C. The highest abundance of HSP70 was observed in cumulus cells after maturation of COCs at 40 °C. In contrast, HSP70 was more abundant in oocytes at both 37 °C and 40 °C; however, at 40 °C, the difference to the control group (38.5 °C) was not significant. In contrast, the highest abundance of HSP90 was observed in oocytes and cumulus cells at 37 °C. It appears that HSP70 and HSP90 respond to cold and heat stress in different ways. In conclusion, moderately high (40 °C) and low (37 °C) thermal stress for 24 h during IVM is detrimental to the developmental competence of oocyte and is accompanied by changes in the abundances of HSP70 and HSP90, especially in cumulus cells.
Collapse
Affiliation(s)
- Ralf Pöhland
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Tirtha Kumar Datta
- National Dairy Research Institute, Animal Biotechnology Centre, Karnal, Haryana, India
| | - Jens Vanselow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | | | - Fabiana de Andrade Melo-Sterza
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.,Programa de Pós-graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil.,Programa de Pós-graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Aquidauana, MS, Brasil
| |
Collapse
|
10
|
Moura MT, Paula-Lopes FF. Thermoprotective molecules to improve oocyte competence under elevated temperature. Theriogenology 2020; 156:262-271. [PMID: 32784066 DOI: 10.1016/j.theriogenology.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
Heat stress is an environmental factor that challenges livestock by disturbing animal homeostasis. Despite the broad detrimental effects of heat stress on reproductive function, the germline and the early preimplantation embryo are particularly prone. There is extensive evidence that elevated temperature reduces oocyte developmental competence through a series of cellular and molecular damages. Further research revealed that the oocyte respond to stress by activating cellular mechanisms such as heat shock response, unfolded protein response and autophagy to improve survival under heat shock. Such knowledge paved the way for the identification of thermoprotective molecules that alleviate heat-induced oocyte oxidative stress, organelle damage, and apoptosis. Therefore, this review depicts the deleterious effects of heat shock on oocyte developmental competence, heat-induced cellular and molecular changes, outlines pro-survival cellular mechanisms and explores thermoprotective molecules to improve oocyte competence.
Collapse
Affiliation(s)
- Marcelo T Moura
- Department of Biological Sciences, Federal University of São Paulo - UNIFESP, Diadema, SP, Brazil
| | - Fabíola F Paula-Lopes
- Department of Biological Sciences, Federal University of São Paulo - UNIFESP, Diadema, SP, Brazil.
| |
Collapse
|
11
|
Leite da Silva WA, Poehland R, Carvalho de Oliveira C, Ribeiro Ferreira MGC, Garcia de Almeida R, Cáceres MBS, Macedo GG, da Costa E Silva EV, Alves FV, Nogueira E, de Andrade Melo-Sterza F. Shading effect on physiological parameters and in vitro embryo production of tropical adapted Nellore heifers in integrated crop-livestock-forest systems. Trop Anim Health Prod 2020; 52:2273-2281. [PMID: 32144659 PMCID: PMC7426302 DOI: 10.1007/s11250-020-02244-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/17/2020] [Indexed: 01/26/2023]
Abstract
The aim of this study was to evaluate the impact of increased shadow supply in integrated crop-livestock-forest systems on in vitro embryonic development and physiological parameters related to stress response in Nellore heifers (Bos indicus). For the study, animals (n = 16) were randomly divided into two groups and kept in areas with different afforestation systems, the integrated crop-livestock-forest (ICLF) and the integrated crop-livestock (ICL) system. The microclimate of the ICLF system provided better comfort conditions than ICL. No differences of respiratory rate, rectal temperature, cortisol, T3, T4, oocyte quality, and cleavage rate between the systems were verified. A higher blastocyst rate was observed in the ICLF (p < 0.05). The results demonstrate that Nellore heifers managed in ICLF during summer in Midwest of Brazil showed higher production of in vitro embryos, without typical changes in its physiological parameters. The results observed in the present study indicate that zebu females are able to respond satisfactorily to the intense heat conditions; however, we believe that the long period to which these animals are exposed to these conditions interferes in the oocyte competence and embryo development.
Collapse
Affiliation(s)
| | - Ralf Poehland
- Leibniz Institute for Farm Animal Biology, Institute of Reproductive Biology, Dummerstorf, Germany
| | | | | | - Ricardo Garcia de Almeida
- Veterinary Sciene, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Gustavo Guerino Macedo
- Veterinary Sciene, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Fabiana Villa Alves
- Brazilian Agricultural Research Corporation, EMBRAPA Beef Cattle, Campo Grande, Brazil
| | - Eriklis Nogueira
- Veterinary Sciene, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Brazilian Agricultural Research Corporation, EMBRAPA Pantanal, Corumbá, Brazil
| | - Fabiana de Andrade Melo-Sterza
- Animal Science, State University of Mato Grosso do Sul, Aquidauana, Mato Grosso do Sul, Brazil.
- Leibniz Institute for Farm Animal Biology, Institute of Reproductive Biology, Dummerstorf, Germany.
- Veterinary Sciene, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
12
|
Báez F, Camargo Á, Reyes AL, Márquez A, Paula-Lopes F, Viñoles C. Time-dependent effects of heat shock on the zona pellucida ultrastructure and in vitro developmental competence of bovine oocytes. Reprod Biol 2019; 19:195-203. [PMID: 31208934 DOI: 10.1016/j.repbio.2019.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine the effects of different exposure lenght to heat shock (HS) during in vitro maturation (IVM) on zona pellucida (ZP) ultrastructure and developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were matured in vitro (IVM) at 38.5 °C for 24 h (control group, CG), or incubated at 41 °C (HS) for 6 h (HS-6h), 12 h (HS-12h), 18 h (HS-18h), and 22h (HS-22h) followed by incubation at 38.5 °C to complete a full 24-h period of maturation. After IVM, oocytes were subjected to scanning electron microscopy (SEM) or in vitro fertilization and culture until the blastocyst stage. For heat-shocked oocytes, with exception of those in the HS-6h group, SEM examinations revealed that ZP surfaces were rough and characterized by a presence of spongy network. Oocytes from the HS-22h group displayed an increase in the number of pores, as well as a higher proportion of oocytes with amorphous ZPs. The proportion of oocytes that reached metaphase II (MII) stage decreased in all HS groups, regardless of the duration of exposure to 41 °C. These results provide evidence that HS during IVM for 12-22 h reduces the developmental competence of bovine oocytes, increasing the percentage of oocytes with abnormal chromosomal organization, and reducing fertilization and blastocysts formation rate. The effects of HS were more pronounced for the 22-h exposure group. The damage induced by HS on oocyte function clearly increased upon exposure to elevated temperature.
Collapse
Affiliation(s)
- Francisco Báez
- Instituto Superior de la Carne, Sede Tacuarembó, UdelaR, Ruta 5, km 386, Tacuarembó, Uruguay.
| | - Álvaro Camargo
- Instituto Superior de Estudios Forestales, Sede Tacuarembó, UdelaR, Ruta 5, km 386, Tacuarembó, Uruguay
| | - Ana Laura Reyes
- Servicio de Microscopía Electrónica, Unidad de Microscopía Electrónica de Barrido, Facultad de Ciencias, UdelaR, Iguá 4225 Esq. Mataojo, Montevideo, Uruguay
| | - Alejandro Márquez
- Servicio de Microscopía Electrónica, Unidad de Microscopía Electrónica de Barrido, Facultad de Ciencias, UdelaR, Iguá 4225 Esq. Mataojo, Montevideo, Uruguay
| | - Fabíola Paula-Lopes
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275 Jardim Eldorado, 09972-270, Diadema, SP, Brazil
| | - Carolina Viñoles
- Centro de Salud Reproductiva de Rumiantes en Sistemas Agroforestales, Casa de la Universidad de Cerro Largo, UdelaR, Ruta 26, km 408, Cerro Largo, Uruguay
| |
Collapse
|
13
|
Rodrigues TA, Tuna KM, Alli AA, Tribulo P, Hansen PJ, Koh J, Paula-Lopes FF. Follicular fluid exosomes act on the bovine oocyte to improve oocyte competence to support development and survival to heat shock. Reprod Fertil Dev 2019; 31:888-897. [DOI: 10.1071/rd18450] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Addition of follicular fluid to oocyte maturation medium can affect cumulus cell function, increase competence of the oocytes to be fertilised and develop to the blastocyst stage and protect the oocyte from heat shock. Here, it was tested whether exosomes in follicular fluid are responsible for the effects of follicular fluid on the function of the cumulus–oocyte complex (COC). This was accomplished by culturing COCs during oocyte maturation at 38.5°C (body temperature of the cow) or 41°C (heat shock) with follicular fluid or exosomes derived from follicular fluid and evaluating various aspects of function of the oocyte and the embryo derived from it. Negative effects of heat shock on cleavage and blastocyst development, but not cumulus expansion, were reduced by follicular fluid and exosomes. The results support the idea that exosomes in follicular fluid play important roles during oocyte maturation to enhance oocyte function and protect it from stress.
Collapse
|
14
|
Ispada J, Rodrigues TA, Risolia PHB, Lima RS, Gonçalves DR, Rettori D, Nichi M, Feitosa WB, Paula-Lopes FF. Astaxanthin counteracts the effects of heat shock on the maturation of bovine oocytes. Reprod Fertil Dev 2018; 30:1169-1179. [DOI: 10.1071/rd17271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022] Open
Abstract
The cellular mechanisms induced by elevated temperature on oocytes are not fully understood. However, there is evidence that some of the deleterious effects of heat shock are mediated by a heat-induced increase in reactive oxygen species (ROS). In this context, carotenoid antioxidants might have a thermoprotective effect. Therefore, the objective of this study was to determine the role of astaxanthin (AST) on oocyte ROS production and on the redox profile and developmental competency of cumulus-oocyte complexes (COCs) after 14 h heat shock (41°C) during in vitro maturation (IVM). Exposure of oocytes to heat shock during IVM increased ROS and reduced the ability of the oocyte to cleave and develop to the blastocyst stage. However, 12.5 and 25 nM astaxanthin rescued these negative effects of heat shock; astaxanthin counteracted the heat shock-induced increase in ROS and restored oocyte developmental competency. There was no effect of astaxanthin on maturation medium lipid peroxidation or on glutathione peroxidase and catalase activity in oocytes and cumulus cells. However, astaxanthin stimulated superoxide dismutase (SOD) activity in heat-shocked cumulus cells. In conclusion, direct heat shock reduced oocyte competence, which was restored by astaxanthin, possibly through regulation of ROS and SOD activity in oocytes and COCs.
Collapse
|