1
|
Mollard R, Mahony M. Cell culture and karyotypic description of Pseudophrynecoriacea (Keferstein, 1868) (Amphibia, Anura) from the New South Wales Central Coast. COMPARATIVE CYTOGENETICS 2023; 17:263-272. [PMID: 38026094 PMCID: PMC10656613 DOI: 10.3897/compcytogen.17.113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
The karyotype of the IUCN least concern red-backed toadlet Pseudophryne (P.) coriacea (Keferstein, 1868) from the New South Wales Central Coast is described following tissue culture of toe clipping macerates and conventional DAPI staining. The diploid number is 2n = 24. The karyotype is represented by six large and five small chromosomal pairs and one very small chromosomal pair. The very small chromosome 12 is 12% the size of chromosome 1. One of the large chromosomes is subtelocentric, two of the large chromosomes are submetacentric and the remaining chromosomes are metacentric. The putative nucleolus organiser region (NOR) is observed on chromosome 4. The diploid number and location of the putative NOR correlates to that of the previously published IUCN critically endangered P.corroboree (Moore 1953) and unpublished descriptions of the P.coriacea karyotype. This is the first described cell culture of a species from the genus Pseudophryne Fitzinger, 1843, first published analysis of the P.coriacea karyotype and the first published analysis of centromeric allocation of this genus. Globally there exists a large inventory of tissue samples in cryobanks that are not associated with known recovery mechanisms such as basic cell culture techniques. Detailed cytogenetic analyses of these cryobanked samples are therefore not possible. This work therefore enables: (i) a comparison of the P.coriacea karyotype with that of the critically endangered P.corroboree and (ii) a benchmark for repeat and future cytogenetic and genomic analyses of cryostored samples of this genus.
Collapse
Affiliation(s)
- Richard Mollard
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, 3052, AustraliaThe University of MelbourneMelbourneAustralia
- Amphicell Pty Ltd, Cairns, Queensland, AustraliaAmphicell Pty LtdCairnsAustralia
| | - Michael Mahony
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, 2308, AustraliaUniversity of NewcastleCallaghanAustralia
| |
Collapse
|
2
|
Otero Y, Calatayud NE, Arcia ID, Mariscal D, Samaniego D, Rodríguez D, Rodríguez K, Guerrel J, Ibáñez R, Della Togna G. Recovery and Characterization of Spermatozoa in a Neotropical, Terrestrial, Direct-Developing Riparian Frog ( Craugastor evanesco) through Hormonal Stimulation. Animals (Basel) 2023; 13:2689. [PMID: 37684953 PMCID: PMC10486684 DOI: 10.3390/ani13172689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The Vanishing Rainfrog (Craugastor evanesco) is an endemic and critically endangered frog species of Panama. It is suspected that 90% of the population has disappeared from the wild. Frogs were collected from the wild and brought to a Captive Breeding Program; however, accomplishing regular reproductive events for this species has been difficult. The objective of this study was to determine the effect of hormonal stimulation on the production and quality of C. evanesco spermatozoa, aiming to develop an efficient and safe sperm collection protocol as a tool to help reproduce this endangered species. Mature males received intra-peritoneal injections with one of six hormone treatments, including des-Gly10, D-Ala6, Pro-NHEt9-GnRH-A, Amphiplex or hCG. Urine samples were collected at 10 different time points post-injection. Quality assessments included sperm concentration, percentage motility, percentage forward progressive motility (FPM), osmolality, pH and morphology analysis. Our results indicate that the optimal treatment for the collection of highly concentrated sperm samples of C. evanesco is 4 µg/gbw GnRH, followed by Amphiplex and 2 µg/gbw GnRH as sub-optimal treatments and finally, 6 µg/gbw GnRH and 5 and 10 IU/gbw hCG as non-optimal treatments. GnRH-A at 4 μg/gbw and Amphiplex stimulated the production of samples with the highest sperm concentrations and quality, despite Amphiplex producing lower percentages of intact acrosome and tail. In contrast, hCG concentrations were not reliable inducers of sperm production, consistently showing lower concentrations, higher percentages of sperm abnormalities and more acidic spermic urine than that induced by Amphiplex and GnRH-A. Morphological assessments revealed that C. evanesco spermatozoa have a filiform shape with a large acrosome on the anterior part of an elongated head, a small midpiece and a long tail with two filaments joined together by an undulating membrane.
Collapse
Affiliation(s)
- Yineska Otero
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Natalie E. Calatayud
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92025, USA;
| | - Igli D. Arcia
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
| | - Denise Mariscal
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Diego Samaniego
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Dionel Rodríguez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Karina Rodríguez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Jorge Guerrel
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- Facultad de Ciencias Naturales, Exactas y Tecnología, Escuela de Biología, Universidad de Panamá, Bella Vista, Apartado 3366, Panama
| | - Gina Della Togna
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado 0843-03092, Panama; (Y.O.); (I.D.A.); (D.M.); (D.S.); (D.R.); (K.R.); (J.G.); (R.I.)
- The Amphibian Survival Alliance, Apartado 0830-00689, Panama
| |
Collapse
|
3
|
Silla AJ, Hobbs RJ, Gilbert DJ, Goodall D, Parrott ML, Lee A, O'Brien JK, Byrne PG. Application of Reproductive Technologies to the Critically Endangered Baw Baw Frog, Philoria frosti. Animals (Basel) 2023; 13:2232. [PMID: 37444030 DOI: 10.3390/ani13132232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Reproductive technologies (RTs) can assist integrated conservation breeding programs to attain propagation targets and manage genetic diversity more effectively. While the application of RTs to enhance the conservation management of threatened amphibians has lagged behind that of other taxonomic groups, a recent surge in research is narrowing the divide. The present study reports on the first application of RTs (hormone-induced spawning, hormone-induced sperm-release, and sperm cryopreservation) to the critically endangered Baw Baw frog, Philoria frosti. To determine the effect of hormone therapy on spawning success, male-female pairs were administered either 0 μg/g gonadotropin-releasing hormone agonist (GnRHa), 0.5 μg/g GnRHa, or 0.5 μg/g GnRHa + 10 μg/g metoclopramide (MET) (n = 6-7 pairs/treatment), and the number of pairs ovipositing, total eggs, and percent fertilisation success were quantified. To determine the effect of hormone therapy on sperm-release and to establish the peak time to collect sperm post-hormone administration, males were administered 0 IU/g (n = 4), or 20 IU/g hCG (n = 16). Total sperm, sperm concentration, and percent viability were quantified at 0, 2, 4, 6, 8, 10, and 12 h post-hormone administration. Overall, the percentage of pairs ovipositing was highest in the GnRHa + MET treatment, with 71% of pairs ovipositing, compared to 57% and 33% of pairs in the GnRHa and control treatments, respectively. The quantity of sperm released from males in response to hCG peaked at 4 h post-hormone administration, though it remained high up to 12 h. The percent sperm viability also peaked at 4 h post-administration (94.5%), exhibiting a steady decline thereafter, though viability remained above 77% throughout the 12 h collection period. The remaining sperm samples (n = 22) were cryopreserved using established protocols and biobanked for long-term storage and future conservation applications. The mean post-thaw sperm viability was 59%, and the percent total motility was 17%. The results from this preliminary study will direct further applications of RTs to the critically endangered Baw Baw frog to assist with species recovery.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rebecca J Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Deon J Gilbert
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Wildlife Conservation and Science, Zoos Victoria, Elliott Avenue, Parkville, VIC 3052, Australia
| | - Damian Goodall
- Wildlife Conservation and Science, Zoos Victoria, Elliott Avenue, Parkville, VIC 3052, Australia
| | - Marissa L Parrott
- Wildlife Conservation and Science, Zoos Victoria, Elliott Avenue, Parkville, VIC 3052, Australia
| | - Adam Lee
- Wildlife Conservation and Science, Zoos Victoria, Elliott Avenue, Parkville, VIC 3052, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Glass Campbell L, Anderson KA, Marcec‐Greaves R. Topical application of hormone gonadotropin‐releasing hormone (
GnRH‐A
) stimulates reproduction in the endangered Texas blind salamander (
Eurycea rathbuni
). CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Kelsey A. Anderson
- US Fish and Wildlife Service San Marcos Aquatic Resources Center San Marcos Texas USA
| | | |
Collapse
|
5
|
Silla AJ, Calatayud NE, Trudeau VL. Amphibian reproductive technologies: approaches and welfare considerations. CONSERVATION PHYSIOLOGY 2021; 9:coab011. [PMID: 33763231 PMCID: PMC7976225 DOI: 10.1093/conphys/coab011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Captive breeding and reintroduction programs have been established for several threatened amphibian species globally, but with varied success. This reflects our relatively poor understanding of the hormonal control of amphibian reproduction and the stimuli required to initiate and complete reproductive events. While the amphibian hypothalamo-pituitary-gonadal (HPG) axis shares fundamental similarities with both teleosts and tetrapods, there are more species differences than previously assumed. As a result, many amphibian captive breeding programs fail to reliably initiate breeding behaviour, achieve high rates of fertilization or generate large numbers of healthy, genetically diverse offspring. Reproductive technologies have the potential to overcome these challenges but should be used in concert with traditional methods that manipulate environmental conditions (including temperature, nutrition and social environment). Species-dependent methods for handling, restraint and hormone administration (including route and frequency) are discussed to ensure optimal welfare of captive breeding stock. We summarize advances in hormone therapies and discuss two case studies that illustrate some of the challenges and successes with amphibian reproductive technologies: the mountain yellow-legged frog (Rana muscosa; USA) and the northern corroboree frog (Pseudophryne pengilleyi; Australia). Further research is required to develop hormone therapies for a greater number of species to boost global conservation efforts.
Collapse
Affiliation(s)
- Aimee J Silla
- Corresponding author: School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, New South Wales 2522, Australia.
| | - Natalie E Calatayud
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Taronga, Western Plains Zoo, Obley Rd, Dubbo, New South Wales 2830, Australia
- San Diego Zoo Global-Beckman Center for Conservation Research, San Pasqual Valley Rd, Escondido, CA 92027, USA
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
6
|
Silla AJ, Roberts JD, Byrne PG. The effect of injection and topical application of hCG and GnRH agonist to induce sperm-release in the roseate frog, Geocrinia rosea. CONSERVATION PHYSIOLOGY 2020; 8:coaa104. [PMID: 33304589 PMCID: PMC7720084 DOI: 10.1093/conphys/coaa104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 05/08/2023]
Abstract
Reproductive technologies may assist amphibian conservation breeding programs (CBPs) to achieve propagation targets and genetic management goals. However, a trial-and-error approach to protocol refinement has led to few amphibian CBPs routinely employing reproductive technologies with predictable outcomes. Additionally, while injections can be safely administered to amphibians, perceived animal welfare risks, such as injury and disease transmission, warrant the development of alternative hormone administration protocols. The present study investigated the spermiation response of roseate frogs, Geocrinia rosea, administered various doses of human chorionic gonadotropin (hCG) and gonadotropin-releasing hormone agonist (GnRH-a) via subcutaneous injection. This study also quantified the spermiation response of frogs administered both hormones via topical application. Total sperm, sperm concentration and sperm viability were assessed over a 12-h period post hormone administration. Males released sperm in response to the injection of hCG (88-100% response; 5, 10 or 20 IU), but all samples collected from males administered hCG topically (100, 100 + DMSO or 200 IU hCG) were aspermic. In contrast, males consistently released sperm in response to both the injection (100% response; 1, 5 or 10 μg), or topical application (80-100% response; 50, 50 + DMSO or 100 μg) of GnRH-a. Overall, the administration of GnRH-a was more effective at inducing spermiation than hCG. Mean total sperm and sperm concentration were highest in response to the optimal topically applied dose of 100 μg GnRH-a (mean total sperm = 2.44 × 103, sperm concentration = 1.48 × 105 sperm/ml). We provide novel evidence that topical application provides a viable alternative to injection for the administration of GnRH-a to induce spermiation in amphibians.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Northfields Ave, NSW 2522, Australia
- School of Biological Sciences and Centre for Evolutionary Biology, University of Western Australia, Stirling Highway, Nedlands, WA 6009, Australia
- Corresponding author: School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Northfields Ave, NSW 2522, Australia.
| | - J Dale Roberts
- School of Biological Sciences and Centre for Evolutionary Biology, University of Western Australia, Stirling Highway, Nedlands, WA 6009, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Northfields Ave, NSW 2522, Australia
| |
Collapse
|
7
|
Julien AR, Kouba AJ, Kabelik D, Feugang JM, Willard ST, Kouba CK. Nasal administration of gonadotropin releasing hormone (GnRH) elicits sperm production in Fowler’s toads (Anaxyrus fowleri). BMC ZOOL 2019. [DOI: 10.1186/s40850-019-0040-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Silla AJ, McFadden MS, Byrne PG. Hormone-induced sperm-release in the critically endangered Booroolong frog ( Litoria booroolongensis): effects of gonadotropin-releasing hormone and human chorionic gonadotropin. CONSERVATION PHYSIOLOGY 2019; 7:coy080. [PMID: 30792859 PMCID: PMC6372942 DOI: 10.1093/conphys/coy080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 05/08/2023]
Abstract
Research into the development of reproductive technologies for amphibians has increased in recent years due to the rapid decline of amphibian species globally. Reproductive technologies have great potential to overcome captive breeding failure and improve the propagation and genetic management of threatened species. However, the incorporation of these technologies into conservation breeding programs has been protracted, primarily as a result of trial-and-error approaches to the refinement of hormone therapies. The present study investigated the effects of: (1) GnRH-a dose (0, 0.5, 1, 2, 4, 8 or 16 μg g-1), and (2) hCG dose (0, 2.5, 5, 10, 20 or 40 IU g-1), on the sperm-release response of the critically endangered Booroolong frog. Administration of GnRH-a at a dose of 0.5 μg g-1 resulted in the greatest number of sperm released (mean total sperm = 3.5 ×106, n = 11). Overall, hCG was more effective at eliciting spermiation in Booroolong frogs, with peak sperm release (mean total sperm = 25.1 ×106, n = 10) occurring in response to a dose of 40 IU g-1. Sperm output in response to 40 IU g-1 hCG was greatest between 1 and 6 h and steadily declined between 8 and 24 h post-hormone administration. Percent sperm motility peaked between 4 and 10 h (58.1-62.7%), and sperm velocity between 4 and 12 h (24.3-27.2 μm s-1). Booroolong frogs join a small, but growing number of amphibian species that exhibit improved spermiation in response to hCG. Further research is required to identify optimal hormone-induction protocols for threatened amphibians and expedite the incorporation of reproductive technologies into CBPs.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Michael S McFadden
- Herpetofauna Department, Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
9
|
Silla AJ, Byrne PG. The Role of Reproductive Technologies in Amphibian Conservation Breeding Programs. Annu Rev Anim Biosci 2018; 7:499-519. [PMID: 30359086 DOI: 10.1146/annurev-animal-020518-115056] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anthropogenic environmental change has led to unprecedented rates of species extinction, presenting a major threat to global biodiversity. Among vertebrates, amphibians have been most severely impacted, with an estimated 41% of species now threatened with extinction. In response to this biodiversity crisis, a moral and ethical obligation exists to implement proactive interventionist conservation actions to assist species recovery and decelerate declines. Conservation breeding programs have been successfully established for several threatened amphibian species globally, aiming to prevent species' extinction by maintaining genetically representative assurance colonies ex situ while providing individuals for population augmentation, translocation, and reestablishment in situ. Reproductive technologies have enormous potential to enhance the propagation and genetic management of threatened species. In this review, we discuss the role of reproductive technologies in amphibian conservation breeding programs and summarize technological advancements in amphibian hormone therapies, gamete storage, and artificial fertilization.
Collapse
Affiliation(s)
- Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; ,
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; ,
| |
Collapse
|