1
|
Vallejos A, Katona G, Neutze R. Appraising protein conformational changes by resampling time-resolved serial x-ray crystallography data. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:044302. [PMID: 39056073 PMCID: PMC11272219 DOI: 10.1063/4.0000258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
With the development of serial crystallography at both x-ray free electron laser and synchrotron radiation sources, time-resolved x-ray crystallography is increasingly being applied to study conformational changes in macromolecules. A successful time-resolved serial crystallography study requires the growth of microcrystals, a mechanism for synchronized and homogeneous excitation of the reaction of interest within microcrystals, and tools for structural interpretation. Here, we utilize time-resolved serial femtosecond crystallography data collected from microcrystals of bacteriorhodopsin to compare results from partial occupancy structural refinement and refinement against extrapolated data. We illustrate the domain wherein the amplitude of refined conformational changes is inversely proportional to the activated state occupancy. We illustrate how resampling strategies allow coordinate uncertainty to be estimated and demonstrate that these two approaches to structural refinement agree within coordinate errors. We illustrate how singular value decomposition of a set of difference Fourier electron density maps calculated from resampled data can minimize phase bias in these maps, and we quantify residual densities for transient water molecules by analyzing difference Fourier and Polder omit maps from resampled data. We suggest that these tools may assist others in judging the confidence with which observed electron density differences may be interpreted as functionally important conformational changes.
Collapse
Affiliation(s)
- Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
2
|
Khusainov G, Standfuss J, Weinert T. The time revolution in macromolecular crystallography. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:020901. [PMID: 38616866 PMCID: PMC11015943 DOI: 10.1063/4.0000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Macromolecular crystallography has historically provided the atomic structures of proteins fundamental to cellular functions. However, the advent of cryo-electron microscopy for structure determination of large and increasingly smaller and flexible proteins signaled a paradigm shift in structural biology. The extensive structural and sequence data from crystallography and advanced sequencing techniques have been pivotal for training computational models for accurate structure prediction, unveiling the general fold of most proteins. Here, we present a perspective on the rise of time-resolved crystallography as the new frontier of macromolecular structure determination. We trace the evolution from the pioneering time-resolved crystallography methods to modern serial crystallography, highlighting the synergy between rapid detection technologies and state-of-the-art x-ray sources. These innovations are redefining our exploration of protein dynamics, with high-resolution crystallography uniquely positioned to elucidate rapid dynamic processes at ambient temperatures, thus deepening our understanding of protein functionality. We propose that the integration of dynamic structural data with machine learning advancements will unlock predictive capabilities for protein kinetics, revolutionizing dynamics like macromolecular crystallography revolutionized structural biology.
Collapse
Affiliation(s)
- Georgii Khusainov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
3
|
Sugo Y, Tamura H, Ishikita H. Electron Transfer Route between Quinones in Type-II Reaction Centers. J Phys Chem B 2022; 126:9549-9558. [PMID: 36374126 PMCID: PMC9707520 DOI: 10.1021/acs.jpcb.2c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II (PSII), the photoinduced charge separation is terminated by an electron transfer between the primary (QA) and secondary (QB) quinones. Here, we investigate the electron transfer route, calculating the superexchange coupling (HQA-QB) for electron transfer from QA to QB in the protein environment. HQA-QB is significantly larger in PbRC than in PSII. In superexchange electron tunneling, the electron transfer via unoccupied molecular orbitals of the nonheme Fe complex (QA → Fe → QB) is pronounced in PbRC, whereas the electron transfer via occupied molecular orbitals (Fe → QB followed by QA → Fe) is pronounced in PSII. The significantly large HQA-QB is caused by a water molecule that donates the H-bond to the ligand Glu-M234 in PbRC. The corresponding water molecule is absent in PSII due to the existence of D1-Tyr246. HQA-QB increases in response to the Ser-L223···QB H-bond formation caused by an extension of the H-bond network, which facilitates charge delocalization over the QB site. This explains the observed discrepancy in the QA-to-QB electron transfer between PbRC and PSII, despite their structural similarity.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| | - Hiroyuki Tamura
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| |
Collapse
|
4
|
Puthenveetil R, Christenson ET, Vinogradova O. New Horizons in Structural Biology of Membrane Proteins: Experimental Evaluation of the Role of Conformational Dynamics and Intrinsic Flexibility. MEMBRANES 2022; 12:227. [PMID: 35207148 PMCID: PMC8877495 DOI: 10.3390/membranes12020227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
A plethora of membrane proteins are found along the cell surface and on the convoluted labyrinth of membranes surrounding organelles. Since the advent of various structural biology techniques, a sub-population of these proteins has become accessible to investigation at near-atomic resolutions. The predominant bona fide methods for structure solution, X-ray crystallography and cryo-EM, provide high resolution in three-dimensional space at the cost of neglecting protein motions through time. Though structures provide various rigid snapshots, only an amorphous mechanistic understanding can be inferred from interpolations between these different static states. In this review, we discuss various techniques that have been utilized in observing dynamic conformational intermediaries that remain elusive from rigid structures. More specifically we discuss the application of structural techniques such as NMR, cryo-EM and X-ray crystallography in studying protein dynamics along with complementation by conformational trapping by specific binders such as antibodies. We finally showcase the strength of various biophysical techniques including FRET, EPR and computational approaches using a multitude of succinct examples from GPCRs, transporters and ion channels.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35A Convent Dr., Bethesda, MD 20892, USA
| | | | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Monteiro DCF, Amoah E, Rogers C, Pearson AR. Using photocaging for fast time-resolved structural biology studies. Acta Crystallogr D Struct Biol 2021; 77:1218-1232. [PMID: 34605426 PMCID: PMC8489231 DOI: 10.1107/s2059798321008809] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Careful selection of photocaging approaches is critical to achieve fast and well synchronized reaction initiation and perform successful time-resolved structural biology experiments. This review summarizes the best characterized and most relevant photocaging groups previously described in the literature. It also provides a walkthrough of the essential factors to consider in designing a suitable photocaged molecule to address specific biological questions, focusing on photocaging groups with well characterized spectroscopic properties. The relationships between decay rates (k in s-1), quantum yields (ϕ) and molar extinction coefficients (ϵmax in M-1 cm-1) are highlighted for different groups. The effects of the nature of the photocaged group on these properties is also discussed. Four main photocaging scaffolds are presented in detail, o-nitrobenzyls, p-hydroxyphenyls, coumarinyls and nitrodibenzofuranyls, along with three examples of the use of this technology. Furthermore, a subset of specialty photocages are highlighted: photoacids, molecular photoswitches and metal-containing photocages. These extend the range of photocaging approaches by, for example, controlling pH or generating conformationally locked molecules.
Collapse
Affiliation(s)
- Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Emmanuel Amoah
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Cromarte Rogers
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Brändén G, Neutze R. Advances and challenges in time-resolved macromolecular crystallography. Science 2021; 373:373/6558/eaba0954. [PMID: 34446579 DOI: 10.1126/science.aba0954] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conformational changes within biological macromolecules control a vast array of chemical reactions in living cells. Time-resolved crystallography can reveal time-dependent structural changes that occur within protein crystals, yielding chemical insights in unparalleled detail. Serial crystallography approaches developed at x-ray free-electron lasers are now routinely used for time-resolved diffraction studies of macromolecules. These techniques are increasingly being applied at synchrotron radiation sources and to a growing diversity of macromolecules. Here, we review recent progress in the field, including visualizing ultrafast structural changes that guide the initial trajectories of light-driven reactions as well as capturing biologically important conformational changes on slower time scales, for which bacteriorhodopsin and photosystem II are presented as illustrative case studies.
Collapse
Affiliation(s)
- Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Poluektov OG, Utschig LM. Quantum Sensing of Electron Transfer Pathways in Natural Photosynthesis Using Time-Resolved High-Field Electron Paramagnetic Resonance/Electron-Nuclear Double Resonance Spectroscopy. J Phys Chem B 2021; 125:4025-4030. [PMID: 33877826 DOI: 10.1021/acs.jpcb.1c00946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosynthetic integral membrane reaction center (RC) proteins capture and convert sunlight into chemical energy via efficient charge separation achieved through a series of rapid, photoinitiated electron transfer steps. These fast electron transfers create an entangled spin qubit (radical) pair that contains detailed information about the weak magnetic interactions, structure, and dynamics of localized protein environments involved in charge separation events. Herein, we investigate how these entangled electron spin qubits interact with nuclear spins of the protein environment using the high spectral resolution of 130 GHz electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR). Spectroscopic interrogation enabled the observation and probing of protons located in the electron transfer pathway between the membrane-spanning electron pair P+QA- (where P+ is the primary donor, a special pair of bacteriochlorophylls, and QA is the primary quinone acceptor) in the bacterial RC. Spectroscopic analysis reveals hydrogen-bonding interactions involved in regulating the route that light-induced electrons travel through the RC protein during charge separation.
Collapse
Affiliation(s)
- Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Lisa M Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
8
|
Poddar H, Heyes DJ, Schirò G, Weik M, Leys D, Scrutton NS. A guide to time-resolved structural analysis of light-activated proteins. FEBS J 2021; 289:576-595. [PMID: 33864718 DOI: 10.1111/febs.15880] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
Dynamical changes in protein structures are essential for protein function and occur over femtoseconds to seconds timescales. X-ray free electron lasers have facilitated investigations of structural dynamics in proteins with unprecedented temporal and spatial resolution. Light-activated proteins are attractive targets for time-resolved structural studies, as the reaction chemistry and associated protein structural changes can be triggered by short laser pulses. Proteins with different light-absorbing centres have evolved to detect light and harness photon energy to bring about downstream chemical and biological output responses. Following light absorption, rapid chemical/small-scale structural changes are typically localised around the chromophore. These localised changes are followed by larger structural changes propagated throughout the photoreceptor/photocatalyst that enables the desired chemical and/or biological output response. Time-resolved serial femtosecond crystallography (SFX) and solution scattering techniques enable direct visualisation of early chemical change in light-activated proteins on timescales previously inaccessible, whereas scattering gives access to slower timescales associated with more global structural change. Here, we review how advances in time-resolved SFX and solution scattering techniques have uncovered mechanisms of photochemistry and its coupling to output responses. We also provide a prospective on how these time-resolved structural approaches might impact on other photoreceptors/photoenzymes that have not yet been studied by these methods.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Giorgio Schirò
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Martin Weik
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| |
Collapse
|
9
|
Oja V, Laisk A. Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. PHOTOSYNTHESIS RESEARCH 2020; 145:209-225. [PMID: 32918663 DOI: 10.1007/s11120-020-00783-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 05/16/2023]
Abstract
Lettuce (Lactuca sativa) and benth (Nicotiana benthamiana) leaves were illuminated with 720 nm background light to mix S-states and oxidize electron carriers. Green-filtered xenon flashes of different photon dose were applied and O2 evolution induced by a flash was measured. After light intensity gradient across the leaf was mathematically considered, the flash-induced PSII electron transport (= 4·O2 evolution) exponentially increased with the flash photon dose in any differential layer of the leaf optical density. This proved the absence of excitonic connectivity between PSII units. Time courses of flash light intensity and 680 nm chlorophyll fluorescence emission were recorded. While with connected PSII the sigmoidal fluorescence rise has been explained by quenching of excitation in closed PSII by its open neighbors, in the absence of connectivity the sigmoidicity indicates gradual rise of the fluorescence yield of an individual closed PSII during the induction. Two phases were discerned: the specific fluorescence yield immediately increased from Fo to 1.8Fo in a PSII, whose reaction center became closed; fluorescence yield of the closed PSII was keeping time-dependent rise from 1.8Fo to about 3Fo, approaching the flash fluorescence yield Ff = 0.6Fm during 40 μs. The time-dependent fluorescence rise was resolved from the quenching by 3Car triplets and related to protein conformational change. We suggest that QA reduction induces a conformational change, which by energetic or structural means closes the gate for excitation entrance into the central radical pair trap-efficiently when QB cannot accept the electron, but less efficiently when it can.
Collapse
Affiliation(s)
- Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| | - Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| |
Collapse
|
10
|
The study of conformational changes in photosystem II during a charge separation. J Mol Model 2020; 26:75. [PMID: 32152736 DOI: 10.1007/s00894-020-4332-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/23/2020] [Indexed: 12/14/2022]
Abstract
Photosystem II (PSII) is a multi-subunit pigment-protein complex and is one of several protein assemblies that function cooperatively in photosynthesis in plants and cyanobacteria. As more structural data on PSII become available, new questions arise concerning the nature of the charge separation in PSII reaction center (RC). The crystal structure of PSII RC from cyanobacteria Thermosynechococcus vulcanus was selected for the computational study of conformational changes in photosystem II associated to the charge separation process. The parameterization of cofactors and lipids for classical MD simulation with Amber force field was performed. The parametrized complex of PSII was embedded in the lipid membrane for MD simulation with Amber in Gromacs. The conformational behavior of protein and the cofactors directly involved in the charge separation were studied by MD simulations and QM/MM calculations. This study identified the most likely mechanism of the proton-coupled reduction of plastoquinone QB. After the charge separation and the first electron transfer to QB, the system undergoes conformational change allowing the first proton transfer to QB- mediated via Ser264. After the second electron transfer to QBH, the system again adopts conformation allowing the second proton transfer to QBH-. The reduced QBH2 would then leave the binding pocket.
Collapse
|
11
|
Standfuss J. Membrane protein dynamics studied by X-ray lasers – or why only time will tell. Curr Opin Struct Biol 2019; 57:63-71. [DOI: 10.1016/j.sbi.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/05/2023]
|
12
|
Selikhanov GK, Fando MS, Dontsova MV, Gabdulkhakov AG. Investigations of Photosensitive Proteins by Serial Crystallography. BIOCHEMISTRY (MOSCOW) 2018; 83:S163-S175. [DOI: 10.1134/s0006297918140134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ishara Silva K, Jagannathan B, Golbeck JH, Lakshmi KV. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:548-556. [PMID: 26334844 DOI: 10.1016/j.bbabio.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- K Ishara Silva
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Bharat Jagannathan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180.
| |
Collapse
|
14
|
Pieper J. The functional role of protein dynamics in photosynthetic reaction centers investigated by elastic and quasielastic neutron scattering. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20158302013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
16
|
Kitoh-Nishioka H, Ando K. Fragment Molecular Orbital Study on Electron Tunneling Mechanisms in Bacterial Photosynthetic Reaction Center. J Phys Chem B 2012; 116:12933-45. [DOI: 10.1021/jp3062948] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- Department of Chemistry, Graduate
School of Science, Kyoto University, Sakyo-ku,
Kyoto 606-8502, Japan
| | - Koji Ando
- Department of Chemistry, Graduate
School of Science, Kyoto University, Sakyo-ku,
Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Neutze R, Moffat K. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. Curr Opin Struct Biol 2012; 22:651-9. [PMID: 23021004 PMCID: PMC3520507 DOI: 10.1016/j.sbi.2012.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/27/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022]
Abstract
X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today's synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics.
Collapse
Affiliation(s)
- Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden.
| | | |
Collapse
|
18
|
Padayatti P, Palczewska G, Sun W, Palczewski K, Salom D. Imaging of protein crystals with two-photon microscopy. Biochemistry 2012; 51:1625-37. [PMID: 22324807 DOI: 10.1021/bi201682q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as ~10 μm in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.
Collapse
|
19
|
Rusu M, Wriggers W. Evolutionary bidirectional expansion for the tracing of alpha helices in cryo-electron microscopy reconstructions. J Struct Biol 2011; 177:410-9. [PMID: 22155667 DOI: 10.1016/j.jsb.2011.11.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 01/10/2023]
Abstract
Cryo-electron microscopy (cryo-EM) enables the imaging of macromolecular complexes in near-native environments at resolutions that often permit the visualization of secondary structure elements. For example, alpha helices frequently show consistent patterns in volumetric maps, exhibiting rod-like structures of high density. Here, we introduce VolTrac (Volume Tracer) - a novel technique for the annotation of alpha-helical density in cryo-EM data sets. VolTrac combines a genetic algorithm and a bidirectional expansion with a tabu search strategy to trace helical regions. Our method takes advantage of the stochastic search by using a genetic algorithm to identify optimal placements for a short cylindrical template, avoiding exploration of already characterized tabu regions. These placements are then utilized as starting positions for the adaptive bidirectional expansion that characterizes the curvature and length of the helical region. The method reliably predicted helices with seven or more residues in experimental and simulated maps at intermediate (4-10Å) resolution. The observed success rates, ranging from 70.6% to 100%, depended on the map resolution and validation parameters. For successful predictions, the helical axes were located within 2Å from known helical axes of atomic structures.
Collapse
Affiliation(s)
- Mirabela Rusu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Houston, TX 77030, USA.
| | | |
Collapse
|
20
|
Müh F, Glöckner C, Hellmich J, Zouni A. Light-induced quinone reduction in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:44-65. [PMID: 21679684 DOI: 10.1016/j.bbabio.2011.05.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
The photosystem II core complex is the water:plastoquinone oxidoreductase of oxygenic photosynthesis situated in the thylakoid membrane of cyanobacteria, algae and plants. It catalyzes the light-induced transfer of electrons from water to plastoquinone accompanied by the net transport of protons from the cytoplasm (stroma) to the lumen, the production of molecular oxygen and the release of plastoquinol into the membrane phase. In this review, we outline our present knowledge about the "acceptor side" of the photosystem II core complex covering the reaction center with focus on the primary (Q(A)) and secondary (Q(B)) quinones situated around the non-heme iron with bound (bi)carbonate and a comparison with the reaction center of purple bacteria. Related topics addressed are quinone diffusion channels for plastoquinone/plastoquinol exchange, the newly discovered third quinone Q(C), the relevance of lipids, the interactions of quinones with the still enigmatic cytochrome b559 and the role of Q(A) in photoinhibition and photoprotection mechanisms. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Frank Müh
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Wöhri AB, Katona G, Johansson LC, Fritz E, Malmerberg E, Andersson M, Vincent J, Eklund M, Cammarata M, Wulff M, Davidsson J, Groenhof G, Neutze R. Light-Induced Structural Changes in a Photosynthetic Reaction Center Caught by Laue Diffraction. Science 2010; 328:630-3. [PMID: 20431017 DOI: 10.1126/science.1186159] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Annemarie B Wöhri
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Box 462, SE-40530 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Westenhoff S, Nazarenko E, Malmerberg E, Davidsson J, Katona G, Neutze R. Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches. Acta Crystallogr A 2010; 66:207-19. [PMID: 20164644 PMCID: PMC2824530 DOI: 10.1107/s0108767309054361] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/16/2009] [Indexed: 11/26/2022] Open
Abstract
Time-resolved structural studies of proteins have undergone several significant developments during the last decade. Recent developments using time-resolved X-ray methods, such as time-resolved Laue diffraction, low-temperature intermediate trapping, time-resolved wide-angle X-ray scattering and time-resolved X-ray absorption spectroscopy, are reviewed. Proteins undergo conformational changes during their biological function. As such, a high-resolution structure of a protein’s resting conformation provides a starting point for elucidating its reaction mechanism, but provides no direct information concerning the protein’s conformational dynamics. Several X-ray methods have been developed to elucidate those conformational changes that occur during a protein’s reaction, including time-resolved Laue diffraction and intermediate trapping studies on three-dimensional protein crystals, and time-resolved wide-angle X-ray scattering and X-ray absorption studies on proteins in the solution phase. This review emphasizes the scope and limitations of these complementary experimental approaches when seeking to understand protein conformational dynamics. These methods are illustrated using a limited set of examples including myoglobin and haemoglobin in complex with carbon monoxide, the simple light-driven proton pump bacteriorhodopsin, and the superoxide scavenger superoxide reductase. In conclusion, likely future developments of these methods at synchrotron X-ray sources and the potential impact of emerging X-ray free-electron laser facilities are speculated upon.
Collapse
Affiliation(s)
- Sebastian Westenhoff
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Specht A, Bolze F, Omran Z, Nicoud JF, Goeldner M. Photochemical tools to study dynamic biological processes. HFSP JOURNAL 2009; 3:255-64. [PMID: 20119482 PMCID: PMC2799987 DOI: 10.2976/1.3132954] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/21/2009] [Indexed: 11/19/2022]
Abstract
Light-responsive biologically active compounds offer the possibility to study the dynamics of biological processes. Phototriggers and photoswitches have been designed, providing the capability to rapidly cause the initiation of wide range of dynamic biological phenomena. We will discuss, in this article, recent developments in the field of light-triggered chemical tools, specially how two-photon excitation, "caged" fluorophores, and the photoregulation of protein activities in combination with time-resolved x-ray techniques should break new grounds in the understanding of dynamic biological processes.
Collapse
Affiliation(s)
- Alexandre Specht
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| | - Frédéric Bolze
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| | - Ziad Omran
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| | - Jean-François Nicoud
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| | - Maurice Goeldner
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| |
Collapse
|
24
|
Bourgeois D, Weik M. Kinetic protein crystallography: a tool to watch proteins in action. CRYSTALLOGR REV 2009. [DOI: 10.1080/08893110802604868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Hrmova M, Fincher GB. Functional genomics and structural biology in the definition of gene function. Methods Mol Biol 2009; 513:199-227. [PMID: 19347658 DOI: 10.1007/978-1-59745-427-8_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
By mid-2007, the three-dimensional (3D) structures of some 45,000 proteins have been solved, over a period where the linear structures of millions of genes have been defined. Technical challenges associated with X-ray crystallography are being overcome and high-throughput methods both for crystallization of proteins and for solving their 3D structures are under development. The question arises as to how structural biology can be integrated with and adds value to functional genomics programs. Structural biology will assist in the definition of gene function through the identification of the likely function of the protein products of genes. The 3D information allows protein sequences predicted from DNA sequences to be classified into broad groups, according to the overall 'fold', or 3D shape, of the protein. Structural information can be used to predict the preferred substrate of a protein, and thereby greatly enhance the accurate annotation of the corresponding gene. Furthermore, it will enable the effects of amino acid substitutions in enzymes to be better understood with respect to enzyme function and could thereby provide insights into natural variation in genes. If the molecular basis of transcription factor-DNA interactions were defined through precise 3D knowledge of the protein-DNA binding site, it would be possible to predict the effects of base substitutions within the motif on the specificity and/or kinetics of binding. In this chapter, we present specific examples of how structural biology can provide valuable information for functional genomics programs.
Collapse
Affiliation(s)
- Maria Hrmova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | | |
Collapse
|
26
|
Wraight CA, Gunner MR. The Acceptor Quinones of Purple Photosynthetic Bacteria — Structure and Spectroscopy. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_20] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Nagy L, Maróti P, Terazima M. Spectrally silent light induced conformation change in photosynthetic reaction centers. FEBS Lett 2008; 582:3657-62. [PMID: 18840436 DOI: 10.1016/j.febslet.2008.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Spectrally silent conformation change after photoexcitation of photosynthetic reaction centers isolated from Rhodobacter sphaeroides R-26 was observed by the optical heterodyne transient grating technique. The signal showed spectrally silent structural change in photosynthetic reaction centers followed by the primary P+BPh- charge separation and this change remains even after the charge recombination. Without bound quinone to the RC, the conformation change relaxes with about 28micros lifetime. The presence of quinone at the primary quinone (QA) site may suppress this conformation change. However, a weak relaxation with 30-40micros lifetime is still observed under the presence of QA, which increases up to 40micros as a function of the occupancy of the secondary quinone (QB) site.
Collapse
Affiliation(s)
- László Nagy
- Institute of Medical Physics and Biophysics, University of Szeged, 6720 Szeged, Rerrich B. tér. 1., Hungary.
| | | | | |
Collapse
|
28
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
29
|
The effect of hydration on protein flexibility in photosystem II of green plants studied by quasielastic neutron scattering. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:657-63. [PMID: 18351332 DOI: 10.1007/s00249-008-0297-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 02/14/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
The effect of hydration on protein dynamics in photosystem II (PS II) membrane fragments from spinach has been investigated by using the method of quasielastic neutron scattering (QENS) at room temperature. The QENS data obtained indicate that the protein dynamics is strongly dependent on the extent of hydration. In particular, the hydration-induced activation of localized diffusive protein motions and QA- reoxidation by QB in PS II appear to be correlated in their onset at a hydration value of about 45% relative humidity (r.h.). These findings underline the crucial functional relevance of localized diffusive protein motions on the picosecond-timescale for the reactions of light-induced photosynthetic water splitting under formation of plastoquinol and molecular oxygen in PS II of green plants.
Collapse
|
30
|
Charge stabilization in reaction center protein investigated by optical heterodyne detected transient grating spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1167-74. [DOI: 10.1007/s00249-008-0294-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 02/14/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
31
|
|
32
|
Bourgeois D, Schotte F, Brunori M, Vallone B. Time-resolved methods in biophysics. 6. Time-resolved Laue crystallography as a tool to investigate photo-activated protein dynamics. Photochem Photobiol Sci 2007; 6:1047-56. [PMID: 17914477 DOI: 10.1039/b704249c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When polychromatic X-rays are shined onto crystalline material, they generate a Laue diffraction pattern. At third generation synchrotron radiation sources, a single X-ray pulse of approximately 100 ps duration is enough to produce interpretable Laue data from biomolecular crystals. Thus, by initiating biological turnover in a crystalline protein, structural changes along the reaction pathway may be filmed by ultra-fast Laue diffraction. Using laser-light as a trigger, transient species in photosensitive macromolecules can be captured at near atomic resolution with sub-nanosecond time-resolution. Such pump-probe Laue experiments have now reached an outstanding level of sophistication and have found a domain of excellence in the investigation of light-sensitive proteins undergoing cyclic photo-reactions and producing stiff crystals. The main theoretical concepts of Laue diffraction and the challenges associated with time-resolved experiments on biological crystals are recalled. The recent advances in the design of experiments are presented in terms of instrumental choices, data collection strategy and data processing, and some of the inherent difficulties of the method are highlighted. The discussion is based on the example of myoglobin, a protein that has traversed the whole history of pump-probe Laue diffraction, and for which a massive amount of data have provided considerable insight into the understanding of protein dynamics.
Collapse
Affiliation(s)
- Dominique Bourgeois
- IBS, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, Université Joseph Fourier, 41 rue Jules Horowitz, F-38027, Grenoble, France.
| | | | | | | |
Collapse
|
33
|
Dorogi M, Balint Z, Mikó C, Vileno B, Milas M, Hernadi K, Forró L, Varó G, Nagy L. Stabilization effect of single-walled carbon nanotubes on the functioning of photosynthetic reaction centers. J Phys Chem B 2007; 110:21473-9. [PMID: 17064097 DOI: 10.1021/jp060828t] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between single-walled carbon nanotubes and photosynthetic reaction centers purified from purple bacterium Rhodobacter sphaeroides R-26 has been investigated. Atomic force microscopy studies provide evidence that reaction center protein can be attached effectively to the nanotubes. The typical diameter of the nanotube is 1-4 nm and 15 +/- 2 nm without and with the reaction centers, respectively. Light-induced absorption change measurements indicate the stabilization of the P+(Q(A)Q(B))- charge pair, which is formed after single saturating light excitation after the attachment to nanotubes. The separation of light-induced charges is followed by slow reorganization of the protein structure. The stabilization effect of light-initiated charges by the carbon nanotubes opens a possible direction of several applications, the most promising being in energy conversion and storage devices.
Collapse
Affiliation(s)
- Marta Dorogi
- Institute of Medical Physics and Biophysics, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Milano F, Dorogi M, Szebényi K, Nagy L, Maróti P, Váró G, Giotta L, Agostiano A, Trotta M. Enthalpy/entropy driven activation of the first interquinone electron transfer in bacterial photosynthetic reaction centers embedded in vesicles of physiologically important phospholipids. Bioelectrochemistry 2007; 70:18-22. [PMID: 16713374 DOI: 10.1016/j.bioelechem.2006.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Indexed: 10/24/2022]
Abstract
The thermodynamics and kinetics of light-induced electron transfer in bacterial photosynthetic RCs are sensitive to physiologically important lipids (phosphatidylcholine, cardiolipin and phosphatidylglycerol) in the environment. The analysis of the temperature-dependence of the rate of the P(+)Q(A)(-)Q(B)-->P(+)Q(A)Q(B)(-) interquinone electron transfer revealed high enthalpy change of activation in zwitterionic or neutral micelles and vesicles and low enthalpy change of activation in vesicles constituted of negatively charged phospholipids. The entropy change of activation was compensated by the changes of enthalpy, thus the free energy change of activation ( approximately 500 meV) did not show large variation in vesicles of different lipids.
Collapse
Affiliation(s)
- Francesco Milano
- CNR, Istituto per i Processi Chimico-Fisici, Sezione di Bari, c/o Dipartimento di Chimica, Via Orabona, 4 I-70124 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, Ismagilov RF. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc Natl Acad Sci U S A 2006; 103:19243-8. [PMID: 17159147 PMCID: PMC1748211 DOI: 10.1073/pnas.0607502103] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-throughput screening and optimization experiments are critical to a number of fields, including chemistry and structural and molecular biology. The separation of these two steps may introduce false negatives and a time delay between initial screening and subsequent optimization. Although a hybrid method combining both steps may address these problems, miniaturization is required to minimize sample consumption. This article reports a "hybrid" droplet-based microfluidic approach that combines the steps of screening and optimization into one simple experiment and uses nanoliter-sized plugs to minimize sample consumption. Many distinct reagents were sequentially introduced as approximately 140-nl plugs into a microfluidic device and combined with a substrate and a diluting buffer. Tests were conducted in approximately 10-nl plugs containing different concentrations of a reagent. Methods were developed to form plugs of controlled concentrations, index concentrations, and incubate thousands of plugs inexpensively and without evaporation. To validate the hybrid method and demonstrate its applicability to challenging problems, crystallization of model membrane proteins and handling of solutions of detergents and viscous precipitants were demonstrated. By using 10 microl of protein solution, approximately 1,300 crystallization trials were set up within 20 min by one researcher. This method was compatible with growth, manipulation, and extraction of high-quality crystals of membrane proteins, demonstrated by obtaining high-resolution diffraction images and solving a crystal structure. This robust method requires inexpensive equipment and supplies, should be especially suitable for use in individual laboratories, and could find applications in a number of areas that require chemical, biochemical, and biological screening and optimization.
Collapse
Affiliation(s)
- Liang Li
- *Department of Chemistry and Institute for Biophysical Dynamics and
| | - Debarshi Mustafi
- *Department of Chemistry and Institute for Biophysical Dynamics and
| | - Qiang Fu
- *Department of Chemistry and Institute for Biophysical Dynamics and
| | - Valentina Tereshko
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637
| | - Delai L. Chen
- *Department of Chemistry and Institute for Biophysical Dynamics and
| | - Joshua D. Tice
- *Department of Chemistry and Institute for Biophysical Dynamics and
| | - Rustem F. Ismagilov
- *Department of Chemistry and Institute for Biophysical Dynamics and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Baxter RHG, Krausz E, Norris JR. Photoactivation of the photosynthetic reaction center of Blastochloris viridis in the crystalline state. J Phys Chem B 2006; 110:1026-32. [PMID: 16471638 DOI: 10.1021/jp053697p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoactivation in crystals of the bacterial reaction center of Blastochloris viridis was investigated by near-infrared spectroscopy. The bleaching of the special pair absorption at 970 nm and the simultaneous rise of the special pair cation absorption at 1300 nm were measured in response to transient irradiation by a HeNe laser over 5 orders of magnitude in laser power. The resulting power-saturation curve can be used to estimate the true extent of photoactivation achieved in a prior time-resolved crystallographic experiment (Baxter et al. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5982-5987). The overall extent of photoactivation was 50%, which demonstrates that the time-resolved crystallographic method can be applied to the optically dense reaction center crystals. Measurement of the charge-recombination rate, however, suggests the presence of a long-lived P+ state within the crystal.
Collapse
Affiliation(s)
- Richard H G Baxter
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
37
|
Shinkarev VP. Ubiquinone (coenzyme Q10) binding sites: Low dielectric constant of the gate prevents the escape of the semiquinone. FEBS Lett 2006; 580:2534-9. [PMID: 16647706 DOI: 10.1016/j.febslet.2006.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 04/06/2006] [Indexed: 11/30/2022]
Abstract
The photosynthetic reaction center (RC) from purple bacteria is frequently used as a model for the interaction of ubiquinones (coenzyme Q) with membrane proteins. Single-turnover flash activation of RC leads to formation of the semiquinone (SQ) of the secondary acceptor quinone after odd flashes and quinol after even flashes. The ubiquinol escapes the binding site in 1 ms, while the SQ does not leave the binding site for at least 5 min. Observed difference between these times suggests a large energetic barrier for the SQ. However, high apparent dielectric constant in the vicinity of the quinone ring (>or=25) results in a relatively small electrostatic energy of SQ stabilization. To resolve this apparent contradiction I suggest that a significant part of the kinetic stabilization of the SQ is achieved by the special topology of the binding site in which quinone can exit the binding site only by moving its headgroup toward the center of the membrane. The large energetic penalty of transferring the charged headgroup to the membrane dielectric can explain the observed kinetic stability of the SQ.
Collapse
Affiliation(s)
- V P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 156 Davenport Hall, 607 South Mathews Avenue, Urbana, 61801, USA.
| |
Collapse
|
38
|
Bourgeois D, Royant A. Advances in kinetic protein crystallography. Curr Opin Struct Biol 2006; 15:538-47. [PMID: 16129597 DOI: 10.1016/j.sbi.2005.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/09/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Many proteins function in the crystalline state, making crystallography a tool that can address mechanism, as well as structure. By initiating biological turnover in the crystal, transient structural species form, which may be filmed by Laue diffraction or captured by freeze-trapping methods. Laue diffraction has now reached an unprecedented level of sophistication and has found a 'niche of excellence' in the study of cyclic, ultra-fast, light-triggered reactions. Trapping methods, on the other hand, are more generally applicable, but require care to avoid artifacts. New strategies have been developed and difficulties such as radiation damage have received particular attention. Complementary methods--mainly UV/visible single-crystal spectroscopy--have proven essential to design, interpret and validate kinetic crystallography experiments.
Collapse
Affiliation(s)
- Dominique Bourgeois
- LCCP, UMR 5075, IBS, 41 avenue Jules Horowitz, 38027 Grenoble Cedex 1, France.
| | | |
Collapse
|
39
|
Ishikita H, Knapp EW. Induced conformational changes upon Cd2+ binding at photosynthetic reaction centers. Proc Natl Acad Sci U S A 2005; 102:16215-20. [PMID: 16254054 PMCID: PMC1283420 DOI: 10.1073/pnas.0503826102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cd(2+) binding at the bacterial photosynthetic reaction center (bRC) from Rhodobacter sphaeroides is known to inhibit proton transfer (PT) from bulk solvent to the secondary quinone Q(B). To elucidate this mechanism, we calculated the pK(a) for residues along the water channels connecting Q(B) with the stromal side based on the crystal structures of WT-bRC and Cd(2+)-bound bRC. Upon Cd(2+) binding, we observed the release of two protons from His-H126/128 at the Cd(2+) binding site and significant pK(a) shifts for residues along the PT pathways. Remarkably, Asp-L213 near Q(B), which is proposed to play a significant role in PT, resulted in a decrease in pK(a) upon Cd(2+) binding. The direct electrostatic influence of the Cd(2+)-positive charge on these pK(a) shifts was small. Instead, conformational changes of amino acid side chains induced electrostatically by Cd(2+) binding were the main mechanism for these pK(a) shifts. The long-range electrostatic influence over approximately 12 A between Cd(2+) and Asp-L213 is likely to originate from a set of Cd(2+)-induced successive reorientations of side chains (Asp-H124, His-H126, His-H128, Asp-H170, Glu-H173, Asp-M17, and Asp-L210), which propagate along the PT pathways as a "domino" effect.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|
40
|
Abstract
Reaction centres are membrane-embedded pigment–protein complexes that transduce the energy of sunlight into a biologically useful form. The most heavily studied reaction centres are the PS-I (Photosystem I) and PS-II complexes from oxygenic phototrophs, and the reaction centre from purple photosynthetic bacteria. A great deal is known about the compositions and structures of these reaction centres, and the mechanism of light-activated transmembrane electron transfer, but less is known about how they interact with other components of the photosynthetic membrane, including the membrane lipids. X-ray crystallography has provided high-resolution structures for PS-I and the purple bacterial reaction centre, and revealed binding sites for a number of lipids, either embedded in the protein interior or attached to the protein surface. These lipids play a variety of roles, including the binding of cofactors and the provision of structural support. The challenges of modelling surface-associated electron density features such as lipids, detergents, small amphiphiles and ions are discussed.
Collapse
|
41
|
Ihee H, Rajagopal S, Srajer V, Pahl R, Anderson S, Schmidt M, Schotte F, Anfinrud PA, Wulff M, Moffat K. Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Proc Natl Acad Sci U S A 2005; 102:7145-50. [PMID: 15870207 PMCID: PMC1088170 DOI: 10.1073/pnas.0409035102] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Indexed: 11/18/2022] Open
Abstract
Determining 3D intermediate structures during the biological action of proteins in real time under ambient conditions is essential for understanding how proteins function. Here we use time-resolved Laue crystallography to extract short-lived intermediate structures and thereby unveil signal transduction in the blue light photoreceptor photoactive yellow protein (PYP) from Halorhodospira halophila. By analyzing a comprehensive set of Laue data during the PYP photocycle (forty-seven time points from one nanosecond to one second), we track all atoms in PYP during its photocycle and directly observe how absorption of a blue light photon by its p-coumaric acid chromophore triggers a reversible photocycle. We identify a complex chemical mechanism characterized by five distinct structural intermediates. Structural changes at the chromophore in the early, red-shifted intermediates are transduced to the exterior of the protein in the late, blue-shifted intermediates through an initial "volume-conserving" isomerization of the chromophore and the progressive disruption of hydrogen bonds between the chromophore and its surrounding binding pocket. These results yield a comprehensive view of the PYP photocycle when seen in the light of previous biophysical studies on the system.
Collapse
Affiliation(s)
- Hyotcherl Ihee
- Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rajagopal S, Kostov KS, Moffat K. Analytical trapping: extraction of time-independent structures from time-dependent crystallographic data. J Struct Biol 2005; 147:211-22. [PMID: 15450291 DOI: 10.1016/j.jsb.2004.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 03/05/2004] [Indexed: 11/26/2022]
Abstract
All chemical and biological reactions involve atomic motion, embodied in dynamic structural changes. Identifying these changes is the goal of time-resolved crystallography. The "raw" output of a time-resolved macromolecular crystallography experiment is the time-dependent set of difference electron density maps that span the desired time range and display the time-dependent changes in density (and underlying structure) as the reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which the intermediates interconvert; and thus to establish a chemical kinetic mechanism. We review briefly the various strategies that may be used to achieve this goal and concentrate on two promising advances: singular value decomposition and cluster analysis. The strategies are illustrated by using data on the photocycle of the bacterial blue light photoreceptor, photoactive yellow protein.
Collapse
Affiliation(s)
- Sudarshan Rajagopal
- Department of Biochemistry and Molecular Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
43
|
Giachini L, Francia F, Mallardi A, Palazzo G, Carpenè E, Boscherini F, Venturoli G. Multiple scattering x-ray absorption studies of Zn2+ binding sites in bacterial photosynthetic reaction centers. Biophys J 2004; 88:2038-46. [PMID: 15613631 PMCID: PMC1305256 DOI: 10.1529/biophysj.104.050971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of transition metal ions to the reaction center (RC) protein of the photosynthetic bacterium Rhodobacter sphaeroides has been previously shown to slow light-induced electron and proton transfer to the secondary quinone acceptor molecule, Q(B). On the basis of x-ray diffraction at 2.5 angstroms resolution a site, formed by AspH124, HisH126, and HisH128, has been identified at the protein surface which binds Cd(2+) or Zn(2+). Using Zn K-edge x-ray absorption fine structure spectroscopy we report here on the local structure of Zn(2+) ions bound to purified RC complexes embedded into polyvinyl alcohol films. X-ray absorption fine structure data were analyzed by combining ab initio simulations and multiparameter fitting; structural contributions up to the fourth coordination shell and multiple scattering paths (involving three atoms) have been included. Results for complexes characterized by a Zn to RC stoichiometry close to one indicate that Zn(2+) binds two O and two N atoms in the first coordination shell. Higher shell contributions are consistent with a binding cluster formed by two His, one Asp residue, and a water molecule. Analysis of complexes characterized by approximately 2 Zn ions per RC reveals a second structurally distinct binding site, involving one O and three N atoms, not belonging to a His residue. The local structure obtained for the higher affinity site nicely fits the coordination geometry proposed on the basis of x-ray diffraction data, but detects a significant contraction of the first shell. Two possible locations of the second new binding site at the cytoplasmic surface of the RC are proposed.
Collapse
Affiliation(s)
- Lisa Giachini
- Dipartimento di Fisica, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Baxter RHG, Seagle BL, Ponomarenko N, Norris JR. Specific Radiation Damage Illustrates Light-Induced Structural Changes in the Photosynthetic Reaction Center. J Am Chem Soc 2004; 126:16728-9. [PMID: 15612703 DOI: 10.1021/ja0448115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photosynthetic reaction center of the purple non-sulfur bacterium Blastochloris viridis was frozen in the presence and absence of illumination. Differences in the resulting datasets are monitored using the difference Fourier method. Radiation damage is localized to those parts of the protein that are significant for electron transfer, and show changes that are sensitive to oxidation and protonation state.
Collapse
Affiliation(s)
- Richard H G Baxter
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|