1
|
Lu ZB, Li YD, Jiang SG, Yang QB, Jiang S, Huang JH, Yang LS, Chen X, Zhou FL. Transcriptome analysis of hepatopancreas in penaeus monodon under acute low pH stress. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1166-1172. [PMID: 36410647 DOI: 10.1016/j.fsi.2022.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The decrease of seawater pH can affect the metabolism, acid-base balance, immune response and immunoprotease activity of aquatic animals, leading to aquatic animal stress, impairing the immune system of aquatic animals and weakening disease resistance, etc. In this study, we performed high-throughput sequencing analysis of the hepatopancreas transcriptome library of low pH stress penaeus monodon, and after sequencing quality control, a total of 43488612-56271828 Clean Reads were obtained, and GO annotation and KEGG pathway enrichment analysis were performed on the obtained Clean Reads, and a total of 395 DEGs were identified. we mined 10 differentially expressed and found that they were significantly enriched in the Metabolic pathways (ko01100), Biosynthesis of secondary metabolites (ko01110), Nitrogen metabolism (ko00910) pathways, such as PIGA, DGAT1, DGAT2, UBE2E on Metabolic pathways; UGT, GLT1, TIM genes on Biosynthesis of secondary metabolites; CA, CA2, CA4 genes on Nitrogen metabolism, are involved in lipid metabolism, induction of oxidative stress and inflammation in the muscular body of spot prawns. These genes play an important role in lipid metabolism, induction of oxidative stress and inflammatory response in the muscle of the shrimp. In summary, these genes provide valuable reference information for future breeding of low pH-tolerant shrimp.
Collapse
Affiliation(s)
- Zhi-Bin Lu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yun-Dong Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Shi-Gui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Qi-Bin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Jian-Hua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Li-Shi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Xu Chen
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Fa-Lin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, China.
| |
Collapse
|
2
|
He Y, Wang Q, Li J, Li Z. Comparative proteomic profiling in Chinese shrimp Fenneropenaeus chinensis under low pH stress. FISH & SHELLFISH IMMUNOLOGY 2022; 120:526-535. [PMID: 34953999 DOI: 10.1016/j.fsi.2021.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Lower pH gives rise to a harmful stress to crustacean. Here, we analyzed the proteomic response of Fenneropenaeus chinensis from control pH (pH value 8.2) and low pH (pH value 6.5) - treated groups by employing absolute quantitation-based quantitative proteomic (iTRAQ) analysis. Among the identified proteins, a total of 76 proteins differed in their abundance levels, including 45 upregulated and 31 downregulated proteins. The up-regulation of proteins like citrate synthase, cytochrome c oxidase, V-type proton ATPase, glyceraldehyde-3-phosphate dehydrogenase and fructose 1,6-bisphosphate-aldolase as well as the enrichment of the DEPs in multiple metabolic processes and pathways illustrated that increased energy and substrates metabolism was essential for F. chinensis to counteract low pH stress. Ion transporting related proteins, such as Na+/K+/2Cl- cotransporter and calmodulin, participated in the homeostatic maintenance of pH in F. chinensis. There were significant downregulation expressions of lectin, lipopolysaccharide- and beta-1,3-glucan binding protein, chitinase, cathepsin L and beta-glucuronidase, which indicating the immune dysfunction of F. chinensis when exposure to low pH condition. These findings can extend our understanding on the defensive mechanisms of the low pH stress and accelerate the breeding process of low pH tolerance in F. chinensis.
Collapse
Affiliation(s)
- Yuying He
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Qiong Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Zhaoxia Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Hou X, Chen X, Yang H, Yue W, Wang J, Han H, Wang C. V-ATPase subunit B plays essential roles in the molting process of the Chinese mitten crab, Eriocheir sinensis. Biol Open 2020; 9:bio048926. [PMID: 32434771 PMCID: PMC7272352 DOI: 10.1242/bio.048926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/27/2020] [Indexed: 11/23/2022] Open
Abstract
Vacuolar ATPase (V-ATPase) is a proton pump driven by ATP hydrolysis, and it plays an important role in numerous biological processes, such as protein degradation and synthesis, cell growth, and cell autophagy. The V-ATPase subunit B (VATB) is a conservative and regulatory subunit required for ATP hydrolysis during proton pumping. The VATB of Eriocheirsinensis (EsVATB), which includes an open reading frame (ORF) length of 1467 bp encoding 489 amino acids, was cloned to unveil the biological function of VATB during the molting process of crustaceans. Spatial and temporal expression profiles showed that EsVATB was highly expressed in the posterior gill accompanied with the highest osmotic pressure in the premolt (PrM) stage. Meanwhile, the highest expression level of EsVATB was identified in the hepatopancreas and heart during the postmolt stage and epidermis in the intermolt stage, indicating that EsVATB may perform diverse biological functions in different tissues during the molting process. The individual crabs in the interference group showed a high mortality rate (74%) and a low molting rate (26%) and failed to form a new epicuticle in the PrM stage. Meanwhile, a significant difference in osmotic pressure was identified between the interference and control groups. Our results indicate that EsVATB is an indispensable functional gene that may participate in osmoregulation and help with the new epicuticle formation during the molting process of E. sinensis.
Collapse
Affiliation(s)
- Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - He Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hua Han
- Department of Pharmacy, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
4
|
He Y, Li Z, Zhang H, Hu S, Wang Q, Li J. Genome-wide identification of Chinese shrimp (Fenneropenaeus chinensis) microRNA responsive to low pH stress by deep sequencing. Cell Stress Chaperones 2019; 24:689-695. [PMID: 31209725 PMCID: PMC6629735 DOI: 10.1007/s12192-019-00989-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 10/26/2022] Open
Abstract
pH has a great impact on the distribution, growth, behavior, and physiology in many aquatic animals. Here, we analyzed miRNA expression profiles of Chinese shrimp (Fenneropenaeus chinensis) from control pH (8.2) and low pH (6.5)-treated shrimp. Expression analysis identified 6 known miRNAs and 23 novel miRNAs with significantly different expression between control pH 8.2 and low pH 6.5; the predicted target genes of differentially expressed miRNAs were significantly enriched in organic acid metabolic process, oxidoreductase activity, coenzyme binding, cofactor binding, and collagen trimer. Moreover, target genes were significantly enriched in several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including citrate cycle, pyruvate metabolism, cytokine-cytokine receptor interaction, tight junction, carbon metabolism, etc. Our survey expanded the number of known shrimp miRNAs and provided comprehensive information about miRNA response to low pH stress.
Collapse
Affiliation(s)
- Yuying He
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Zhaoxia Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Haien Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shuo Hu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Qingyin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
5
|
Ge Q, Li J, Wang J, Li Z, Li J. Characterization, functional analysis, and expression levels of three carbonic anhydrases in response to pH and saline-alkaline stresses in the ridgetail white prawn Exopalaemon carinicauda. Cell Stress Chaperones 2019; 24:503-515. [PMID: 30915722 PMCID: PMC6527638 DOI: 10.1007/s12192-019-00987-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 01/22/2023] Open
Abstract
Carbonate alkalinity, salinity, and pH are three important stress factors for aquatic animals in saline-alkaline water. Carbonic anhydrases (CAs) catalyze the reversible reaction of CO2 reported to play an important role in the acid-base regulation in vertebrates. To explore the molecular mechanism of CAs efficacy in shrimp after their transfer into saline-alkaline water, the cDNAs of three CAs (EcCAc, EcCAg, and EcCAb) were cloned from Exopalaemon carinicauda. Sequence analysis showed that EcCAc and EcCAg both possessed a conserved α-CA domain and a proton acceptor site, and EcCAb contained a Pro-CA domain. Tissue expression analysis demonstrated that EcCAc and EcCAg were most abundantly in gills, and EcCAb was highly expressed in muscle. The cumulative mortalities remained below 25% under exposure to pH (pH 6 and pH 9), low salinity (5 ppt), or high carbonate alkalinity (5 and 10 mmol/L) after 72 h of exposure. However, mortalities increased up to 70% under extreme saline-alkaline stress (salinity 5 ppt, carbonate alkalinity 10 mmol/L, and pH 9) after 14 days of exposure. The EcCAc and EcCAg expressions in gills were significantly upregulated during the early period of pH and saline-alkaline stresses, while the EcCAb expressions showed no regular or large changes. The two-way ANOVA found significant interactions between salinity and carbonate alkalinity observed in EcCAc, EcCAg, and EcCAb expressions (p < 0.05). Furthermore, an RNA interference experiment resulted in increased mortality of EcCAc- and EcCAg-silenced prawns under saline-alkaline stress. EcCAc knockdown reduced expressions of Na+/H+ exchanger (EcNHE) and sodium bicarbonate cotransporter (EcNBC), and EcCAg knockdown reduced EcCAc, EcNHE, EcNBC, and V-type H+-ATPase (EcVTP) expressions. These results suggest EcCAc and EcCAg as important modulators in response to pH and saline-alkaline stresses in E. carinicauda.
Collapse
Affiliation(s)
- Qianqian Ge
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Jiajia Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Zhengdao Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
| | - Jitao Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|