1
|
Hossain MN, Gao Y, Hatfield MJ, de Avila JM, McClure MC, Du M. Cold exposure impacts DNA methylation patterns in cattle sperm. Front Genet 2024; 15:1346150. [PMID: 38444759 PMCID: PMC10912962 DOI: 10.3389/fgene.2024.1346150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
DNA methylation is influenced by various exogenous factors such as nutrition, temperature, toxicants, and stress. Bulls from the Pacific Northwest region of the United States and other northern areas are exposed to extreme cold temperatures during winter. However, the effects of cold exposure on the methylation patterns of bovine sperm remain unclear. To address, DNA methylation profiles of sperm collected during late spring and winter from the same bulls were analyzed using whole genome bisulfite sequencing (WGBS). Bismark (0.22.3) were used for mapping the WGBS reads and R Bioconductor package DSS was used for differential methylation analysis. Cold exposure induced 3,163 differentially methylated cytosines (DMCs) with methylation difference ≥10% and a q-value < 0.05. We identified 438 differentially methylated regions (DMRs) with q-value < 0.05, which overlapped with 186 unique genes. We also identified eight unique differentially methylated genes (DMGs) (Pax6, Macf1, Mest, Ubqln1, Smg9, Ctnnb1, Lsm4, and Peg10) involved in embryonic development, and nine unique DMGs (Prmt6, Nipal1, C21h15orf40, Slc37a3, Fam210a, Raly, Rgs3, Lmbr1, and Gan) involved in osteogenesis. Peg10 and Mest, two paternally expressed imprinted genes, exhibited >50% higher methylation. The differential methylation patterns of six distinct DMRs: Peg10, Smg9 and Mest related to embryonic development and Lmbr1, C21h15orf40 and Prtm6 related to osteogenesis, were assessed by methylation-specific PCR (MS-PCR), which confirmed the existence of variable methylation patterns in those locations across the two seasons. In summary, cold exposure induces differential DNA methylation patterns in genes that appear to affect embryonic development and osteogenesis in the offspring. Our findings suggest the importance of replicating the results of the current study with a larger sample size and exploring the potential of these changes in affecting offspring development.
Collapse
Affiliation(s)
- Md Nazmul Hossain
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
- Department of Livestock Production and Management, Faculty of Veterinary, Animal, and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Michael J. Hatfield
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Jeanene M. de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | | | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Jiang Z. Molecular and cellular programs underlying the development of bovine pre-implantation embryos. Reprod Fertil Dev 2023; 36:34-42. [PMID: 38064195 PMCID: PMC10962643 DOI: 10.1071/rd23146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Early embryonic mortality is a major cause of infertility in cattle, yet the underlying molecular causes remain a mystery. Over the past half century, assisted reproductive technologies such as in vitro fertilisation and somatic cell nuclear transfer have been used to improve cattle reproductive efficiency; however, reduced embryo developmental potential is seen compared to their in vivo counterparts. Recent years have seen exciting progress across bovine embryo research, including genomic profiling of embryogenesis, new methods for improving embryo competence, and experimenting on building bovine embryos from stem cell cultures. These advances are beginning to define bovine embryo molecular and cellular programs and could potentially lead to improved embryo health. Here, I highlight the current status of molecular determinants and cellular programs of bovine embryo development and new opportunities to improve the bovine embryo health.
Collapse
Affiliation(s)
- Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Besenfelder U, Havlicek V. The interaction between the environment and embryo development in assisted reproduction. Anim Reprod 2023; 20:e20230034. [PMID: 37700910 PMCID: PMC10494886 DOI: 10.1590/1984-3143-ar2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 09/14/2023] Open
Abstract
It can be assumed that the natural processes of selection and developmental condition in the animal provide the best prerequisites for embryogenesis resulting in pregnancy and subsequent birth of a healthy neonate. In contrast, circumventing the natural selection mechanisms and all developmental conditions in a healthy animal harbors the risk of counteracting, preventing or reducing the formation of embryos or substantially restricting their genesis. Considering these facts, it seems to be obvious that assisted reproductive techniques focusing on early embryonic stages serve an expanded and unselected germ cell pool of oocytes and sperm cells, and include the culture of embryos outside their natural habitat during and after fertilization for manipulation and diagnostic purposes, and for storage. A significant influence on the early embryonic development is seen in the extracorporeal culture of bovine embryos (in vitro) or stress on the animal organism (in vivo). The in vitro production per se and metabolic as well as endocrine changes in the natural environment of embryos represent adequate models and serve for a better understanding. The purpose of this review is to give a brief presentation of recent techniques aimed at focusing more on the complex processes in the Fallopian tube to contrast in vivo and in vitro prerequisites and abnormalities in early embryonic development and serve to identify potential new ways to make the use of ARTs more feasible.
Collapse
Affiliation(s)
- Urban Besenfelder
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, Vienna, Austria
| | - Vitezslav Havlicek
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, Vienna, Austria
| |
Collapse
|
4
|
Štiavnická M, Chaulot-Talmon A, Perrier JP, Hošek P, Kenny DA, Lonergan P, Kiefer H, Fair S. Sperm DNA methylation patterns at discrete CpGs and genes involved in embryonic development are related to bull fertility. BMC Genomics 2022; 23:379. [PMID: 35585482 PMCID: PMC9118845 DOI: 10.1186/s12864-022-08614-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/05/2022] [Indexed: 02/11/2023] Open
Abstract
Background Despite a multifactorial approach being taken for the evaluation of bull semen quality in many animal breeding centres worldwide, reliable prediction of bull fertility is still a challenge. Recently, attention has turned to molecular mechanisms, which could uncover potential biomarkers of fertility. One of these mechanisms is DNA methylation, which together with other epigenetic mechanisms is essential for the fertilising sperm to drive normal embryo development and establish a viable pregnancy. In this study, we hypothesised that bull sperm DNA methylation patterns are related to bull fertility. We therefore investigated DNA methylation patterns from bulls used in artificial insemination with contrasting fertility scores. Results The DNA methylation patterns were obtained by reduced representative bisulphite sequencing from 10 high-fertility bulls and 10 low-fertility bulls, having average fertility scores of − 6.6 and + 6.5%, respectively (mean of the population was zero). Hierarchical clustering analysis did not distinguish bulls based on fertility but did highlight individual differences. Despite this, using stringent criteria (DNA methylation difference ≥ 35% and a q-value < 0.001), we identified 661 differently methylated cytosines (DMCs). DMCs were preferentially located in intergenic regions, introns, gene downstream regions, repetitive elements, open sea, shores and shelves of CpG islands. We also identified 10 differently methylated regions, covered by 7 unique genes (SFRP1, STXBP4, BCR, PSMG4, ARSG, ATP11A, RXRA), which are involved in spermatogenesis and early embryonic development. Conclusion This study demonstrated that at specific CpG sites, sperm DNA methylation status is related to bull fertility, and identified seven differently methylated genes in sperm of subfertile bulls that may lead to altered gene expression and potentially influence embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08614-5.
Collapse
Affiliation(s)
- Miriama Štiavnická
- Department of Biological Sciences, Laboratory of Animal Reproduction, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| | - Aurélie Chaulot-Talmon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Jean-Philippe Perrier
- Department of Biological Sciences, Laboratory of Animal Reproduction, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Petr Hošek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Meath, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Sean Fair
- Department of Biological Sciences, Laboratory of Animal Reproduction, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
5
|
Owen CM, Johnson MA, Rhodes-Long KA, Gumber DJ, Barceló-Fimbres M, Altermatt JL, Campos-Chillon LF. Novel Synthetic oviductal fluid for Conventional Freezing 1 (SCF1) culture medium improves development and cryotolerance of in vitro produced Holstein embryos. J Anim Sci 2022; 100:6527267. [PMID: 35148394 PMCID: PMC8919821 DOI: 10.1093/jas/skac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/15/2022] Open
Abstract
In vitro produced (IVP) embryos hold great promise in the cattle industry; however, suboptimal in vitro culture conditions induce metabolic dysfunction, resulting in poor development and low cryotolerance of IVP embryos. This limits the use of IVP embryos in the cattle industry for embryo transfer and commercial scale-up. Previous studies have reported the use of individual metabolic regulators in culture media to improve blastocyst development rates and cryopreservation. In this study, we hypothesized that using a combination of select regulators, chosen for their unique synergistic potential, would alleviate metabolic dysfunction and improve the development of in vitro produced embryos to make them more closely resemble in vivo derived embryos. To test this, we first compared lipid content between Holstein and Jersey embryos produced in vivo and in vitro, and then systematically determined the combination of metabolic regulators that led to the greatest improvements in embryonic development, lipid content, mitochondrial polarity, and cryotolerance. We also tested different slow freezing techniques to further improve cryotolerance and finally validated our results via a clinical trial. Overall, we found that the use of multiple metabolic regulators in one culture media, which we refer to as Synthetic oviductal fluid for Conventional Freezing 1 (SCF1), and an optimized slow freezing technique resulted in improved pregnancy rates for frozen IVP embryos compared to embryos cultured in a synthetic oviductal fluid media. Additionally, there was no difference in pregnancy rate between frozen and fresh IVP embryos cultured in SCF1. This suggests that optimizing culture conditions and slow freezing technique can produce cryotolerance IVP and should allow further dissemination of this assisted reproductive technology.
Collapse
Affiliation(s)
- Corie M Owen
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Corresponding authors: ; Current Address: Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Melissa A Johnson
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Current Address: Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katherine A Rhodes-Long
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Current Address: Shady Grove Fertility, Fairfax, VA 22031, USA
| | - Diana J Gumber
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Current Address: Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Joy L Altermatt
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Current Address: Veterinary Reproduction Innovations APC, San Luis Obispo, CA 93405, USA
| | | |
Collapse
|