1
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
2
|
Li J, Han L, Chen N, Zhu C, Gao Y, Shi X, Xu C, Hikichi Y, Zhang Y, Ohnishi K. Functional Characterization of RsRsgA for Ribosome Biosynthesis and Expression of the Type III Secretion System in Ralstonia solanacearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:972-981. [PMID: 32240066 DOI: 10.1094/mpmi-10-19-0294-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RsgA plays an important role in maturation of 30S subunit in many bacteria that assists in the release of RbfA from the 30S subunit during a late stage of ribosome biosynthesis. Here, we genetically characterized functional roles of RsgA in Ralstonia solanacearum, hereafter designated RsRsgA. Deletion of R. solanacearum rsgA or rbfA resulted in distinct deficiency of 16S ribosomal RNA, significantly slowed growth in broth medium, and diminished growth in nutrient-limited medium, which are similar as phenotypes of rsgA mutants and rbfA mutants of Escherichia coli and other bacteria. Our gene-expression studies revealed that RsRsgA is important for expression of genes encoding the type III secretion system (T3SS) (a pathogenicity determinant of R. solanacearum) both in vitro and in planta. Compared with the wild-type R. solanacearum strain, proliferation of the rsgA and rbfA mutants in tobacco leaves was significantly impaired, while they failed to migrate into tobacco xylem vessels from infiltrated leaves, and hence, these two mutants failed to cause any bacterial wilt disease in tobacco plants. It was further revealed that rsgA expression was highly enhanced under nutrient-limited conditions compared with that in broth medium and RsRsgA affects T3SS expression through the PrhN-PrhG-HrpB pathway. Moreover, expression of a subset of type III effectors was substantially impaired in the rsgA mutant, some of which are responsible for R. solanacearum GMI1000 elicitation of a hypersensitive response (HR) in tobacco leaves, while RsRsgA is not required for HR elicitation of GMI1000 in tobacco leaves. All these results provide novel insights into understanding various biological functions of RsgA proteins and complex regulation on the T3SS in R. solanacearum.
Collapse
Affiliation(s)
- Jiaman Li
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Liangliang Han
- College of Resources and Environment, Southwest University, Chongqing, China
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Nan Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Chao Zhu
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yuwei Gao
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Chongqing, China
| | - Changzheng Xu
- College of Life Science, Southwest University, Chongqing, China
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Chongqing, China
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| |
Collapse
|
3
|
Rocchio S, Santorelli D, Rinaldo S, Franceschini M, Malatesta F, Imperi F, Federici L, Travaglini-Allocatelli C, Di Matteo A. Structural and functional investigation of the Small Ribosomal Subunit Biogenesis GTPase A (RsgA) from Pseudomonas aeruginosa. FEBS J 2019; 286:4245-4260. [PMID: 31199072 DOI: 10.1111/febs.14959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023]
Abstract
The Small Ribosomal Subunit Biogenesis GTPase A (RsgA) is a bacterial assembly factor involved in the late stages of the 30S subunit maturation. It is a multidomain GTPase in which the central circularly permutated GTPase domain is flanked by an OB domain and a Zn-binding domain. All three domains participate in the interaction with the 30S particle thus ensuring an efficient coupling between catalytic activity and biological function. In vivo studies suggested the relevance of rsgA in bacterial growth and cellular viability, but other pleiotropic roles of RsgA are also emerging. Here, we report the 3D structure of RsgA from Pseudomonas aeruginosa (PaRsgA) in the GDP-bound form. We also report a biophysical and biochemical characterization of the protein in both the GDP-bound and its nucleotide-free form. In particular, we report a kinetic analysis of the RsgA binding to GTP and GDP. We found that PaRsgA is able to bind both nucleotides with submicromolar affinity. The higher affinity towards GDP (KD = 0.011 μm) with respect to GTP (KD = 0.16 μm) is mainly ascribed to a smaller GDP dissociation rate. Our results confirm that PaRsgA, like most other GTPases, has a weak intrinsic enzymatic activity (kCAT = 0.058 min-1 ). Finally, the biological role of RsgA in P. aeruginosa was investigated, allowing us to conclude that rsgA is dispensable for P. aeruginosa growth but important for drug resistance and virulence in an animal infection model. DATABASES: Coordinates and structure factors for the protein structure described in this manuscript have been deposited in the Protein Data Bank (https://www.rcsb.org) with the accession code 6H4D.
Collapse
Affiliation(s)
- Serena Rocchio
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Daniele Santorelli
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Serena Rinaldo
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Mimma Franceschini
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | - Francesco Malatesta
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Francesco Imperi
- Dipartimento di Scienze, Università Roma Tre, Italy.,Dipartimento di Biologia e Biotecnologie Charles Darwin, Laboratorio affiliato all'Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Luca Federici
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | | | - Adele Di Matteo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| |
Collapse
|
4
|
López-Alonso JP, Kaminishi T, Kikuchi T, Hirata Y, Iturrioz I, Dhimole N, Schedlbauer A, Hase Y, Goto S, Kurita D, Muto A, Zhou S, Naoe C, Mills DJ, Gil-Carton D, Takemoto C, Himeno H, Fucini P, Connell SR. RsgA couples the maturation state of the 30S ribosomal decoding center to activation of its GTPase pocket. Nucleic Acids Res 2017; 45:6945-6959. [PMID: 28482099 PMCID: PMC5499641 DOI: 10.1093/nar/gkx324] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/19/2017] [Indexed: 01/18/2023] Open
Abstract
During 30S ribosomal subunit biogenesis, assembly factors are believed to prevent accumulation of misfolded intermediate states of low free energy that slowly convert into mature 30S subunits, namely, kinetically trapped particles. Among the assembly factors, the circularly permuted GTPase, RsgA, plays a crucial role in the maturation of the 30S decoding center. Here, directed hydroxyl radical probing and single particle cryo-EM are employed to elucidate RsgA΄s mechanism of action. Our results show that RsgA destabilizes the 30S structure, including late binding r-proteins, providing a structural basis for avoiding kinetically trapped assembly intermediates. Moreover, RsgA exploits its distinct GTPase pocket and specific interactions with the 30S to coordinate GTPase activation with the maturation state of the 30S subunit. This coordination validates the architecture of the decoding center and facilitates the timely release of RsgA to control the progression of 30S biogenesis.
Collapse
Affiliation(s)
- Jorge Pedro López-Alonso
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Tatsuya Kaminishi
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Takeshi Kikuchi
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yuya Hirata
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Idoia Iturrioz
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Neha Dhimole
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Andreas Schedlbauer
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Yoichi Hase
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Shu Zhou
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Chieko Naoe
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Deryck J Mills
- Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - David Gil-Carton
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Chie Takemoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Paola Fucini
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Sean R Connell
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
5
|
The cryo-EM structure of YjeQ bound to the 30S subunit suggests a fidelity checkpoint function for this protein in ribosome assembly. Proc Natl Acad Sci U S A 2017; 114:E3396-E3403. [PMID: 28396444 DOI: 10.1073/pnas.1618016114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent work suggests that bacterial YjeQ (RsgA) participates in the late stages of assembly of the 30S subunit and aids the assembly of the decoding center but also binds the mature 30S subunit with high affinity. To determine the function and mechanisms of YjeQ in the context of the mature subunit, we determined the cryo-EM structure of the fully assembled 30S subunit in complex with YjeQ at 5.8-Å resolution. We found that binding of YjeQ stabilizes helix 44 into a conformation similar to that adopted by the subunit during proofreading. This finding indicates that, along with acting as an assembly factor, YjeQ has a role as a checkpoint protein, consisting of testing the proofreading ability of the 30S subunit. The structure also informs the mechanism by which YjeQ implements the release from the 30S subunit of a second assembly factor, called RbfA. Finally, it reveals how the 30S subunit stimulates YjeQ GTPase activity and leads to release of the protein. Checkpoint functions have been described for eukaryotic ribosome assembly factors; however, this work describes an example of a bacterial assembly factor that tests a specific translation mechanism of the 30S subunit.
Collapse
|
6
|
Manikas RG, Thomson E, Thoms M, Hurt E. The K⁺-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation. Nucleic Acids Res 2016; 44:1800-12. [PMID: 26823502 PMCID: PMC4770245 DOI: 10.1093/nar/gkw045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/14/2016] [Indexed: 12/16/2022] Open
Abstract
Ribosome synthesis employs a number of energy-consuming enzymes in both eukaryotes and prokaryotes. One such enzyme is the conserved circularly permuted GTPase Nug1 (nucleostemin in human). Nug1 is essential for 60S subunit assembly and nuclear export, but its role and time of action during maturation remained unclear. Based on in vitro enzymatic assays using the Chaetomium thermophilum (Ct) orthologue, we show that Nug1 exhibits a low intrinsic GTPase activity that is stimulated by potassium ions, rendering Nug1 a cation-dependent GTPase. In vivo we observe 60S biogenesis defects upon depletion of yeast Nug1 or expression of a Nug1 nucleotide-binding mutant. Most prominently, the RNA helicase Dbp10 was lost from early pre-60S particles, which suggested a physical interaction that could be reconstituted in vitro using CtNug1 and CtDbp10. In vivo rRNA-protein crosslinking revealed that Nug1 and Dbp10 bind at proximal and partially overlapping sites on the 60S pre-ribosome, most prominently to H89 that will constitute part of the peptidyl transferase center (PTC). The binding sites of Dbp10 are the same as those identified for the prokaryotic helicase DbpA bound to the 50S subunit. We suggest that Dbp10 and DbpA are performing a conserved role during PTC formation in all organisms.
Collapse
Affiliation(s)
- Rizos-Georgios Manikas
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| | - Emma Thomson
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| | - Matthias Thoms
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| |
Collapse
|
7
|
Jeganathan A, Razi A, Thurlow B, Ortega J. The C-terminal helix in the YjeQ zinc-finger domain catalyzes the release of RbfA during 30S ribosome subunit assembly. RNA (NEW YORK, N.Y.) 2015; 21:1203-1216. [PMID: 25904134 PMCID: PMC4436671 DOI: 10.1261/rna.049171.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
YjeQ (also called RsgA) and RbfA proteins in Escherichia coli bind to immature 30S ribosome subunits at late stages of assembly to assist folding of the decoding center. A key step for the subunit to enter the pool of actively translating ribosomes is the release of these factors. YjeQ promotes dissociation of RbfA during the final stages of maturation; however, the mechanism implementing this functional interplay has not been elucidated. YjeQ features an amino-terminal oligonucleotide/oligosaccharide binding domain, a central GTPase module and a carboxy-terminal zinc-finger domain. We found that the zinc-finger domain is comprised of two functional motifs: the region coordinating the zinc ion and a carboxy-terminal α-helix. The first motif is essential for the anchoring of YjeQ to the 30S subunit and the carboxy-terminal α-helix facilitates the removal of RbfA once the 30S subunit reaches the mature state. Furthermore, the ability of the mature 30S subunit to stimulate YjeQ GTPase activity also depends on the carboxy-terminal α-helix. Our data are consistent with a model in which YjeQ uses this carboxy-terminal α-helix as a sensor to gauge the conformation of helix 44, an essential motif of the decoding center. According to this model, the mature conformation of helix 44 is sensed by the carboxy-terminal α-helix, which in turn stimulates the YjeQ GTPase activity. Hydrolysis of GTP is believed to assist the release of YjeQ from the mature 30S subunit through a still uncharacterized mechanism. These results identify the structural determinants in YjeQ that implement the functional interplay with RbfA.
Collapse
Affiliation(s)
- Ajitha Jeganathan
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Aida Razi
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Brett Thurlow
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
8
|
Holler TP, Evdokimov AG, Narasimhan L. Structural biology approaches to antibacterial drug discovery. Expert Opin Drug Discov 2013; 2:1085-101. [PMID: 23484874 DOI: 10.1517/17460441.2.8.1085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibacterial drug discovery has undertaken a major experiment in the 12 years since the first bacterial genomes were sequenced. Genome mining has identified hundreds of potential targets that have been distilled to a relatively small number of broad-spectrum targets ('low-hanging fruit') using the genetics tools of modern microbiology. Prosecuting these targets with high-throughput screens has led to a disappointingly small number of lead series that have mostly evaporated under closer scrutiny. In the meantime, multi-drug resistant pathogens are becoming a serious challenge in the clinic and the community and the number of pharmaceutical firms pursuing antibacterial discovery has declined. Filling the antibacterial development pipeline with novel chemical series is a significant challenge that will require the collaboration of scientists from many disciplines. Fortunately, advancements in the tools of structural biology and of in silico modeling are opening up new avenues of research that may help deal with the problems associated with discovering novel antibiotics.
Collapse
Affiliation(s)
- Tod P Holler
- Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105, USA +1 734 622 5954 ; +1 734 622 2963 ; Tod.Holler@pfizer. com
| | | | | |
Collapse
|
9
|
Abstract
The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
10
|
Regulation of ribosome biogenesis by nucleostemin 3 promotes local and systemic growth in Drosophila. Genetics 2013; 194:101-15. [PMID: 23436180 DOI: 10.1534/genetics.112.149104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nucleostemin 3 (NS3) is an evolutionarily conserved protein with profound roles in cell growth and viability. Here we analyze cell-autonomous and non-cell-autonomous growth control roles of NS3 in Drosophila and demonstrate its GTPase activity using genetic and biochemical assays. Two null alleles of ns3, and RNAi, demonstrate the necessity of NS3 for cell autonomous growth. A hypomorphic allele highlights the hypersensitivity of neurons to lowered NS3 function. We propose that NS3 is the functional ortholog of yeast and human Lsg1, which promotes release of the nuclear export adapter from the large ribosomal subunit. Release of the adapter and its recycling to the nucleus are essential for sustained production of ribosomes. The ribosome biogenesis role of NS3 is essential for proper rates of translation in all tissues and is necessary for functions of growth-promoting neurons.
Collapse
|
11
|
Pompeo F, Freton C, Wicker-Planquart C, Grangeasse C, Jault JM, Galinier A. Phosphorylation of CpgA protein enhances both its GTPase activity and its affinity for ribosome and is crucial for Bacillus subtilis growth and morphology. J Biol Chem 2012; 287:20830-8. [PMID: 22544754 DOI: 10.1074/jbc.m112.340331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Bacillus subtilis, the ribosome-associated GTPase CpgA is crucial for growth and proper morphology and was shown to be phosphorylated in vitro by the Ser/Thr protein kinase PrkC. To further understand the function of the Escherichia coli RsgA ortholog, CpgA, we first demonstrated that its GTPase activity is stimulated by its association with the 30 S ribosomal subunit. Then the role of CpgA phosphorylation was analyzed. A single phosphorylated residue, threonine 166, was identified by mass spectrometry. Phosphoablative replacement of this residue in CpgA induces a decrease of both its affinity for the 30 S ribosomal subunit and its GTPase activity, whereas a phosphomimetic replacement has opposite effects. Furthermore, cells expressing a nonphosphorylatable CpgA protein present the morphological and growth defects similar to those of a cpgA-deleted strain. Altogether, our results suggest that CpgA phosphorylation on Thr-166 could modulate its ribosome-induced GTPase activity. Given the role of PrkC in B. subtilis spore germination, we propose that CpgA phosphorylation is a key regulatory process that is essential for B. subtilis development.
Collapse
Affiliation(s)
- Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, FR 3479, CNRS, Aix-Marseille Université, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
12
|
Jomaa A, Stewart G, Mears JA, Kireeva I, Brown ED, Ortega J. Cryo-electron microscopy structure of the 30S subunit in complex with the YjeQ biogenesis factor. RNA (NEW YORK, N.Y.) 2011; 17:2026-38. [PMID: 21960487 PMCID: PMC3198595 DOI: 10.1261/rna.2922311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/26/2011] [Indexed: 05/22/2023]
Abstract
YjeQ is a protein broadly conserved in bacteria containing an N-terminal oligonucleotide/oligosaccharide fold (OB-fold) domain, a central GTPase domain, and a C-terminal zinc-finger domain. YjeQ binds tightly and stoichiometrically to the 30S subunit, which stimulates its GTPase activity by 160-fold. Despite growing evidence for the involvement of the YjeQ protein in bacterial 30S subunit assembly, the specific function and mechanism of this protein remain unclear. Here, we report the costructure of YjeQ with the 30S subunit obtained by cryo-electron microscopy. The costructure revealed that YjeQ interacts simultaneously with helix 44, the head and the platform of the 30S subunit. This binding location of YjeQ in the 30S subunit suggests a chaperone role in processing of the 3' end of the rRNA as well as in mediating the correct orientation of the main domains of the 30S subunit. In addition, the YjeQ binding site partially overlaps with the interaction site of initiation factors 2 and 3, and upon binding, YjeQ covers three inter-subunit bridges that are important for the association of the 30S and 50S subunits. Hence, our structure suggests that YjeQ may assist in ribosome maturation by preventing premature formation of the translation initiation complex and association with the 50S subunit. Together, these results support a role for YjeQ in the late stages of 30S maturation.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Geordie Stewart
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Jason A. Mears
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Inga Kireeva
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
- Corresponding author.E-mail .
| |
Collapse
|
13
|
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71. [PMID: 21675921 DOI: 10.1146/annurev-biochem-062708-134043] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
14
|
Daniluk P, Lesyng B. A novel method to compare protein structures using local descriptors. BMC Bioinformatics 2011; 12:344. [PMID: 21849047 PMCID: PMC3179968 DOI: 10.1186/1471-2105-12-344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 08/17/2011] [Indexed: 11/15/2022] Open
Abstract
Background Protein structure comparison is one of the most widely performed tasks in bioinformatics. However, currently used methods have problems with the so-called "difficult similarities", including considerable shifts and distortions of structure, sequential swaps and circular permutations. There is a demand for efficient and automated systems capable of overcoming these difficulties, which may lead to the discovery of previously unknown structural relationships. Results We present a novel method for protein structure comparison based on the formalism of local descriptors of protein structure - DEscriptor Defined Alignment (DEDAL). Local similarities identified by pairs of similar descriptors are extended into global structural alignments. We demonstrate the method's capability by aligning structures in difficult benchmark sets: curated alignments in the SISYPHUS database, as well as SISY and RIPC sets, including non-sequential and non-rigid-body alignments. On the most difficult RIPC set of sequence alignment pairs the method achieves an accuracy of 77% (the second best method tested achieves 60% accuracy). Conclusions DEDAL is fast enough to be used in whole proteome applications, and by lowering the threshold of detectable structure similarity it may shed additional light on molecular evolution processes. It is well suited to improving automatic classification of structure domains, helping analyze protein fold space, or to improving protein classification schemes. DEDAL is available online at http://bioexploratorium.pl/EP/DEDAL.
Collapse
Affiliation(s)
- Paweł Daniluk
- Faculty of Physics, Department of Biophysics and CoE BioExploratorium, University of Warsaw, Żwirki i Wigury 93, Warsaw, Poland
| | | |
Collapse
|
15
|
Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2011; 108:13100-5. [PMID: 21788480 DOI: 10.1073/pnas.1104645108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bacterial RsgA, a circularly permutated GTPase, whose GTPase activity is dependent on the 30S ribosomal subunit, is a late-stage ribosome biogenesis factor involved in the 30S subunit maturation. The role of RsgA is to release another 30S biogenesis factor, RbfA, from the mature 30S subunit in a GTP-dependent manner. Using cryoelectron microscopy, we have determined the structure of the 30S subunit bound with RsgA in the presence of GMPPNP at subnanometer resolution. In the structure, RsgA binds to the central part of the 30S subunit, close to the decoding center, in a position that is incompatible with multiple biogenesis factors, all three translation initiation factors, as well as A-, P-site tRNAs and the 50S subunit. Further structural analysis not only provides a structural model for the RsgA-dependent release of RbfA from the nascent 30S subunit, but also indicates RsgA's role in the ribosomal protein assembly, to promote some tertiary binding protein incorporation. Moreover, together with available biochemical and genetic data, our results suggest that RsgA might be a general checkpoint protein in the late stage of the 30S subunit biogenesis, whose function is not only to release biogenesis factors (e.g., RbfA) from the nascent 30S subunit, but also to block the association of initiation factors to the premature 30S subunit.
Collapse
|
16
|
Carlton DD, Schug KA. A review on the interrogation of peptide–metal interactions using electrospray ionization-mass spectrometry. Anal Chim Acta 2011; 686:19-39. [DOI: 10.1016/j.aca.2010.11.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/27/2022]
|
17
|
Goto S, Kato S, Kimura T, Muto A, Himeno H. RsgA releases RbfA from 30S ribosome during a late stage of ribosome biosynthesis. EMBO J 2010; 30:104-14. [PMID: 21102555 DOI: 10.1038/emboj.2010.291] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 10/28/2010] [Indexed: 11/09/2022] Open
Abstract
RsgA is a 30S ribosomal subunit-binding GTPase with an unknown function, shortage of which impairs maturation of the 30S subunit. We identified multiple gain-of-function mutants of Escherichia coli rbfA, the gene for a ribosome-binding factor, that suppress defects in growth and maturation of the 30S subunit of an rsgA-null strain. These mutations promote spontaneous release of RbfA from the 30S subunit, indicating that cellular disorders upon depletion of RsgA are due to prolonged retention of RbfA on the 30S subunit. We also found that RsgA enhances release of RbfA from the mature 30S subunit in a GTP-dependent manner but not from a precursor form of the 30S subunit. These findings indicate that the function of RsgA is to release RbfA from the 30S subunit during a late stage of ribosome biosynthesis. This is the first example of the action of a GTPase on the bacterial ribosome assembly described at the molecular level.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | | | | | | | | |
Collapse
|
18
|
Hase Y, Yokoyama S, Muto A, Himeno H. Removal of a ribosome small subunit-dependent GTPase confers salt resistance on Escherichia coli cells. RNA (NEW YORK, N.Y.) 2009; 15:1766-1774. [PMID: 19620234 PMCID: PMC2743055 DOI: 10.1261/rna.1687309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 06/03/2009] [Indexed: 05/28/2023]
Abstract
RsgA is a unique GTP hydrolytic protein in which GTPase activity is significantly enhanced by the small ribosomal subunit. Deletion of RsgA causes slow cell growth as well as defects in subunit assembly of the ribosome and 16S rRNA processing, suggesting its involvement in maturation of the small subunit. In this study, we found that removal of RsgA or inactivation of its ribosome small subunit-dependent GTPase activity provides Escherichia coli cells with resistance to high salt stress. Salt stress suppressed the defects in subunit assembly of the ribosome and processing of 16S rRNA as well as truncation of the 3' end of 16S rRNA in RsgA-deletion cells. In contrast, salt stress transiently impaired subunit assembly of the ribosome and processing of 16S rRNA and induced 3' truncation of 16S rRNA in wild-type cells. These results suggest that the action of RsgA on the ribosome, which usually facilitates maturation of the small subunit, disturbs it under a salt stress condition. Consistently, there was a drastic but transient decrease in the intracellular amount of RsgA after salt shock. Salt shock would make the pathway of maturation of the ribosome small subunit RsgA independent.
Collapse
Affiliation(s)
- Yoichi Hase
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | | | |
Collapse
|
19
|
Neuwald AF. Rapid detection, classification and accurate alignment of up to a million or more related protein sequences. ACTA ACUST UNITED AC 2009; 25:1869-75. [PMID: 19505947 DOI: 10.1093/bioinformatics/btp342] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. RESULTS This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. AVAILABILITY A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Department of Biochemistry & Molecular Biology and The Institute for Genome Sciences, University of Maryland, School of Medicine, BioPark II, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Kim DJ, Jang JY, Yoon HJ, Suh SW. Crystal structure of YlqF, a circularly permuted GTPase: implications for its GTPase activation in 50 S ribosomal subunit assembly. Proteins 2009; 72:1363-70. [PMID: 18536017 DOI: 10.1002/prot.22112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Do Jin Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
21
|
Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 2008. [PMID: 18801746 DOI: 10.1074/jbc.m804838200>] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
AtNOS1 was previously identified as a potential nitric-oxide synthase (NOS) in Arabidopsis thaliana, despite lack of sequence similarity to animal NOSs. Although the dwarf and yellowish leaf phenotype of Atnos1 knock-out mutant plants can be rescued by treatment with exogenous NO, doubts have recently been raised as to whether AtNOS1 is a true NOS. Moreover, depending on the type of physiological responses studied, Atnos1 is not always deficient in NO induction and/or detection, as previously reported. Here, we present experimental evidence showing that AtNOS1 is unable to bind and oxidize arginine to NO. These results support the argument that AtNOS1 is not a NOS. We also show that the renamed NO-associated protein 1 (AtNOA1) is a member of the circularly permuted GTPase family (cGTPase). AtNOA1 specifically binds GTP and hydrolyzes it. Complementation experiments of Atnoa1 mutant plants with different constructs of AtNOA1 show that GTP hydrolysis is necessary but not sufficient for the physiological function of AtNOA1. Mutant AtNOA1 lacking the C-terminal domain, although retaining GTPase activity, failed to complement Atnoa1, suggesting that this domain plays a crucial role in planta. cGTPases appear to be RNA-binding proteins, and the closest homolog of AtNOA1, the Bacillus subtilis YqeH, has been shown to participate in ribosome assembly and stability. We propose a similar function for AtNOA1 and discuss it in the light of its potential role in NO accumulation and plant development.
Collapse
Affiliation(s)
- Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
22
|
Chu CH, Tang CY, Tang CY, Pai TW. Angle-distance image matching techniques for protein structure comparison. J Mol Recognit 2008; 21:442-52. [DOI: 10.1002/jmr.914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 2008; 283:32957-67. [PMID: 18801746 DOI: 10.1074/jbc.m804838200] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AtNOS1 was previously identified as a potential nitric-oxide synthase (NOS) in Arabidopsis thaliana, despite lack of sequence similarity to animal NOSs. Although the dwarf and yellowish leaf phenotype of Atnos1 knock-out mutant plants can be rescued by treatment with exogenous NO, doubts have recently been raised as to whether AtNOS1 is a true NOS. Moreover, depending on the type of physiological responses studied, Atnos1 is not always deficient in NO induction and/or detection, as previously reported. Here, we present experimental evidence showing that AtNOS1 is unable to bind and oxidize arginine to NO. These results support the argument that AtNOS1 is not a NOS. We also show that the renamed NO-associated protein 1 (AtNOA1) is a member of the circularly permuted GTPase family (cGTPase). AtNOA1 specifically binds GTP and hydrolyzes it. Complementation experiments of Atnoa1 mutant plants with different constructs of AtNOA1 show that GTP hydrolysis is necessary but not sufficient for the physiological function of AtNOA1. Mutant AtNOA1 lacking the C-terminal domain, although retaining GTPase activity, failed to complement Atnoa1, suggesting that this domain plays a crucial role in planta. cGTPases appear to be RNA-binding proteins, and the closest homolog of AtNOA1, the Bacillus subtilis YqeH, has been shown to participate in ribosome assembly and stability. We propose a similar function for AtNOA1 and discuss it in the light of its potential role in NO accumulation and plant development.
Collapse
Affiliation(s)
- Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
24
|
Kimura T, Takagi K, Hirata Y, Hase Y, Muto A, Himeno H. Ribosome-small-subunit-dependent GTPase interacts with tRNA-binding sites on the ribosome. J Mol Biol 2008; 381:467-77. [PMID: 18588897 DOI: 10.1016/j.jmb.2008.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/03/2008] [Accepted: 06/07/2008] [Indexed: 10/21/2022]
Abstract
RsgA (ribosome-small-subunit-dependent GTPase A, also known as YjeQ) is a unique GTPase in that guanosine triphosphate hydrolytic activity is activated by the small subunit of the ribosome. Disruption of the gene for RsgA from the genome affects the growth of cells, the subunit association of the ribosome, and the maturation of 16S rRNA. To study the interaction of Escherichia coli RsgA with the ribosome, chemical modifications using dimethylsulfate and kethoxal were performed on the small subunit in the presence or in the absence of RsgA. The chemical reactivities at G530, A790, G925, G926, G966, C1054, G1339, G1405, A1413, and A1493 in 16S rRNA were reduced, while those at A532, A923, G1392, A1408, A1468, and A1483 were enhanced, by the addition of RsgA, together with 5'-guanylylimidodiphosphate. Among them, the chemical reactivities at A532, A790, A923, G925, G926, C1054, G1392, A1413, A1468, A1483, and A1493 were not changed when RsgA was added together with GDP. These results indicate that the binding of RsgA induces conformational changes around the A site, P site, and helix 44, and that guanosine triphosphate hydrolysis induces partial conformational restoration, especially in the head, to dissociate RsgA from the small subunit. RsgA has the capacity to coexist with mRNA in the ribosome while it promotes dissociation of tRNA from the ribosome.
Collapse
Affiliation(s)
- Takatsugu Kimura
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Elias M, Novotny M. cpRAS: a novel circularly permuted RAS-like GTPase domain with a highly scattered phylogenetic distribution. Biol Direct 2008; 3:21. [PMID: 18510733 PMCID: PMC2430557 DOI: 10.1186/1745-6150-3-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/29/2008] [Indexed: 11/15/2022] Open
Abstract
A recent systematic survey suggested that the YRG (or YawG/YlqF) family with the G4-G5-G1-G2-G3 order of the conserved GTPase motifs represents the only possible circularly permuted variation of the canonical GTPase structure. Here we show that a different circularly permuted GTPase domain actually does exist, conforming to the pattern G3-G4-G5-G1-G2. The domain, dubbed cpRAS, is a variant of RAS family GTPases and occurs in two types of larger proteins, either inserted into a region homologous to a bacterial group of proteins classified as COG2373 and potentially related to the alpha-2-macroglobulin family (so far a single protein in Dictyostelium) or in combination with a von Willebrand factor type A (VWA) domain. For the latter protein type, which was found in a few metazoans and several distantly related protists, existence in the common ancestor of opisthokonts, Amoebozoa and excavates followed by at least eight independent losses may be inferred. Our findings thus bring further evidence for the importance of parallel reduction of ancestral complexity in the eukaryotic evolution. This article was reviewed by Lakshminarayan Iyer and Fyodor Kondrashov. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Marek Elias
- Charles University in Prague, Faculty of Science, Department of Botany, Benatska 2, 128 01 Prague 2, Czech Republic.
| | | |
Collapse
|
26
|
Genetic interaction screens with ordered overexpression and deletion clone sets implicate the Escherichia coli GTPase YjeQ in late ribosome biogenesis. J Bacteriol 2008; 190:2537-45. [PMID: 18223068 DOI: 10.1128/jb.01744-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Escherichia coli protein YjeQ is a circularly permuted GTPase that is broadly conserved in bacteria. An emerging body of evidence, including cofractionation and in vitro binding to the ribosome, altered polysome profiles after YjeQ depletion, and stimulation of GTPase activity by ribosomes, suggests that YjeQ is involved in ribosome function. The growth of strains lacking YjeQ in culture is severely compromised. Here, we probed the cellular function of YjeQ with genetic screens of ordered E. coli genomic libraries for suppressors and enhancers of the slow-growth phenotype of a delta yjeQ strain. Screening for suppressors using an ordered library of 374 clones overexpressing essential genes and genes associated with ribosome function revealed that two GTPases, Era and initiation factor 2, ameliorated the growth and polysome defects of the delta yjeQ strain. In addition, seven bona fide enhancers of slow growth were identified (delta tgt, delta ksgA, delta ssrA, delta rimM, delta rluD, delta trmE/mnmE, and delta trmU/mnmA) among 39 deletions (in genes associated with ribosome function) that we constructed in the delta yjeQ genetic background. Taken in context, our work is most consistent with the hypothesis that YjeQ has a role in late 30S subunit biogenesis.
Collapse
|
27
|
Abyzov A, Ilyin VA. A comprehensive analysis of non-sequential alignments between all protein structures. BMC STRUCTURAL BIOLOGY 2007; 7:78. [PMID: 18005453 PMCID: PMC2213659 DOI: 10.1186/1472-6807-7-78] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 11/16/2007] [Indexed: 05/02/2023]
Abstract
Background The majority of relations between proteins can be represented as a conventional sequential alignment. Nevertheless, unusual non-sequential alignments with different connectivity of the aligned fragments in compared proteins have been reported by many researchers. It is interesting to understand those non-sequential alignments; are they unique, sporadic cases or they occur frequently; do they belong to a few specific folds or spread among many different folds, as a common feature of protein structure. We present here a comprehensive large-scale study of non-sequential alignments between available protein structures in Protein Data Bank. Results The study has been conducted on a non-redundant set of 8,865 protein structures aligned with the aid of the TOPOFIT method. It has been estimated that between 17.4% and 35.2% of all alignments are non-sequential depending on variations in the parameters. Analysis of the data revealed that non-sequential relations between proteins do occur systematically and in large quantities. Various sizes and numbers of non-sequential fragments have been observed with all possible complexities of fragment rearrangements found for alignments consisting of up to 12 fragments. It has been found that non-sequential alignments are not limited to proteins of any particular fold and are present in more than two hundred of them. Moreover, many of them are found between proteins with different fold assignments. It has been shown that protein structure symmetry does not explain non-sequential alignments. Therefore, compelling evidences have been provided that non-sequential alignments between proteins are systematic and widespread across the protein universe. Conclusion The phenomenon of the widespread occurrence of non-sequential alignments between proteins might represent a missing rule of protein structure organization. More detailed study of this phenomenon will enhance our understanding of protein stability, folding, and evolution.
Collapse
Affiliation(s)
- Alexej Abyzov
- Department of Biology, Northeastern University 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
28
|
Nichols CE, Johnson C, Lamb HK, Lockyer M, Charles IG, Hawkins AR, Stammers DK. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:922-8. [PMID: 18007041 PMCID: PMC2339746 DOI: 10.1107/s1744309107048609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/03/2007] [Indexed: 05/13/2023]
Abstract
The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs.
Collapse
Affiliation(s)
- C. E. Nichols
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - C. Johnson
- Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - H. K. Lamb
- Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - M. Lockyer
- Arrow Therapeutics Ltd, Britannia House, Trinity Street, Borough, London SE1 1DA, England
| | - I. G. Charles
- The Wolfson Institute for Biomedical Research, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, England
| | - A. R. Hawkins
- Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - D. K. Stammers
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| |
Collapse
|
29
|
Shin DH, Hou J, Chandonia JM, Das D, Choi IG, Kim R, Kim SH. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center. ACTA ACUST UNITED AC 2007; 8:99-105. [PMID: 17764033 DOI: 10.1007/s10969-007-9025-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/27/2007] [Indexed: 11/26/2022]
Abstract
Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.
Collapse
Affiliation(s)
- Dong Hae Shin
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
31
|
Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 2006; 30:872-905. [PMID: 17064285 DOI: 10.1111/j.1574-6976.2006.00039.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing of microbial genomes has allowed the application of functional genomics methods to species lacking well-developed genetic systems. For the model hyperthermophile Thermotoga maritima, microarrays have been used in comparative genomic hybridization studies to investigate diversity among Thermotoga species. Transcriptional data have assisted in prediction of pathways for carbohydrate utilization, iron-sulfur cluster synthesis and repair, expolysaccharide formation, and quorum sensing. Structural genomics efforts aimed at the T. maritima proteome have yielded hundreds of high-resolution datasets and predicted functions for uncharacterized proteins. The information gained from genomics studies will be particularly useful for developing new biotechnology applications for T. maritima enzymes.
Collapse
Affiliation(s)
- Shannon B Conners
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | |
Collapse
|
32
|
Campbell TL, Henderson J, Heinrichs DE, Brown ED. The yjeQ gene is required for virulence of Staphylococcus aureus. Infect Immun 2006; 74:4918-21. [PMID: 16861682 PMCID: PMC1539590 DOI: 10.1128/iai.00258-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene products required for in vivo growth and survival of Staphylococcus aureus and other pathogens represent new targets for antimicrobial chemotherapy. In this study we created a Staphylococcus aureus yjeQ deletion strain and tested its virulence using a mouse kidney abscess infection model. The yjeQ deletion strain was compromised for growth in vitro and severely attenuated for virulence. We concluded that yjeQ is an attractive and novel new drug target.
Collapse
Affiliation(s)
- Tracey L Campbell
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
33
|
Bassler J, Kallas M, Hurt E. The NUG1 GTPase reveals and N-terminal RNA-binding domain that is essential for association with 60 S pre-ribosomal particles. J Biol Chem 2006; 281:24737-44. [PMID: 16803892 DOI: 10.1074/jbc.m604261200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The putative yeast GTPase Nug1, which is associated with several pre-60 S particles in the nucleolus and nucleoplasm, consists of an N-terminal domain, which is found only in eukaryotic orthologues, and middle and C-terminal domains that are conserved throughout eukaryotes, bacteria, and archaea. Here, we analyzed the role of the eukaryote-specific Nug1 N-domain (Nug1-N). We show that the essential Nug1-N is sufficient and necessary for nucle(ol)ar targeting and association with pre-60 S particles. Nug1-N exhibits RNA binding activity and is genetically linked in an allele-specific way to the pre-60 S factors Noc2, Noc3, and Dbp10. In contrast, the middle domain, which exhibits a circularly permuted GTPase fold and an intrinsic GTP hydrolysis activity in vitro, is not essential for cell growth. The conserved Nug1 C-domain, which has a yet uncharacterized fold, is also essential for ribosome biogenesis. Our findings suggest that Nug1 associates with pre-60 S subunits via its essential N-terminal RNA-binding domain and exerts a non-essential regulative role in pre-60 S subunit biogenesis via its central GTPase domain.
Collapse
Affiliation(s)
- Jochen Bassler
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
34
|
Anand B, Verma SK, Prakash B. Structural stabilization of GTP-binding domains in circularly permuted GTPases: implications for RNA binding. Nucleic Acids Res 2006; 34:2196-205. [PMID: 16648363 PMCID: PMC1450330 DOI: 10.1093/nar/gkl178] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
GTP hydrolysis by GTPases requires crucial residues embedded in a conserved G-domain as sequence motifs G1–G5. However, in some of the recently identified GTPases, the motif order is circularly permuted. All possible circular permutations were identified after artificially permuting the classical GTPases and subjecting them to profile Hidden Markov Model searches. This revealed G4–G5–G1–G2–G3 as the only possible circular permutation that can exist in nature. It was also possible to recognize a structural rationale for the absence of other permutations, which either destabilize the invariant GTPase fold or disrupt regions that provide critical residues for GTP binding and hydrolysis, such as Switch-I and Switch-II. The circular permutation relocates Switch-II to the C-terminus and leaves it unfastened, thus affecting GTP binding and hydrolysis. Stabilizing this region would require the presence of an additional domain following Switch-II. Circularly permuted GTPases (cpGTPases) conform to such a requirement and always possess an ‘anchoring’ C-terminal domain. There are four sub-families of cpGTPases, of which three possess an additional domain N-terminal to the G-domain. The biochemical function of these domains, based on available experimental reports and domain recognition analysis carried out here, are suggestive of RNA binding. The features that dictate RNA binding are unique to each subfamily. It is possible that RNA-binding modulates GTP binding or vice versa. In addition, phylogenetic analysis indicates a closer evolutionary relationship between cpGTPases and a set of universally conserved bacterial GTPases that bind the ribosome. It appears that cpGTPases are RNA-binding proteins possessing a means to relate GTP binding to RNA binding.
Collapse
Affiliation(s)
| | | | - Balaji Prakash
- To whom correspondence should be addressed. Tel: +91 512 2594013; Fax: +91 512 2594010;
| |
Collapse
|
35
|
Brown ED. Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol 2006; 83:738-46. [PMID: 16333325 DOI: 10.1139/o05-162] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Establishing the roles of conserved gene products in bacteria is of fundamental importance to our understanding of the core protein complement necessary to sustain cellular life. P-loop GTPases and related ATPases represent an abundant and remarkable group of proteins in bacteria that, in many cases, have evaded characterization. Here, efforts aimed at understanding the cellular function of a group of 8 conserved, poorly characterized genes encoding P-loop GTPases, era, obg, trmE, yjeQ, engA, yihA, hflX, ychF, and a related ATPase, yjeE, are reviewed in considerable detail. While concrete cellular roles remain elusive for all of these genes and considerable pleiotropy has plagued their study, experiments to date have frequently implicated the ribosome. In the case of era, obg, yjeQ, and engA, the evidence is most consistent with roles in ribosome biogenesis, though the prediction is necessarily putative. While the protein encoded in trmE clearly has a catalytic function in tRNA modification, the participation of its GTPase domain remains obscure, as do the functions of the remaining proteins. A full understanding of the cellular functions of all of these important proteins remains the goal of ongoing studies of cellular phenotype and protein biochemistry.
Collapse
Affiliation(s)
- Eric D Brown
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
36
|
Cladière L, Hamze K, Madec E, Levdikov VM, Wilkinson AJ, Holland IB, Séror SJ. The GTPase, CpgA(YloQ), a putative translation factor, is implicated in morphogenesis in Bacillus subtilis. Mol Genet Genomics 2006; 275:409-20. [PMID: 16485133 DOI: 10.1007/s00438-006-0097-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
YloQ, from Bacillus subtilis, was identified previously as an essential nucleotide-binding protein of unknown function. YloQ was successfully over-expressed in Escherichia coli in soluble form. The purified protein displayed a low GTPase activity similar to that of other small bacterial GTPases such as Bex/Era. Based on the demonstrated GTPase activity and the unusual order of the yloQ G motifs, we now designate this protein as CpgA (circularly permuted GTPase). An unexpected property of this low abundance GTPase was the demonstration, using gel filtration and ultracentrifugation analysis, that the protein formed stable dimers, dependent upon the concentration of YloQ(CpgA), but independent of GTP. In order to investigate function, cpgA was placed under the control of the pspac promotor in the B. subtilis chromosome. When grown in E or Spizizen medium in the absence of IPTG, the rate of growth was significantly reduced. A large proportion of the cells exhibited a markedly perturbed morphology, with the formation of swollen, bent or 'curly' shapes. To confirm that this was specifically due to depleted CpgA a plasmid-borne cpgA under pxyl control was introduced. This restored normal cell shape and growth rate, even in the absence of IPTG, provided xylose was present. The crystal structure of CpgA(YloQ) suggests a role as a translation initiation factor and we discuss the possibility that CpgA is involved in the translation of a subset of proteins, including some required for shape maintenance.
Collapse
Affiliation(s)
- Lionel Cladière
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR CNRS 8621, Bâtiment 409, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Campbell T, Daigle D, Brown E. Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function. Biochem J 2005; 389:843-52. [PMID: 15828870 PMCID: PMC1180735 DOI: 10.1042/bj20041873] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present an analysis of the cellular phenotype and biochemical activity of a conserved bacterial GTPase of unknown function (YloQ and YjeQ in Bacillus subtilis and Escherichia coli respectively) using a collection of antibiotics of diverse mechanisms and chemical classes. We created a yloQ deletion strain, which exhibited a slow growth phenotype and formed chains of filamentous cells. Additionally, we constructed a conditional mutant in yloQ, where growth was dependent on inducible expression from a complementing copy of the gene. In phenotypic studies, depletion of yloQ sensitized cells to antibiotics that bind at the peptide channel or peptidyl transferase centre, providing the first chemical genetic evidence linking this GTPase to ribosome function. Additional experiments using these small-molecule probes in vitro revealed that aminoglycoside antibiotics severely affected a previously characterized ribosome-associated GTPase activity of purified, recombinant YjeQ from E. coli. None of the antibiotics tested competed with YjeQ for binding to 30 or 70 S ribosomes. A closer examination of YloQ depletion revealed that the polyribosome profiles were altered and that decreased expression of YloQ led to the accumulation of ribosomal subunits at the expense of intact 70 S ribosomes. The present study provides the first evidence showing that YloQ/YjeQ may be involved in several areas of cellular metabolism, including cell division and ribosome function.
Collapse
Affiliation(s)
- Tracey L. Campbell
- Department of Biochemistry and Biomedical Sciences, Antimicrobial Research Centre, McMaster University, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5
| | - Denis M. Daigle
- Department of Biochemistry and Biomedical Sciences, Antimicrobial Research Centre, McMaster University, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences, Antimicrobial Research Centre, McMaster University, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5
- To whom correspondence should be addressed (email )
| |
Collapse
|