1
|
Saikia B, Baruah A. Preserving structural integrity: fold reproducibility in computational design of proteins non-homologous to wild-type sequences. Phys Chem Chem Phys 2025. [PMID: 40432486 DOI: 10.1039/d5cp01373a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Even with remarkable accomplishments, designing a protein with a given structure is still a challenging task. There is no general approach that works for all challenges. Protein sequences with higher sequence similarity are usually shown to have similar three dimensional structures. This work is focused on designing non-homologous protein sequences with low sequence similarity to the wild-type sequence while maintaining secondary structure integrity. Basically, the aim of the present study is to check whether or not dissimilar sequences tend to encode a similar structure. In this work, we employ a negative design approach to design protein sequences by optimizing non-native conformational ensembles. Three non-native conformational ensembles are created for each of the three chosen target structures. During the design of protein sequences using the Monte Carlo simulation method and developed Cα distance-based statistical potentials, these ensembles are destabilized along with stabilization of the targets. The structures of the designed sequences are determined using AlphaFold2. Interestingly, the results suggest that secondary structure elements like alpha helices and beta sheets can be conserved even for non-homologous sequences with low sequence similarity. It is also observed that the designed sequences have the ability to reproduce the three target protein's fold viz. all-α, all-β and mixed αβ despite very low sequence similarity to the wild-type sequences. This indicates that the employed design strategy is effective in preserving structural integrity despite low sequence similarity.
Collapse
Affiliation(s)
- Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, India.
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, India.
| |
Collapse
|
2
|
Eberhart ME, Alexandrova AN, Ajmera P, Bím D, Chaturvedi SS, Vargas S, Wilson TR. Methods for Theoretical Treatment of Local Fields in Proteins and Enzymes. Chem Rev 2025; 125:3772-3813. [PMID: 39993955 DOI: 10.1021/acs.chemrev.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Electric fields generated by protein scaffolds are crucial in enzymatic catalysis. This review surveys theoretical approaches for detecting, analyzing, and comparing electric fields, electrostatic potentials, and their effects on the charge density within enzyme active sites. Pioneering methods like the empirical valence bond approach rely on evaluating ionic and covalent resonance forms influenced by the field. Strategies employing polarizable force fields also facilitate field detection. The vibrational Stark effect connects computational simulations to experimental Stark spectroscopy, enabling direct comparisons. We highlight how protein dynamics induce fluctuations in local fields, influencing enzyme activity. Recent techniques assess electric fields throughout the active site volume rather than only at specific bonds, and machine learning helps relate these global fields to reactivity. Quantum theory of atoms in molecules captures the entire electron density landscape, providing a chemically intuitive perspective on field-driven catalysis. Overall, these methodologies show protein-generated fields are highly dynamic and heterogeneous, and understanding both aspects is critical for elucidating enzyme mechanisms. This holistic view empowers rational enzyme engineering by tuning electric fields, promising new avenues in drug design, biocatalysis, and industrial applications. Future directions include incorporating electric fields as explicit design targets to enhance catalytic performance and biochemical functionalities.
Collapse
Affiliation(s)
- Mark E Eberhart
- Chemistry Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Anastassia N Alexandrova
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Pujan Ajmera
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel Bím
- Department of Physical Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Shobhit S Chaturvedi
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Santiago Vargas
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Timothy R Wilson
- Chemistry Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Leone L, De Fenza M, Esposito A, Maglio O, Nastri F, Lombardi A. Peptides and metal ions: A successful marriage for developing artificial metalloproteins. J Pept Sci 2024; 30:e3606. [PMID: 38719781 DOI: 10.1002/psc.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 10/12/2024]
Abstract
The mutual relationship between peptides and metal ions enables metalloproteins to have crucial roles in biological systems, including structural, sensing, electron transport, and catalytic functions. The effort to reproduce or/and enhance these roles, or even to create unprecedented functions, is the focus of protein design, the first step toward the comprehension of the complex machinery of nature. Nowadays, protein design allows the building of sophisticated scaffolds, with novel functions and exceptional stability. Recent progress in metalloprotein design has led to the building of peptides/proteins capable of orchestrating the desired functions of different metal cofactors. The structural diversity of peptides allows proper selection of first- and second-shell ligands, as well as long-range electrostatic and hydrophobic interactions, which represent precious tools for tuning metal properties. The scope of this review is to discuss the construction of metal sites in de novo designed and miniaturized scaffolds. Selected examples of mono-, di-, and multi-nuclear binding sites, from the last 20 years will be described in an effort to highlight key artificial models of catalytic or electron-transfer metalloproteins. The authors' goal is to make readers feel like guests at the marriage between peptides and metal ions while offering sources of inspiration for future architects of innovative, artificial metalloproteins.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Winnifrith A, Outeiral C, Hie BL. Generative artificial intelligence for de novo protein design. Curr Opin Struct Biol 2024; 86:102794. [PMID: 38663170 DOI: 10.1016/j.sbi.2024.102794] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 05/19/2024]
Abstract
Engineering new molecules with desirable functions and properties has the potential to extend our ability to engineer proteins beyond what nature has so far evolved. Advances in the so-called 'de novo' design problem have recently been brought forward by developments in artificial intelligence. Generative architectures, such as language models and diffusion processes, seem adept at generating novel, yet realistic proteins that display desirable properties and perform specified functions. State-of-the-art design protocols now achieve experimental success rates nearing 20%, thus widening the access to de novo designed proteins. Despite extensive progress, there are clear field-wide challenges, for example, in determining the best in silico metrics to prioritise designs for experimental testing, and in designing proteins that can undergo large conformational changes or be regulated by post-translational modifications. With an increase in the number of models being developed, this review provides a framework to understand how these tools fit into the overall process of de novo protein design. Throughout, we highlight the power of incorporating biochemical knowledge to improve performance and interpretability.
Collapse
Affiliation(s)
- Adam Winnifrith
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, United Kingdom; Evolvere Biosciences, Innovation Building, Old Road Campus, Oxford, OX3 7FZ, United Kingdom.
| | - Carlos Outeiral
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, United Kingdom.
| | - Brian L Hie
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA; Stanford Data Science, 475 Via Ortega, Stanford CA 94305, USA; Arc Institute, 3181 Porter Dr, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Marshall LR, Korendovych IV. Screening of oxidative behavior in catalytic amyloid assemblies. Methods Enzymol 2024; 697:15-33. [PMID: 38816121 DOI: 10.1016/bs.mie.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Once considered a thermodynamic minimum of the protein fold or as simply by-products of a misfolding process, amyloids are increasingly showing remarkable potential for promoting enzyme-like catalysis. Recent studies have demonstrated a diverse range of catalytic behaviors that amyloids can promote way beyond the hydrolytic behaviors originally reported. We and others have demonstrated the strong propensity of catalytic amyloids to facilitate redox reactions both in the presence and in the absence of metal cofactors. Here, we present a detailed protocol for measuring the oxidative ability of supramolecular peptide assemblies.
Collapse
Affiliation(s)
- Liam R Marshall
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.
| | - Ivan V Korendovych
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| |
Collapse
|
6
|
Roterman I, Konieczny L, Stapor K, Słupina M. Hydrophobicity-Based Force Field In Enzymes. ACS OMEGA 2024; 9:8188-8203. [PMID: 38405467 PMCID: PMC10882594 DOI: 10.1021/acsomega.3c08728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
The biocatalysis process takes place with the participation of enzymes, which, depending on the reaction carried out, require, apart from the appropriate arrangement of catalytic residues, an appropriate external force field. It is generated by the protein body. The relatively small size of the part directly involved in the process itself is supported by the presence of an often complex structure of the protein body, the purpose of which is to provide an appropriate local force field, eliminating the influence of water. Very often, the large size of the enzyme is an expression of the complex form of this field. In this paper, a comparative analysis of arbitrarily selected enzymes, representatives of different enzyme classes, was carried out, focusing on the measurement of the diversity of the force field provided by a given protein. This analysis was based on the fuzzy oil drop model (FOD) and its modified version (FOD-M), which takes into account the participation of nonaqueous external factors in shaping the structure and thus the force field within the protein. The degree and type of ordering of the hydrophobicity distribution in the protein molecule is the result of the influence of the environment but also the supplier of the local environment for a given process, including the catalysis process in particular. Determining the share of a nonaqueous environment is important due to the ubiquity of polar water, whose participation in processes with high specificity requires control. It can be assumed that some enzymes in their composition have a permanently built-in part, the role of which is reduced to that of a permanent chaperone. It provides a specific external force field needed for the process. The proposed model, generalized to other types of proteins, may also provide a form of recording the environment model for the simulation of the in silico protein folding process, taking into account the impact of its differentiation.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, 30-688 Kraków, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry, Jagiellonian University—Medical
College, Kopernika 7, 31-034 Kraków, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Mateusz Słupina
- ALSTOM
ZWUS Sp. z o.o, Modelarska
12, 40-142 Katowice, Poland
| |
Collapse
|
7
|
Wang J, Chen C, Yao G, Ding J, Wang L, Jiang H. Intelligent Protein Design and Molecular Characterization Techniques: A Comprehensive Review. Molecules 2023; 28:7865. [PMID: 38067593 PMCID: PMC10707872 DOI: 10.3390/molecules28237865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, the widespread application of artificial intelligence algorithms in protein structure, function prediction, and de novo protein design has significantly accelerated the process of intelligent protein design and led to many noteworthy achievements. This advancement in protein intelligent design holds great potential to accelerate the development of new drugs, enhance the efficiency of biocatalysts, and even create entirely new biomaterials. Protein characterization is the key to the performance of intelligent protein design. However, there is no consensus on the most suitable characterization method for intelligent protein design tasks. This review describes the methods, characteristics, and representative applications of traditional descriptors, sequence-based and structure-based protein characterization. It discusses their advantages, disadvantages, and scope of application. It is hoped that this could help researchers to better understand the limitations and application scenarios of these methods, and provide valuable references for choosing appropriate protein characterization techniques for related research in the field, so as to better carry out protein research.
Collapse
Affiliation(s)
| | | | | | - Junjie Ding
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.W.); (C.C.); (G.Y.)
| | - Liangliang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.W.); (C.C.); (G.Y.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.W.); (C.C.); (G.Y.)
| |
Collapse
|
8
|
Hoffnagle AM, Tezcan FA. Atomically Accurate Design of Metalloproteins with Predefined Coordination Geometries. J Am Chem Soc 2023; 145:14208-14214. [PMID: 37352018 PMCID: PMC10439731 DOI: 10.1021/jacs.3c04047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
We report a new computational protein design method for the construction of oligomeric protein assemblies around metal centers with predefined coordination geometries. We apply this method to design two homotrimeric assemblies, Tet4 and TP1, with tetrahedral and trigonal-pyramidal tris(histidine) metal coordination geometries, respectively, and demonstrate that both assemblies form the targeted metal centers with ≤0.2 Å accuracy. Although Tet4 and TP1 are constructed from the same parent protein building block, they are distinct in terms of their overall architectures, the environment surrounding the metal centers, and their metal-based reactivities, illustrating the versatility of our approach.
Collapse
Affiliation(s)
- Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
9
|
Abdul Aziz SFN, Rahim ASMA, Normi YM, Alang Ahmad SA, Salleh AB. Rational design of mini protein mimicking uricase: Encapsulation in ZIF-8 for uric acid detection. Proteins 2023. [PMID: 36908223 DOI: 10.1002/prot.26485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Five mini proteins mimicking uricase comprising 20, 40, 60, 80, and 100 amino acids were designed based on the conserved active site residues within the same dimer, using the crystal structure of tetrameric uricase from Arthrobacter globiformis (PDB ID: 2yzb) as a template. Based on molecular docking analysis, the smallest mini protein, mp20, shared similar residues to that of native uricase that formed hydrogen bonds with uric acid and was chosen for further studies. Although purified recombinant mp20 did not exhibit uricase activity, it showed specific binding towards uric acid and evinced excellent thermotolerance and structural stability at temperatures ranging from 10°C to 100°C, emulating its natural origin. To explore the potential of mp20 as a bioreceptor in uric acid sensing, mp20 was encapsulated within zeolitic imidazolate framework-8 (mp20@ZIF-8) followed by the modification on rGO-screen printed electrode (rGO/SPCE) to maintain the structural stability. An irreversible anodic peak and increased semicircular arcs of the Nyquist plot with an increase of the analyte concentrations were observed by utilizing cyclic voltammetry and electrochemical impedance spectroscopy (EIS), suggesting the detection of uric acid occurred, which is based on substrate-mp20 interaction.
Collapse
Affiliation(s)
| | - Arilla Sri Masayu Abd Rahim
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Curti M, Maffeis V, Teixeira Alves Duarte LG, Shareef S, Hallado LX, Curutchet C, Romero E. Engineering excitonically coupled dimers in an artificial protein for light harvesting via computational modeling. Protein Sci 2023; 32:e4579. [PMID: 36715022 PMCID: PMC9951196 DOI: 10.1002/pro.4579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
In photosynthesis, pigment-protein complexes achieve outstanding photoinduced charge separation efficiencies through a set of strategies in which excited states delocalization over multiple pigments ("excitons") and charge-transfer states play key roles. These concepts, and their implementation in bioinspired artificial systems, are attracting increasing attention due to the vast potential that could be tapped by realizing efficient photochemical reactions. In particular, de novo designed proteins provide a diverse structural toolbox that can be used to manipulate the geometric and electronic properties of bound chromophore molecules. However, achieving excitonic and charge-transfer states requires closely spaced chromophores, a non-trivial aspect since a strong binding with the protein matrix needs to be maintained. Here, we show how a general-purpose artificial protein can be optimized via molecular dynamics simulations to improve its binding capacity of a chlorophyll derivative, achieving complexes in which chromophores form two closely spaced and strongly interacting dimers. Based on spectroscopy results and computational modeling, we demonstrate each dimer is excitonically coupled, and propose they display signatures of charge-transfer state mixing. This work could open new avenues for the rational design of chromophore-protein complexes with advanced functionalities.
Collapse
Affiliation(s)
- Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
| | - Valentin Maffeis
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRSUniversité Lyon 1LyonFrance
| | | | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
| | - Luisa Xiomara Hallado
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'AlimentacióUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB)BarcelonaSpain
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
| |
Collapse
|
11
|
Jeong S, Lee K, Yoo SH, Lee HS, Kwon S. Crystalline Metal-Peptide Networks: Structures, Applications, and Future Outlook. Chembiochem 2023; 24:e202200448. [PMID: 36161687 DOI: 10.1002/cbic.202200448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Metal-peptide networks (MPNs), which are assembled from short peptides and metal ions, are considered one of the most fascinating metal-organic coordinated architectures because of their unique and complicated structures. Although MPNs have considerable potential for development into versatile materials, they have not been developed for practical applications because of several underlying limitations, such as designability, stability, and modifiability. In this review, we summarise several important milestones in the development of crystalline MPNs and thoroughly analyse their structural features, such as peptide sequence designs, coordination geometries, cross-linking types, and network topologies. In addition, potential applications such as gas adsorption, guest encapsulation, and chiral recognition are introduced. We believe that this review is a useful survey that can provide insights into the development of new MPNs with more sophisticated structures and novel functions.
Collapse
Affiliation(s)
- Seoneun Jeong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Kwonjung Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Sung Hyun Yoo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| |
Collapse
|
12
|
Pirro F, La Gatta S, Arrigoni F, Famulari A, Maglio O, Del Vecchio P, Chiesa M, De Gioia L, Bertini L, Chino M, Nastri F, Lombardi A. A De Novo-Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity. Angew Chem Int Ed Engl 2023; 62:e202211552. [PMID: 36334012 DOI: 10.1002/anie.202211552] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/07/2022]
Abstract
De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.
Collapse
Affiliation(s)
- Fabio Pirro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonino Famulari
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy.,Department of Condensed Matter Physics, University of of Zaragoza, Calle Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Mario Chiesa
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126, Naples, Italy
| |
Collapse
|
13
|
A de novo protein catalyzes the synthesis of semiconductor quantum dots. Proc Natl Acad Sci U S A 2022; 119:e2204050119. [PMID: 36508665 PMCID: PMC9907092 DOI: 10.1073/pnas.2204050119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
De novo proteins constructed from novel amino acid sequences are distinct from proteins that evolved in nature. Construct K (ConK) is a binary-patterned de novo designed protein that rescues Escherichia coli from otherwise toxic concentrations of copper. ConK was recently found to bind the cofactor PLP (pyridoxal phosphate, the active form of vitamin B6). Here, we show that ConK catalyzes the desulfurization of cysteine to H2S, which can be used to synthesize CdS nanocrystals in solution. The CdS nanocrystals are approximately 3 nm, as measured by transmission electron microscope, with optical properties similar to those seen in chemically synthesized quantum dots. The CdS nanocrystals synthesized using ConK have slower growth rates and a different growth mechanism than those synthesized using natural biomineralization pathways. The slower growth rate yields CdS nanocrystals with two desirable properties not observed during biomineralization using natural proteins. First, CdS nanocrystals are predominantly of the zinc blende crystal phase; this is in stark contrast to natural biomineralization routes that produce a mixture of zinc blende and wurtzite phase CdS. Second, in contrast to the growth and eventual precipitation observed in natural biomineralization systems, the CdS nanocrystals produced by ConK stabilize at a final size. Future optimization of CdS nanocrystal growth using ConK-or other de novo proteins-may help to overcome the limits on nanocrystal quality typically observed from natural biomineralization by enabling the synthesis of more stable, high-quality quantum dots at room temperature.
Collapse
|
14
|
Naudin EA, Albanese KI, Smith AJ, Mylemans B, Baker EG, Weiner OD, Andrews DM, Tigue N, Savery NJ, Woolfson DN. From peptides to proteins: coiled-coil tetramers to single-chain 4-helix bundles. Chem Sci 2022; 13:11330-11340. [PMID: 36320580 PMCID: PMC9533478 DOI: 10.1039/d2sc04479j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
The design of completely synthetic proteins from first principles-de novo protein design-is challenging. This is because, despite recent advances in computational protein-structure prediction and design, we do not understand fully the sequence-to-structure relationships for protein folding, assembly, and stabilization. Antiparallel 4-helix bundles are amongst the most studied scaffolds for de novo protein design. We set out to re-examine this target, and to determine clear sequence-to-structure relationships, or design rules, for the structure. Our aim was to determine a common and robust sequence background for designing multiple de novo 4-helix bundles. In turn, this could be used in chemical and synthetic biology to direct protein-protein interactions and as scaffolds for functional protein design. Our approach starts by analyzing known antiparallel 4-helix coiled-coil structures to deduce design rules. In terms of the heptad repeat, abcdefg -i.e., the sequence signature of many helical bundles-the key features that we identify are: a = Leu, d = Ile, e = Ala, g = Gln, and the use of complementary charged residues at b and c. Next, we implement these rules in the rational design of synthetic peptides to form antiparallel homo- and heterotetramers. Finally, we use the sequence of the homotetramer to derive in one step a single-chain 4-helix-bundle protein for recombinant production in E. coli. All of the assembled designs are confirmed in aqueous solution using biophysical methods, and ultimately by determining high-resolution X-ray crystal structures. Our route from peptides to proteins provides an understanding of the role of each residue in each design.
Collapse
Affiliation(s)
- Elise A Naudin
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Katherine I Albanese
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Abigail J Smith
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Bram Mylemans
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Emily G Baker
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Orion D Weiner
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - David M Andrews
- Oncology R&D, AstraZeneca Cambridge Science Park, Darwin Building Cambridge CB4 0WG UK
| | - Natalie Tigue
- BioPharmaceuticals R&D, AstraZeneca Granta Park Cambridge CB21 6GH UK
| | - Nigel J Savery
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisEngBio, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisEngBio, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
15
|
Natural Evolution Provides Strong Hints about Laboratory Evolution of Designer Enzymes. Proc Natl Acad Sci U S A 2022; 119:e2207904119. [PMID: 35901204 PMCID: PMC9351539 DOI: 10.1073/pnas.2207904119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Laboratory evolution combined with computational enzyme design provides the opportunity to generate novel biocatalysts. Nevertheless, it has been challenging to understand how laboratory evolution optimizes designer enzymes by introducing seemingly random mutations. A typical enzyme optimized with laboratory evolution is the abiological Kemp eliminase, initially designed by grafting active site residues into a natural protein scaffold. Here, we relate the catalytic power of laboratory-evolved Kemp eliminases to the statistical energy ([Formula: see text]) inferred from their natural homologous sequences using the maximum entropy model. The [Formula: see text] of designs generated by directed evolution is correlated with enhanced activity and reduced stability, thus displaying a stability-activity trade-off. In contrast, the [Formula: see text] for mutants in catalytic-active remote regions (in which remote residues are important for catalysis) is strongly anticorrelated with the activity. These findings provide an insight into the role of protein scaffolds in the adaption to new enzymatic functions. It also indicates that the valley in the [Formula: see text] landscape can guide enzyme design for abiological catalysis. Overall, the connection between laboratory and natural evolution contributes to understanding what is optimized in the laboratory and how new enzymatic function emerges in nature, and provides guidance for computational enzyme design.
Collapse
|
16
|
Gao S, Klinman JP. Functional roles of enzyme dynamics in accelerating active site chemistry: Emerging techniques and changing concepts. Curr Opin Struct Biol 2022; 75:102434. [PMID: 35872562 PMCID: PMC9901422 DOI: 10.1016/j.sbi.2022.102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023]
Abstract
With the growing acceptance of the contribution of protein conformational ensembles to enzyme catalysis and regulation, research in the field of protein dynamics has shifted toward an understanding of the atomistic properties of protein dynamical networks and the mechanisms and time scales that control such behavior. A full description of an enzymatic reaction coordinate is expected to extend beyond the active site and include site-specific networks that communicate with the protein/water interface. Advances in experimental tools for the spatial resolution of thermal activation pathways are being complemented by biophysical methods for visualizing dynamics in real time. An emerging multidimensional model integrates the impacts of bound substrate/effector on the distribution of protein substates that are in rapid equilibration near room temperature with reaction-specific protein embedded heat transfer conduits.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States. https://twitter.com/S_H_Gao
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
17
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
18
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Saikia J, Bhat VT, Potnuru LR, Redkar AS, Agarwal V, Ramakrishnan V. Minimalist De Novo Design of an Artificial Enzyme. ACS OMEGA 2022; 7:19131-19140. [PMID: 35721939 PMCID: PMC9202009 DOI: 10.1021/acsomega.1c07075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
We employed a reductionist approach in designing the first heterochiral tripeptide that forms a robust heterogeneous short peptide catalyst similar to the "histidine brace" active site of lytic polysaccharide monooxygenases. The histidine brace is a conserved divalent copper ion-binding motif that comprises two histidine side chains and an amino group to create the T-shaped 3N geometry at the reaction center. The geometry parameters, including a large twist angle (73°) between the two imidazole rings of the model complex, are identical to those of native lytic polysaccharide monooxygenases (72.61°). The complex was synthesized and characterized as a structural and functional mimic of the histidine brace. UV-vis, vis-circular dichroism, Raman, and electron paramagnetic resonance spectroscopic analyses suggest a distorted square-pyramidal geometry with a 3N coordination at pH 7. Solution- and solid-state NMR results further confirm the 3N coordination in the copper center of the complex. The complex is pH-dependent and could catalyze the oxidation of benzyl alcohol in water to benzaldehyde with yields up to 82% in 3 h at pH 7 and above at 40 °C. The catalyst achieved 100% selectivity for benzaldehyde compared to conventional copper catalysis. The design of such a minimalist building block for functional soft materials with a pH switch can be a stepping stone in addressing needs for a cleaner and sustainable future catalyst.
Collapse
Affiliation(s)
- Jahnu Saikia
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Venugopal T. Bhat
- Organic
Synthesis and Catalysis Laboratory SRM Research Institute and Department
of Chemistry SRM Institute of Science and Technology, Kattankulathur 603203, Tamilnadu, India
| | - Lokeswara Rao Potnuru
- TIFR
Centre for Interdisciplinary Sciences, Tata
Institute of Fundamental Research Hyderabad, Hyderabad 500107, India
| | - Amay S. Redkar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Vipin Agarwal
- TIFR
Centre for Interdisciplinary Sciences, Tata
Institute of Fundamental Research Hyderabad, Hyderabad 500107, India
| | - Vibin Ramakrishnan
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
20
|
Computational enzyme redesign: large jumps in function. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Mondal T, Mandal B. Proteolytic functional amyloid digests pathogenic amyloid. J Mater Chem B 2022; 10:4216-4225. [DOI: 10.1039/d2tb00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although amyloids are a well-known pathological structure, functional amyloids are beneficial. Functional amyloids can be engineered to cultivate desired functionality that can destroy malicious amyloids. However, not much is known...
Collapse
|
23
|
Abstract
Natural metalloproteins perform many functions - ranging from sensing to electron transfer and catalysis - in which the position and property of each ligand and metal, is dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures - uncomplicated by the large size and evolutionary marks of natural proteins - to interrogate structure-function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure-function relationships, functional proteins including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, have been created. In addition, proteins can now be designed using xeno-biological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - Samuel I. Mann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| |
Collapse
|
24
|
Nazet J, Lang E, Merkl R. Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network. PLoS One 2021; 16:e0256691. [PMID: 34437621 PMCID: PMC8389498 DOI: 10.1371/journal.pone.0256691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Rational protein design aims at the targeted modification of existing proteins. To reach this goal, software suites like Rosetta propose sequences to introduce the desired properties. Challenging design problems necessitate the representation of a protein by means of a structural ensemble. Thus, Rosetta multi-state design (MSD) protocols have been developed wherein each state represents one protein conformation. Computational demands of MSD protocols are high, because for each of the candidate sequences a costly three-dimensional (3D) model has to be created and assessed for all states. Each of these scores contributes one data point to a complex, design-specific energy landscape. As neural networks (NN) proved well-suited to learn such solution spaces, we integrated one into the framework Rosetta:MSF instead of the so far used genetic algorithm with the aim to reduce computational costs. As its predecessor, Rosetta:MSF:NN administers a set of candidate sequences and their scores and scans sequence space iteratively. During each iteration, the union of all candidate sequences and their Rosetta scores are used to re-train NNs that possess a design-specific architecture. The enormous speed of the NNs allows an extensive assessment of alternative sequences, which are ranked on the scores predicted by the NN. Costly 3D models are computed only for a small fraction of best-scoring sequences; these and the corresponding 3D-based scores replace half of the candidate sequences during each iteration. The analysis of two sets of candidate sequences generated for a specific design problem by means of a genetic algorithm confirmed that the NN predicted 3D-based scores quite well; the Pearson correlation coefficient was at least 0.95. Applying Rosetta:MSF:NN:enzdes to a benchmark consisting of 16 ligand-binding problems showed that this protocol converges ten-times faster than the genetic algorithm and finds sequences with comparable scores.
Collapse
Affiliation(s)
- Julian Nazet
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Elmar Lang
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
25
|
Pal S, Goswami S, Das D. Cross β amyloid assemblies as complex catalytic machinery. Chem Commun (Camb) 2021; 57:7597-7609. [PMID: 34278403 DOI: 10.1039/d1cc02880d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
How modern enzymes evolved as complex catalytic machineries to facilitate diverse chemical transformations is an open question for the emerging field of systems chemistry. Inspired by Nature's ingenuity in creating complex catalytic structures for exotic functions, short peptide-based cross β amyloid sequences have been shown to access intricate binding surfaces demonstrating the traits of extant enzymes and proteins. Based on their catalytic proficiencies reported recently, these amyloid assemblies have been argued as the earliest protein folds. Herein, we map out the recent progress made by our laboratory and other research groups that demonstrate the catalytic diversity of cross β amyloid assemblies. The important role of morphology and specific mutations in peptide sequences has been underpinned in this review. We have divided the feature article into different sections where examples from biology have been covered demonstrating the mechanism of extant biocatalysts and compared with recent works on cross β amyloid folds showing covalent catalysis, aldolase, hydrolase, peroxidase-like activities and complex cascade catalysis. Beyond equilibrium, we have extended our discussion towards transient catalytic amyloid phases mimicking the energy driven cytoskeleton polymerization. Finally, a future outlook has been provided on the way ahead for short peptide-based systems chemistry approaches that can lead to the development of robust catalytic networks with improved enzyme-like proficiencies and higher complexities. The discussed examples along with the rationale behind selecting specific amino acids sequence will benefit readers to design systems for achieving catalytic reactivity similar to natural complex enzymes.
Collapse
Affiliation(s)
- Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Surashree Goswami
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
26
|
Jung SM, Lee J, Song WJ. Design of artificial metalloenzymes with multiple inorganic elements: The more the merrier. J Inorg Biochem 2021; 223:111552. [PMID: 34332336 DOI: 10.1016/j.jinorgbio.2021.111552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022]
Abstract
A large fraction of metalloenzymes harbors multiple metal-centers that are electronically and/or functionally arranged within their proteinaceous environments. To explore the orchestration of inorganic and biochemical components and to develop bioinorganic catalysts and materials, we have described selected examples of artificial metalloproteins having multiple metallocofactors that were grouped depending on their initial protein scaffolds, the nature of introduced inorganic moieties, and the method used to propagate the number of metal ions within a protein. They demonstrated that diverse inorganic moieties can be selectively grafted and modulated in protein environments, providing a retrosynthetic bottom-up approach in the design of versatile and proficient biocatalysts and biomimetic model systems to explore fundamental questions in bioinorganic chemistry.
Collapse
Affiliation(s)
- Se-Min Jung
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehee Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
27
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
28
|
Ferrando J, Solomon LA. Recent Progress Using De Novo Design to Study Protein Structure, Design and Binding Interactions. Life (Basel) 2021; 11:life11030225. [PMID: 33802210 PMCID: PMC7999464 DOI: 10.3390/life11030225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
De novo protein design is a powerful methodology used to study natural functions in an artificial-protein context. Since its inception, it has been used to reproduce a plethora of reactions and uncover biophysical principles that are often difficult to extract from direct studies of natural proteins. Natural proteins are capable of assuming a variety of different structures and subsequently binding ligands at impressively high levels of both specificity and affinity. Here, we will review recent examples of de novo design studies on binding reactions for small molecules, nucleic acids, and the formation of protein-protein interactions. We will then discuss some new structural advances in the field. Finally, we will discuss some advancements in computational modeling and design approaches and provide an overview of some modern algorithmic tools being used to design these proteins.
Collapse
Affiliation(s)
- Juan Ferrando
- Department of Biology, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Lee A. Solomon
- Department of Chemistry and Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
- Correspondence: ; Tel.: +703-993-6418
| |
Collapse
|
29
|
Pirro F, Schmidt N, Lincoff J, Widel ZX, Polizzi NF, Liu L, Therien MJ, Grabe M, Chino M, Lombardi A, DeGrado WF. Allosteric cooperation in a de novo-designed two-domain protein. Proc Natl Acad Sci U S A 2020; 117:33246-33253. [PMID: 33318174 PMCID: PMC7776816 DOI: 10.1073/pnas.2017062117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the de novo design of an allosterically regulated protein, which comprises two tightly coupled domains. One domain is based on the DF (Due Ferri in Italian or two-iron in English) family of de novo proteins, which have a diiron cofactor that catalyzes a phenol oxidase reaction, while the second domain is based on PS1 (Porphyrin-binding Sequence), which binds a synthetic Zn-porphyrin (ZnP). The binding of ZnP to the original PS1 protein induces changes in structure and dynamics, which we expected to influence the catalytic rate of a fused DF domain when appropriately coupled. Both DF and PS1 are four-helix bundles, but they have distinct bundle architectures. To achieve tight coupling between the domains, they were connected by four helical linkers using a computational method to discover the most designable connections capable of spanning the two architectures. The resulting protein, DFP1 (Due Ferri Porphyrin), bound the two cofactors in the expected manner. The crystal structure of fully reconstituted DFP1 was also in excellent agreement with the design, and it showed the ZnP cofactor bound over 12 Å from the dimetal center. Next, a substrate-binding cleft leading to the diiron center was introduced into DFP1. The resulting protein acts as an allosterically modulated phenol oxidase. Its Michaelis-Menten parameters were strongly affected by the binding of ZnP, resulting in a fourfold tighter Km and a 7-fold decrease in kcat These studies establish the feasibility of designing allosterically regulated catalytic proteins, entirely from scratch.
Collapse
Affiliation(s)
- Fabio Pirro
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Nathan Schmidt
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - James Lincoff
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - Zachary X Widel
- Department of Chemistry, Duke University, Durham, NC 27708-0346
| | - Nicholas F Polizzi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055 Shenzhen, China
- DLX Scientific, Lawrence, KS 66049
| | | | - Michael Grabe
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy;
| | - William F DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001;
| |
Collapse
|
30
|
Kulesha A, Yoon JH, Chester C, D'Souza A, Costeas C, Makhlynets OV. Contributions of primary coordination ligands and importance of outer sphere interactions in UFsc, a de novo designed protein with high affinity for metal ions. J Inorg Biochem 2020; 212:111224. [PMID: 32871348 DOI: 10.1016/j.jinorgbio.2020.111224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Metalloproteins constitute nearly half of all proteins and catalyze some of the most complex chemical reactions. Recently, we reported a design of 4G-UFsc (Uno Ferro single chain), a single chain four-helical bundle with extraordinarily high (30 pM) affinity for zinc. We evaluated the contribution of different side chains to binding of Co(II), Ni(II), Zn(II) and Mn(II) using systematic mutagenesis of the amino acids that constitute the primary metal coordination and outer spheres. The binding affinity of proteins for metals was then measured using isothermal titration calorimetry. Our results show that both primary metal coordination environment and side chains in the outer sphere of UFsc are highly sensitive to even slight changes and can be adapted to binding different 3d metals, including hard-to-tightly bind metal ions such as Mn(II). The studies on the origins of tight metal binding will guide future metalloprotein design efforts.
Collapse
Affiliation(s)
- Alona Kulesha
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Jennifer H Yoon
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Cara Chester
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Areetha D'Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Christos Costeas
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, United States.
| |
Collapse
|
31
|
|
32
|
Chowdhury R, Grisewood MJ, Boorla VS, Yan Q, Pfleger BF, Maranas CD. IPRO+/-: Computational Protein Design Tool Allowing for Insertions and Deletions. Structure 2020; 28:1344-1357.e4. [PMID: 32857964 DOI: 10.1016/j.str.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
Insertions and deletions (indels) in protein sequences alter the residue spacing along the polypeptide backbone and consequently open up possibilities for tuning protein function in a way that is inaccessible by amino acid substitution alone. We describe an optimization-based computational protein redesign approach centered around predicting beneficial combinations of indels along with substitutions and also obtain putative substrate-docked structures for these protein variants. This modified algorithmic capability would be of interest for enzyme engineering and broadly inform other protein design tasks. We highlight this capability by (1) identifying active variants of a bacterial thioesterase enzyme ('TesA) with experimental corroboration, (2) recapitulating existing active TEM-1 β-Lactamase sequences of different sizes, and (3) identifying shorter 4-Coumarate:CoA ligases with enhanced in vitro activities toward non-native substrates. A separate PyRosetta-based open-source tool, Indel-Maker (http://www.maranasgroup.com/software.htm), has also been created to construct computational models of user-defined protein variants with specific indels and substitutions.
Collapse
Affiliation(s)
- Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew J Grisewood
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
33
|
Lambert BP, Gillen AJ, Boghossian AA. Synthetic Biology: A Solution for Tackling Nanomaterial Challenges. J Phys Chem Lett 2020; 11:4791-4802. [PMID: 32441940 DOI: 10.1021/acs.jpclett.0c00929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bioengineers have mastered practical techniques for tuning a biomaterial's properties with only limited information on the relationship between the material's structure and function. These techniques have been quintessential to engineering proteins, which are most often riddled with ill-defined structure-function relationships. In this Perspective, we review bioengineering approaches aimed at overcoming the elusive protein structure-function relation. We extend these principles to engineering synthetic nanomaterials, specifically applying the underlying theory to optical sensors based on single-stranded DNA-wrapped single-walled carbon nanotubes (ssDNA-SWCNTs). Bioengineering techniques such as directed evolution, computational design, and noncanonical synthesis are reviewed in the broader context of nanomaterials engineering. We further provide an order-of-magnitude analysis of empirical approaches that rely on random or guided searches for designing new nanomaterials. The underlying concepts presented in these approaches can be further extended to a broad range of engineering fields confronted with empirical design strategies, including catalysis, metal-organic frameworks (MOFs), pharmaceutical dosing, and optimization algorithms.
Collapse
Affiliation(s)
- Benjamin P Lambert
- École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alice J Gillen
- École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | |
Collapse
|
34
|
Pinter TBJ, Koebke KJ, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Helical Scaffolds. Angew Chem Int Ed Engl 2020; 59:7678-7699. [PMID: 31441170 PMCID: PMC7035182 DOI: 10.1002/anie.201907502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 12/31/2022]
Abstract
The relationship between protein structure and function is one of the greatest puzzles within biochemistry. De novo metalloprotein design is a way to wipe the board clean and determine what is required to build in function from the ground up in an unrelated structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha-helical scaffolds. Examples of successful designs include those with carbonic anhydrase or nitrite reductase activity by incorporating a ZnHis3 or CuHis3 site, or that recapitulate the spectroscopic properties of unique electron-transfer sites in cupredoxins (CuHis2 Cys) or rubredoxins (FeCys4 ). This work showcases the versatility of alpha helices as scaffolds for metalloprotein design and the progress that is possible through careful rational design. Our studies cover the invariance of carbonic anhydrase activity with different site positions and scaffolds, refinement of our cupredoxin models, and enhancement of nitrite reductase activity up to 1000-fold.
Collapse
Affiliation(s)
- Tyler B. J. Pinter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States, 48109-1055
| | - Karl J. Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States, 48109-1055
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States, 48109-1055
| |
Collapse
|
35
|
Pinter TBJ, Koebke KJ, Pecoraro VL. Katalyse und Elektronentransfer in helikalen De‐novo‐Gerüststrukturen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tyler B. J. Pinter
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109-1055 USA
| | - Karl J. Koebke
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109-1055 USA
| | - Vincent L. Pecoraro
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109-1055 USA
| |
Collapse
|
36
|
Chatterjee A, Afrose SP, Ahmed S, Venugopal A, Das D. Cross-β amyloid nanotubes for hydrolase-peroxidase cascade reactions. Chem Commun (Camb) 2020; 56:7869-7872. [PMID: 32154814 DOI: 10.1039/d0cc00279h] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we report the catalytic potential of short peptide based cross-β amyloid nanotubes with surface exposed histidine capable of binding hemin and showing facile cascade reactions, playing the dual roles of hydrolases and peroxidases, two of the most important classes of enzymes in extant biology. The activity of these simple systems exceeded those of modern and larger proteins like cytochrome C and hemoglobin. Further, evidence suggested that these self-assembled nanotubes foreshadow the process of intermediate channeling, a feature seen in the case of advanced enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | | | | | | | | |
Collapse
|
37
|
Huang KY, Yu CC, Horng JC. Conjugating Catalytic Polyproline Fragments with a Self-Assembling Peptide Produces Efficient Artificial Hydrolases. Biomacromolecules 2020; 21:1195-1201. [PMID: 31951389 DOI: 10.1021/acs.biomac.9b01620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A polyproline fragment containing a catalytic dyad of His-His or Ser-His was coupled with a self-assembling peptide MAX1 to design new hydrolases (H2H5 and H2S5) for catalyzing ester hydrolysis. Circular dichroism measurements indicated that the peptides change their conformation from random coils to β-sheets when pH increases from 5 to 10. IR spectra also displayed the vibration modes corresponding to their β-structures at pH 9.0. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements showed that in solution, the designed peptides self-assemble into network fibrils having a significantly increased catalytic efficiency on ester hydrolysis. On p-nitrophenyl acetate (p-NPA) substrate, the designed peptides exhibit high catalytic efficiency at pH 9.0 (kcat/KM = 12.1 M-1 s-1 for H2H5, 13.3 M-1 s-1 for H2S5), and their efficiency is even better at pH 10.0 (kcat/KM = 24.3 M-1 s-1 for H2H5, 99.4 M-1 s-1 for H2S5). Additionally, H2H5 and H2S5 also display good activity on catalyzing the hydrolysis of p-nitrophenyl-(2-phenyl)-propanoate (p-NPP) and p-nitrophenyl methoxyacetate (p-NPMA). Combining the polyproline-based catalytic scaffold with a self-assembling peptide generates an efficient hydrolase, providing a new design for effective artificial enzymes.
Collapse
Affiliation(s)
- Kuei-Yen Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Chi-Ching Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
38
|
Tolbert AE, Ervin CS, Ruckthong L, Paul TJ, Jayasinghe-Arachchige VM, Neupane KP, Stuckey JA, Prabhakar R, Pecoraro VL. Heteromeric three-stranded coiled coils designed using a Pb(II)(Cys) 3 template mediated strategy. Nat Chem 2020; 12:405-411. [PMID: 32123337 DOI: 10.1038/s41557-020-0423-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/19/2020] [Indexed: 11/09/2022]
Abstract
Three-stranded coiled coils are peptide structures constructed from amphipathic heptad repeats. Here we show that it is possible to form pure heterotrimeric three-stranded coiled coils by combining three distinct characteristics: (1) a cysteine sulfur layer for metal coordination, (2) a thiophilic, trigonal pyramidal metalloid (Pb(II)) that binds to these sulfurs and (3) an adjacent layer of reduced steric bulk generating a cavity where water can hydrogen bond to the cysteine sulfur atoms. Cysteine substitution in an a site yields Pb(II)A2B heterotrimers, while d sites provide pure Pb(II)C2D or Pb(II)CD2 scaffolds. Altering the metal from Pb(II) to Hg(II) or shifting the relative position of the sterically less demanding layer removes heterotrimer specificity. Because only two of the eight or ten hydrophobic layers are perturbed, catalytic sites can be introduced at other regions of the scaffold. A Zn(II)(histidine)3(H2O) centre can be incorporated at a remote location without perturbing the heterotrimer selectivity, suggesting a unique strategy to prepare dissymmetric catalytic sites within self-assembling de novo-designed proteins.
Collapse
Affiliation(s)
- Audrey E Tolbert
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Leela Ruckthong
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok, Thailand
| | - Thomas J Paul
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | | | - Kosh P Neupane
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Sarkhel B, Chatterjee A, Das D. Covalent Catalysis by Cross β Amyloid Nanotubes. J Am Chem Soc 2020; 142:4098-4103. [PMID: 32083482 DOI: 10.1021/jacs.9b13517] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The binding pockets of extant enzymes feature precise positioning of amino acid residues that facilitate multiple complex transformations exploiting covalent and non-covalent interactions. Reversible covalent anchoring is extensively used as an efficient tool by Nature for activating modern enzymes such as esterases and dehydratases and also for proteins like opsins for the complex process of visual phototransduction. Here we construct paracrystalline amyloid surfaces through the self-propagation of short peptides which offer binding pockets exposed with arrays of imidazoles and lysines. As covalent catalysis is utilized by modern-day enzymes, these homogeneous amyloid nanotubes exploit Schiff imine formation via the exposed lysines to efficiently hydrolyze both activated and inactivated esters. Controls where lysines were mutated with charged residues accessed similar morphologies but did not augment the rate. The designed amyloid microphases thus foreshadow the generation of binding pockets of advanced proteins and have the potential to contribute to the development of functional materials.
Collapse
Affiliation(s)
- Baishakhi Sarkhel
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Ayan Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
40
|
Abstract
Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.
Collapse
|
41
|
Shan C, Yao S, Driess M. Where silylene–silicon centres matter in the activation of small molecules. Chem Soc Rev 2020; 49:6733-6754. [DOI: 10.1039/d0cs00815j] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Small molecules such as H2, N2, CO, NH3, O2 are ubiquitous stable species and their activation and role in the formation of value-added products are of fundamental importance in nature and industry.
Collapse
Affiliation(s)
- Changkai Shan
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Shenglai Yao
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Matthias Driess
- Department of Chemistry
- Metalorganics and Inorganic Materials
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
42
|
Yoon JH, Kulesha AV, Lengyel-Zhand Z, Volkov AN, Rempillo JJ, D'Souza A, Costeas C, Chester C, Caselle ER, Makhlynets OV. Uno Ferro, a de novo Designed Protein, Binds Transition Metals with High Affinity and Stabilizes Semiquinone Radical Anion. Chemistry 2019; 25:15252-15256. [PMID: 31509280 DOI: 10.1002/chem.201904020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/07/2022]
Abstract
Metalloenzymes often utilize radicals in order to facilitate chemical reactions. Recently, DeGrado and co-workers have discovered that model proteins can efficiently stabilize semiquinone radical anion produced by oxidation of 3,5-di-tert-butylcatechol (DTBC) in the presence of two zinc ions. Here, we show that the number and the nature of metal ions have relatively minor effect on semiquinone stabilization in model proteins, with a single metal ion being sufficient for radical stabilization. The radical is stabilized by both metal ion, hydrophobic sequestration, and interactions with the hydrophilic residues in the protein interior resulting in a remarkable, nearly 500 mV change in the redox potential of the SQ. - /catechol couple compared to bulk aqueous solution. Moreover, we have created 4G-UFsc, a single metal ion-binding protein with pm affinity for zinc that is higher than any other reported model systems and is on par with many natural zinc-containing proteins. We expect that the robust and easy-to-modify DFsc/UFsc family of proteins will become a versatile tool for mechanistic model studies of metalloenzymes.
Collapse
Affiliation(s)
- Jennifer H Yoon
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Alona V Kulesha
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Alexander N Volkov
- VIB Centre for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, Brussels, 1050, Belgium.,Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Joel J Rempillo
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Areetha D'Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Christos Costeas
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Cara Chester
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Elizabeth R Caselle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
43
|
Marshall LR, Zozulia O, Lengyel-Zhand Z, Korendovych IV. Minimalist de novo Design of Protein Catalysts. ACS Catal 2019; 9:9265-9275. [PMID: 34094654 PMCID: PMC8174531 DOI: 10.1021/acscatal.9b02509] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The field of protein design has grown enormously in the past few decades. In this review we discuss the minimalist approach to design of artificial enzymes, in which protein sequences are created with the minimum number of elements for folding and function. This method relies on identifying starting points in catalytically inert scaffolds for active site installation. The progress of the field from the original helical assemblies of the 1980s to the more complex structures of the present day is discussed, highlighting the variety of catalytic reactions which have been achieved using these methods. We outline the strengths and weaknesses of the minimalist approaches, describe representative design cases and put it in the general context of the de novo design of proteins.
Collapse
Affiliation(s)
- Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
44
|
Lombardi A, Pirro F, Maglio O, Chino M, DeGrado WF. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities. Acc Chem Res 2019; 52:1148-1159. [PMID: 30973707 DOI: 10.1021/acs.accounts.8b00674] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
De novo protein design represents an attractive approach for testing and extending our understanding of metalloprotein structure and function. Here, we describe our work on the design of DF (Due Ferri or two-iron in Italian), a minimalist model for the active sites of much larger and more complex natural diiron and dimanganese proteins. In nature, diiron and dimanganese proteins protypically bind their ions in 4-Glu, 2-His environments, and they catalyze diverse reactions, ranging from hydrolysis, to O2-dependent chemistry, to decarbonylation of aldehydes. In the design of DF, the position of each atom-including the backbone, the first-shell ligands, the second-shell hydrogen-bonded groups, and the well-packed hydrophobic core-was bespoke using precise mathematical equations and chemical principles. The first member of the DF family was designed to be of minimal size and complexity and yet to display the quintessential elements required for binding the dimetal cofactor. After thoroughly characterizing its structural, dynamic, spectroscopic, and functional properties, we added additional complexity in a rational stepwise manner to achieve increasingly sophisticated catalytic functions, ultimately demonstrating substrate-gated four-electron reduction of O2 to water. We also briefly describe the extension of these studies to the design of proteins that bind nonbiological metal cofactors (a synthetic porphyrin and a tetranuclear cluster), and a Zn2+/proton antiporting membrane protein. Together these studies demonstrate a successful and generally applicable strategy for de novo metalloprotein design, which might indeed mimic the process by which primordial metalloproteins evolved. We began the design process with a highly symmetrical backbone and binding site, by using point-group symmetry to assemble the secondary structures that position the amino acid side chains required for binding. The resulting models provided a rough starting point and initial parameters for the subsequent precise design of the final protein using modern methods of computational protein design. Unless the desired site is itself symmetrical, this process requires reduction of the symmetry or lifting it altogether. Nevertheless, the initial symmetrical structure can be helpful to restrain the search space during assembly of the backbone. Finally, the methods described here should be generally applicable to the design of highly stable and robust catalysts and sensors. There is considerable potential in combining the efficiency and knowledge base associated with homogeneous metal catalysis with the programmability, biocompatibility, and versatility of proteins. While the work reported here focuses on testing and learning the principles of natural metalloproteins by designing and studying proteins one at a time, there is also considerable potential for using designed proteins that incorporate both biological and nonbiological metal ion cofactors for the evolution of novel catalysts.
Collapse
Affiliation(s)
- Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 26, 80126 Napoli, Italy
| | - Fabio Pirro
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 26, 80126 Napoli, Italy
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158-9001, United States
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 26, 80126 Napoli, Italy
- IBB, National Research Council, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 26, 80126 Napoli, Italy
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158-9001, United States
| |
Collapse
|
45
|
Olajos G, Hetényi A, Wéber E, Szögi T, Fülöp L, Martinek TA. Peripheral cyclic β-amino acids balance the stability and edge-protection of β-sandwiches. Org Biomol Chem 2019; 16:5492-5499. [PMID: 30024580 DOI: 10.1039/c8ob01322e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering water-soluble stand-alone β-sandwich mimetics is a current challenge because of the difficulties associated with tailoring long-range interactions. In this work, single cis-(1R,2S)-2-aminocyclohexanecarboxylic acid mutations were introduced into the edge strands of the eight-stranded β-sandwich mimetic structures from the betabellin family. Temperature-dependent NMR and CD measurements, together with thermodynamic analyses, demonstrated that the modified peripheral strands exhibited an irregular and partially disordered structure but were able to exert sufficient shielding on the hydrophobic core to retain the predominantly β-sandwich structure. Although the frustrated interactions decreased the free energy of unfolding, the temperature of the maximum stabilities increased to or remained at physiologically relevant temperatures. We found that the irregular peripheral strands were able to prevent edge-to-edge association and fibril formation in the aggregation-prone model. These findings establish a β-sandwich stabilization and aggregation inhibition approach, which does not interfere with the pillars of the peptide bond or change the net charge of the peptide.
Collapse
Affiliation(s)
- Gábor Olajos
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, Somogyi u. 4., H-6720 Szeged, Hungary. and MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Edit Wéber
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, Somogyi u. 4., H-6720 Szeged, Hungary.
| | - Titanilla Szögi
- Department of Medical Chemistry, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| | - Tamás A Martinek
- Institute of Pharmaceutical Analysis, SZTE-MTA Lendület Foldamer Research Group, University of Szeged, Somogyi u. 4., H-6720 Szeged, Hungary. and MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm ter 8., H-6720 Szeged, Hungary
| |
Collapse
|
46
|
Studer S, Hansen DA, Pianowski ZL, Mittl PRE, Debon A, Guffy SL, Der BS, Kuhlman B, Hilvert D. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 2018; 362:1285-1288. [DOI: 10.1126/science.aau3744] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022]
Abstract
Primordial sequence signatures in modern proteins imply ancestral origins tracing back to simple peptides. Although short peptides seldom adopt unique folds, metal ions might have templated their assembly into higher-order structures in early evolution and imparted useful chemical reactivity. Recapitulating such a biogenetic scenario, we have combined design and laboratory evolution to transform a zinc-binding peptide into a globular enzyme capable of accelerating ester cleavage with exacting enantiospecificity and high catalytic efficiency (kcat/KM~ 106M−1s−1). The simultaneous optimization of structure and function in a naïve peptide scaffold not only illustrates a plausible enzyme evolutionary pathway from the distant past to the present but also proffers exciting future opportunities for enzyme design and engineering.
Collapse
|
47
|
Gutte B, Klauser S. Design of catalytic polypeptides and proteins. Protein Eng Des Sel 2018; 31:457-470. [PMID: 31241746 DOI: 10.1093/protein/gzz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 11/13/2022] Open
Abstract
The first part of this review article lists examples of complete, empirical de novo design that made important contributions to the development of the field and initiated challenging projects. The second part of this article deals with computational design of novel enzymes in native protein scaffolds; active designs were refined through random and site-directed mutagenesis producing artificial enzymes with nearly native enzyme- like activities against a number of non-natural substrates. Combining aspects of de novo design and biological evolution of nature's enzymes has started and will accelerate the development of novel enzyme activities.
Collapse
Affiliation(s)
- B Gutte
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - S Klauser
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| |
Collapse
|
48
|
Rink WM, Thomas F. De Novo Designed α-Helical Coiled-Coil Peptides as Scaffolds for Chemical Reactions. Chemistry 2018; 25:1665-1677. [DOI: 10.1002/chem.201802849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 01/31/2023]
Affiliation(s)
- W. Mathis Rink
- Institute of Organic and Biomolecular Chemistry; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Franziska Thomas
- Institute of Organic and Biomolecular Chemistry; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration; Von-Siebold-Straße 3a 37075 Göttingen Germany
| |
Collapse
|
49
|
Affiliation(s)
- Valerie Vaissier Welborn
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Ishikawa F, Shirahashi M, Hayakawa H, Tanabe G, Tsumuraya T, Fujii I. Expanding the Scope of Functionalized Small Nonprotein Components for Holoabzyme 27C1. ChemistrySelect 2018. [DOI: 10.1002/slct.201802474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fumihiro Ishikawa
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai; Osaka 599-8501 Japan
- Faculty of Pharmacy; Kindai University, 3-4-1 Kowakae, Higashi-Osaka; Osaka 577-8502 Japan
| | - Masato Shirahashi
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai; Osaka 599-8501 Japan
| | - Hiroshi Hayakawa
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai; Osaka 599-8501 Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy; Kindai University, 3-4-1 Kowakae, Higashi-Osaka; Osaka 577-8502 Japan
| | - Takeshi Tsumuraya
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai; Osaka 599-8501 Japan
| | - Ikuo Fujii
- Department of Biological Science; Graduate School of Science; Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai; Osaka 599-8501 Japan
| |
Collapse
|