1
|
Guo H, Liu S, Liu X, Zhang L. Lightening flavin by amination for fluorescent sensing. Phys Chem Chem Phys 2024; 26:19554-19563. [PMID: 38979978 DOI: 10.1039/d4cp01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Monitoring of reactive oxygen species (ROS), such as O2˙-, etc., in organisms is of great significance, not only for their essential role in biological processes, but their excessive production may also result in many diseases. Flavin (FL) is a fluorophore that naturally exists in flavoenzymes, and its fluorescent emission (FE) becomes negligible when reduced. This enables the application of FL derivatives as fluorescent sensors for ROS. We presented a theoretical investigation to address the impact of amino substitution on the photophysical properties of aminoflavins (AmFLs). Resulting from the interplay of electronic and positional effects, amination at C8 enhances the electronic coupling between the ground state and the first singlet excited state by enlarging the adiabatic energy change of the electronic transitions and the emission transition dipole moments, weakens the vibronic coupling by decreasing the contribution of isoalloxazine to the frontier molecular orbitals, redshifts the absorption band, and enhances the fluorescent emission drastically in 8AmFL. The theoretically estimated fluorescent emission intensity of 8AmFL is ∼40 times that of FL, suggesting its potential application as a fluorescent sensor.
Collapse
Affiliation(s)
- Huimin Guo
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Siyu Liu
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Xin Liu
- School of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian and Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China
| |
Collapse
|
2
|
Kar RK, Chasen S, Mroginski MA, Miller AF. Tuning the Quantum Chemical Properties of Flavins via Modification at C8. J Phys Chem B 2021; 125:12654-12669. [PMID: 34784473 DOI: 10.1021/acs.jpcb.1c07306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavins are central to countless enzymes but display different reactivities depending on their environments. This is understood to reflect modulation of the flavin electronic structure. To understand changes in orbital natures, energies, and correlation over the ring system, we begin by comparing seven flavin variants differing at C8, exploiting their different electronic spectra to validate quantum chemical calculations. Ground state calculations replicate a Hammett trend and reveal the significance of the flavin π-system. Comparison of higher-level theories establishes CC2 and ACD(2) as methods of choice for characterization of electronic transitions. Charge transfer character and electron correlation prove responsive to the identity of the substituent at C8. Indeed, bond length alternation analysis demonstrates extensive conjugation and delocalization from the C8 position throughout the ring system. Moreover, we succeed in replicating a particularly challenging UV/Vis spectrum by implementing hybrid QM/MM in explicit solvents. Our calculations reveal that the presence of nonbonding lone pairs correlates with the change in the UV/Vis spectrum observed when the 8-methyl is replaced by NH2, OH, or SH. Thus, our computations offer routes to understanding the spectra of flavins with different modifications. This is a first step toward understanding how the same is accomplished by different binding environments.
Collapse
Affiliation(s)
- Rajiv K Kar
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Sam Chasen
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Maria-Andrea Mroginski
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anne-Frances Miller
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.,Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
3
|
Stines-Chaumeil C, Mavré F, Kauffmann B, Mano N, Limoges B. Mechanism of Reconstitution/Activation of the Soluble PQQ-Dependent Glucose Dehydrogenase from Acinetobacter calcoaceticus: A Comprehensive Study. ACS OMEGA 2020; 5:2015-2026. [PMID: 32039339 PMCID: PMC7003513 DOI: 10.1021/acsomega.9b04034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The ability to switch on the activity of an enzyme through its spontaneous reconstitution has proven to be a valuable tool in fundamental studies of enzyme structure/reactivity relationships or in the design of artificial signal transduction systems in bioelectronics, synthetic biology, or bioanalytical applications. In particular, those based on the spontaneous reconstitution/activation of the apo-PQQ-dependent soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus were widely developed. However, the reconstitution mechanism of sGDH with its two cofactors, i.e., pyrroloquinoline quinone (PQQ) and Ca2+, remains unknown. The objective here is to elucidate this mechanism by stopped-flow kinetics under single-turnover conditions. The reconstitution of sGDH exhibited biphasic kinetics, characteristic of a square reaction scheme associated with two activation pathways. From a complete kinetic analysis, we were able to fully predict the reconstitution dynamics and also to demonstrate that when PQQ first binds to apo-sGDH, it strongly impedes the access of Ca2+ to its enclosed position at the bottom of the enzyme binding site, thereby greatly slowing down the reconstitution rate of sGDH. This slow calcium insertion may purposely be accelerated by providing more flexibility to the Ca2+ binding loop through the specific mutation of the calcium-coordinating P248 proline residue, reducing thus the kinetic barrier to calcium ion insertion. The dynamic nature of the reconstitution process is also supported by the observation of a clear loop shift and a reorganization of the hydrogen-bonding network and van der Waals interactions observed in both active sites of the apo and holo forms, a structural change modulation that was revealed from the refined X-ray structure of apo-sGDH (PDB: 5MIN).
Collapse
Affiliation(s)
- Claire Stines-Chaumeil
- CNRS,
Université de Bordeaux, CRPP, UMR 5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| | - François Mavré
- Université
de Paris, Laboratoire d’Electrochimie Moléculaire, UMR
7591, CNRS, F-75013 Paris, France
| | - Brice Kauffmann
- CNRS
UMS 3033, INSERM US001, Université de Bordeaux, IECB, 2, Rue Robert Escarpit, F-33607 Pessac, France
| | - Nicolas Mano
- CNRS,
Université de Bordeaux, CRPP, UMR 5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| | - Benoît Limoges
- Université
de Paris, Laboratoire d’Electrochimie Moléculaire, UMR
7591, CNRS, F-75013 Paris, France
| |
Collapse
|
4
|
Thibodeaux CJ, Chang WC, Liu HW. Unraveling flavoenzyme reaction mechanisms using flavin analogues and linear free energy relationships. Methods Enzymol 2019; 620:167-188. [DOI: 10.1016/bs.mie.2019.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Hazra AB, Ballou DP, Taga ME. Unique Biochemical and Sequence Features Enable BluB To Destroy Flavin and Distinguish BluB from the Flavin Monooxygenase Superfamily. Biochemistry 2018; 57:1748-1757. [PMID: 29457884 DOI: 10.1021/acs.biochem.7b01193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vitamin B12 (cobalamin) is an essential micronutrient for humans that is synthesized by only a subset of bacteria and archaea. The aerobic biosynthesis of 5,6-dimethylbenzimidazole, the lower axial ligand of cobalamin, is catalyzed by the "flavin destructase" enzyme BluB, which fragments reduced flavin mononucleotide following its reaction with oxygen to yield this ligand. BluB is similar in sequence and structure to members of the flavin oxidoreductase superfamily, yet the flavin destruction process has remained elusive. Using stopped-flow spectrophotometry, we find that the flavin destructase reaction of BluB from Sinorhizobium meliloti is initiated with canonical flavin-O2 chemistry. A C4a-peroxyflavin intermediate is rapidly formed in BluB upon reaction with O2, and has properties similar to those of flavin-dependent hydroxylases. Analysis of reaction mixtures containing flavin analogues indicates that both formation of the C4a-peroxyflavin and the subsequent destruction of the flavin to form 5,6-dimethylbenzimidazole are influenced by the electronic properties of the flavin isoalloxazine ring. The flavin destruction phase of the reaction, which results from the decay of the C4a-peroxyflavin intermediate, occurs more efficiently at pH >7.5. Furthermore, the BluB mutants D32N and S167G are specifically impaired in the flavin destruction phase of the reaction; nevertheless, both form the C4a-peroxyflavin nearly quantitatively. Coupled with a phylogenetic analysis of BluB and related flavin-dependent enzymes, these results demonstrate that the BluB flavin destructase family can be identified by the presence of active site residues D32 and S167.
Collapse
Affiliation(s)
- Amrita B Hazra
- Department of Plant & Microbial Biology , University of California, Berkeley , Berkeley , California 94720 , United States.,Department of Chemistry , Indian Institute of Science Education and Research Pune , Pune - 411008 , India
| | - David P Ballou
- Department of Biological Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology , University of California, Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
6
|
Ferguson KL, Arunrattanamook N, Marsh ENG. Mechanism of the Novel Prenylated Flavin-Containing Enzyme Ferulic Acid Decarboxylase Probed by Isotope Effects and Linear Free-Energy Relationships. Biochemistry 2016; 55:2857-63. [DOI: 10.1021/acs.biochem.6b00170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Kyle L. Ferguson
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nattapol Arunrattanamook
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - E. Neil G. Marsh
- Department
of Chemistry, ‡Department of Chemical Engineering,
and §Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M. Identifizierung des Schlüsselenzyms der Roseoflavinbiosynthese. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Schwarz
- Fakultät für Biotechnologie Institut für Technische Mikrobiologie Hochschule Mannheim Paul-Wittsack-Straße 10 68163 Mannheim Deutschland
| | - Valentino Konjik
- Fakultät für Biotechnologie Institut für Technische Mikrobiologie Hochschule Mannheim Paul-Wittsack-Straße 10 68163 Mannheim Deutschland
| | - Frank Jankowitsch
- Fakultät für Biotechnologie Institut für Technische Mikrobiologie Hochschule Mannheim Paul-Wittsack-Straße 10 68163 Mannheim Deutschland
| | - Roger Sandhoff
- Pathobiochemie der Lipide im Deutschen Krebsforschungszentrum Heidelberg Deutschland
| | - Matthias Mack
- Fakultät für Biotechnologie Institut für Technische Mikrobiologie Hochschule Mannheim Paul-Wittsack-Straße 10 68163 Mannheim Deutschland
| |
Collapse
|
8
|
Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M. Identification of the Key Enzyme of Roseoflavin Biosynthesis. Angew Chem Int Ed Engl 2016; 55:6103-6. [DOI: 10.1002/anie.201600581] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Schwarz
- Fakultät für Biotechnologie Institut für Technische Mikrobiologie Hochschule Mannheim Paul-Wittsack-Strasse 10 68163 Mannheim Germany
| | - Valentino Konjik
- Fakultät für Biotechnologie Institut für Technische Mikrobiologie Hochschule Mannheim Paul-Wittsack-Strasse 10 68163 Mannheim Germany
| | - Frank Jankowitsch
- Fakultät für Biotechnologie Institut für Technische Mikrobiologie Hochschule Mannheim Paul-Wittsack-Strasse 10 68163 Mannheim Germany
| | - Roger Sandhoff
- Pathobiochemie der Lipide im Deutschen Krebsforschungszentrum (DKFZ) Heidelberg Germany
| | - Matthias Mack
- Fakultät für Biotechnologie Institut für Technische Mikrobiologie Hochschule Mannheim Paul-Wittsack-Strasse 10 68163 Mannheim Germany
| |
Collapse
|
9
|
Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M, Mack M. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. FEBS J 2015; 282:3230-42. [PMID: 25661987 DOI: 10.1111/febs.13226] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 01/13/2023]
Abstract
FMN riboswitches are genetic elements that, in many bacteria, control genes responsible for biosynthesis and/or transport of riboflavin (vitamin B2 ). We report that the Escherichia coli ribB FMN riboswitch controls expression of the essential gene ribB coding for the riboflavin biosynthetic enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (RibB; EC 4.1.99.12). Our data show that the E. coli ribB FMN riboswitch is unusual because it operates at the transcriptional and also at the translational level. Expression of ribB is negatively affected by FMN and by the FMN analog roseoflavin mononucleotide, which is synthesized enzymatically from roseoflavin and ATP. Consequently, in addition to flavoenzymes, the E. coli ribB FMN riboswitch constitutes a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
Collapse
Affiliation(s)
- Danielle Pedrolli
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Germany.,Department of Bioprocessing and Biotechnology, School of Pharmaceutical Sciences, Univ Estadual Paulista - UNESP, Araraquara, Brazil
| | - Simone Langer
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Germany
| | - Birgit Hobl
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Germany
| | - Julia Schwarz
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Germany
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, Medical School, National Chengkung University, Tainan City, Taiwan.,Center for Infectious Disease and Signal Transduction, Medical School, National Chengkung University, Tainan City, Taiwan
| | - Matthias Mack
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Germany
| |
Collapse
|
10
|
Stoisser T, Rainer D, Leitgeb S, Wilson DK, Nidetzky B. The Ala95-to-Gly substitution in Aerococcus viridans l-lactate oxidase revisited - structural consequences at the catalytic site and effect on reactivity with O2 and other electron acceptors. FEBS J 2014; 282:562-78. [PMID: 25423902 DOI: 10.1111/febs.13162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 01/05/2023]
Abstract
Aerococcus viridansl-lactate oxidase (avLOX) is a biotechnologically important flavoenzyme that catalyzes the conversion of L-lactate and O₂ into pyruvate and H₂O₂. The enzymatic reaction underlies different biosensor applications of avLOX for blood L-lactate determination. The ability of avLOX to replace O₂ with other electron acceptors such as 2,6-dichlorophenol-indophenol (DCIP) allows the possiblity of analytical and practical applications. The A95G variant of avLOX was previously shown to exhibit lowered reactivity with O₂ compared to wild-type enzyme and therefore was employed in a detailed investigation with respect to the specificity for different electron acceptor substrates. From stopped-flow experiments performed at 20 °C (pH 6.5), we determined that the A95G variant (fully reduced by L-lactate) was approximately three-fold more reactive towards DCIP (1.0 ± 0.1 × 10(6) M(-1) ·s(-1) ) than O₂, whereas avLOX wild-type under the same conditions was 14-fold more reactive towards O₂(1.8 ± 0.1 × 10(6) m(-1) ·s(-1)) than DCIP. Substituted 1,4-benzoquinones were up to five-fold better electron acceptors for reaction with L-lactate-reduced A95G variant than wild-type. A 1.65-Å crystal structure of oxidized A95G variant bound with pyruvate was determined and revealed that the steric volume created by removal of the methyl side chain of Ala95 and a slight additional shift in the main chain at position Gly95 together enable the accomodation of a new active-site water molecule within hydrogen-bond distance to the N5 of the FMN cofactor. The increased steric volume available in the active site allows the A95G variant to exhibit a similar trend with the related glycolate oxidase in electron acceptor substrate specificities, despite the latter containing an alanine at the analogous position.
Collapse
Affiliation(s)
- Thomas Stoisser
- Research Center Pharmaceutical Engineering, Graz, Austria; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
11
|
Ferreira P, Martínez-Júlvez M, Medina M. Electron transferases. Methods Mol Biol 2014; 1146:79-94. [PMID: 24764089 DOI: 10.1007/978-1-4939-0452-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The flavin isoalloxazine ring in electron transferases functions in a redox capacity, being able to take up electrons from a donor to subsequently deliver them to an acceptor. The main characteristics of these flavoproteins, including their unique ability to mediate obligatory processes of two-electron transfers with those involving single-electron transfer, are here described. To illustrate the versatility of these proteins, the acquired knowledge of the function of the two electron transferases involved in the cyanobacterial photosynthetic electron transfer from photosystem I to NADP(+) is presented. Many aspects of their biochemistry and biophysics have been extensively characterized using site-directed mutagenesis, steady-state and transient kinetics, spectroscopy, calorimetry, X-ray crystallography, electron paramagnetic resonance, and computational methods.
Collapse
Affiliation(s)
- Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology, Institute for Biocomputation and Physics of Complex Systems, Zaragoza, Spain
| | | | | |
Collapse
|
12
|
Zhang L, Miranda-Castro R, Stines-Chaumeil C, Mano N, Xu G, Mavré F, Limoges B. Heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase immobilized on an electrode: a sensitive strategy for PQQ detection down to picomolar levels. Anal Chem 2014; 86:2257-67. [PMID: 24476605 DOI: 10.1021/ac500142e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly sensitive electroanalytical method for determination of PQQ in solution down to subpicomolar concentrations is proposed. It is based on the heterogeneous reconstitution of the PQQ-dependent glucose dehydrogenase (PQQ-GDH) through the specific binding of its pyrroloquinoline quinone (PQQ) cofactor to the apoenzyme anchored on an electrode surface. It is shown from kinetics analysis of both the enzyme catalytic responses and enzyme surface-reconstitution process (achieved by cyclic voltammetry under redox-mediated catalysis) that the selected immobilization strategy (i.e., through an avidin/biotin linkage) is well-suited to immobilize a nearly saturated apoenzyme monolayer on the electrode surface with an almost fully preserved PQQ binding properties and catalytic activity. From measurement of the overall rate constants controlling the steady-state catalytic current responses of the surface-reconstituted PQQ-GDH and determination of the PQQ equilibrium binding (Kb = 2.4 × 10(10) M(-1)) and association rate (kon = 2 × 10(6) M(-1) s(-1)) constants with the immobilized apoenzyme, the analytical performances of the method could be rationally evaluated, and the signal amplification for PQQ detection down to the picomolar levels is well-predicted. These performances outperform by several orders of magnitude the direct electrochemical detection of PQQ in solution and by 1 to 2 orders the detection limits previously achieved by UV-vis spectroscopic detection of the homogeneous PQQ-GDH reconstitution.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot , Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M. Natural riboflavin analogs. Methods Mol Biol 2014; 1146:41-63. [PMID: 24764087 DOI: 10.1007/978-1-4939-0452-5_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Riboflavin analogs have a good potential to serve as basic structures for the development of novel anti-infectives. Riboflavin analogs have multiple cellular targets, since riboflavin (as a precursor to flavin cofactors) is active at more than one site in the cell. As a result, the frequency of developing resistance to antimicrobials based on riboflavin analogs is expected to be significantly lower. The only known natural riboflavin analog with antibiotic function is roseoflavin from the bacterium Streptomyces davawensis. This antibiotic negatively affects flavoenzymes and FMN riboswitches. Another roseoflavin producer, Streptomyces cinnabarinus, was recently identified. Possibly, flavin analogs with antibiotic activity are more widespread than anticipated. The same could be true for flavin analogs yet to be discovered, which could constitute tools for cellular chemistry, thus allowing a further extension of the catalytic spectrum of flavoenzymes.
Collapse
Affiliation(s)
- Danielle Biscaro Pedrolli
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli. J Bacteriol 2013; 195:4037-45. [PMID: 23836860 DOI: 10.1128/jb.00646-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The riboflavin analog roseoflavin is an antibiotic produced by Streptomyces davawensis. Riboflavin transporters are responsible for roseoflavin uptake by target cells. Roseoflavin is converted to the flavin mononucleotide (FMN) analog roseoflavin mononucleotide (RoFMN) by flavokinase and to the flavin adenine dinucleotide (FAD) analog roseoflavin adenine dinucleotide (RoFAD) by FAD synthetase. In order to study the effect of RoFMN and RoFAD in the cytoplasm of target cells, Escherichia coli was used as a model. E. coli is predicted to contain 38 different FMN- or FAD-dependent proteins (flavoproteins). These proteins were overproduced in recombinant E. coli strains grown in the presence of sublethal amounts of roseoflavin. The flavoproteins were purified and analyzed with regard to their cofactor contents. It was found that 37 out of 38 flavoproteins contained either RoFMN or RoFAD. These cofactors have different physicochemical properties than FMN and FAD and were reported to reduce or completely abolish flavoprotein function.
Collapse
|
15
|
Langer S, Nakanishi S, Mathes T, Knaus T, Binter A, Macheroux P, Mase T, Miyakawa T, Tanokura M, Mack M. The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form. Biochemistry 2013; 52:4288-95. [PMID: 23713585 DOI: 10.1021/bi400348d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Gram-positive bacterium Streptomyces davawensis is the only organism known to produce the antibiotic roseoflavin. Roseoflavin is a structural riboflavin analogue and is converted to the flavin mononucleotide (FMN) analogue roseoflavin mononucleotide (RoFMN) by flavokinase. FMN-dependent homodimeric azobenzene reductase (AzoR) (EC 1.7.1.6) from Escherichia coli was analyzed as a model enzyme. In vivo and in vitro experiments revealed that RoFMN binds to the AzoR apoenzyme with an even higher affinity compared to that of the "natural" cofactor FMN. Structural analysis (at a resolution of 1.07 Å) revealed that RoFMN binding did not affect the overall topology of the enzyme and also did not interfere with dimerization of AzoR. The AzoR-RoFMN holoenzyme complex was found to be less active (30% of AzoR-FMN activity) in a standard assay. We provide evidence that the different physicochemical properties of RoFMN are responsible for its reduced cofactor activity.
Collapse
Affiliation(s)
- Simone Langer
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lans I, Frago S, Medina M. Understanding the FMN cofactor chemistry within the Anabaena Flavodoxin environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2118-27. [PMID: 22982476 DOI: 10.1016/j.bbabio.2012.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/26/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022]
Abstract
The chemical versatility of flavin cofactors within the flavoprotein environment allows them to play main roles in the bioenergetics of all type of organisms, particularly in energy transformation processes such as photosynthesis or oxidative phosphorylation. Despite the large diversity of properties shown by flavoproteins and of the biological processes in which they are involved, only two flavin cofactors, FMN and FAD (both derived from the 7,8-dimethyl-10-(1'-D-ribityl)-isoalloxazine), are usually found in these proteins. Using theoretical and experimental approaches we have carried out an evaluation of the effects introduced upon substituting the 7- and/or 8-methyls of the isoalloxazine ring in the chemical and oxido-reduction properties of the different atoms of the ring on free flavins and on the photosynthetic Anabaena Flavodoxin (a flavoprotein that replaces Ferredoxin as electron carrier from Photosystem I to Ferredoxin-NADP(+) reductase). In Anabaena Flavodoxin both the protein environment and the redox state contribute to modulate the chemical reactivity of the isoalloxazine ring. Anabaena apoflavodoxin is shown to be designed to stabilise/destabilise each one of the FMN redox states (but not of the analogues produced upon substitution of the 7- and/or 8-methyls groups) in the adequate proportions to provide Flavodoxin with the particular properties required for the functions in which it is involved in vivo. The 7- and/or 8-methyl groups of the ixoalloxazine can be discarded as the gate for electrons exchange in Anabaena Fld, but a key role in this process is envisaged for the C6 atom of the flavin and the backbone atoms of Asn58.
Collapse
Affiliation(s)
- Isaias Lans
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | | | | |
Collapse
|
17
|
Sun HG, Ruszczycky MW, Chang WC, Thibodeaux CJ, Liu HW. Nucleophilic participation of reduced flavin coenzyme in mechanism of UDP-galactopyranose mutase. J Biol Chem 2011; 287:4602-8. [PMID: 22187430 DOI: 10.1074/jbc.m111.312538] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-galactopyranose mutase (UGM) requires reduced FAD (FAD(red)) to catalyze the reversible interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf). Recent structural and mechanistic studies of UGM have provided evidence for the existence of an FAD-Galf/p adduct as an intermediate in the catalytic cycle. These findings are consistent with Lewis acid/base chemistry involving nucleophilic attack by N5 of FAD(red) at C1 of UDP-Galf/p. In this study, we employed a variety of FAD analogues to characterize the role of FAD(red) in the UGM catalytic cycle using positional isotope exchange (PIX) and linear free energy relationship studies. PIX studies indicated that UGM reconstituted with 5-deaza-FAD(red) is unable to catalyze PIX of the bridging C1-OP(β) oxygen of UDP-Galp, suggesting a direct role for the FAD(red) N5 atom in this process. In addition, analysis of kinetic linear free energy relationships of k(cat) versus the nucleophilicity of N5 of FAD(red) gave a slope of ρ = -2.4 ± 0.4. Together, these findings are most consistent with a chemical mechanism for UGM involving an S(N)2-type displacement of UDP from UDP-Galf/p by N5 of FAD(red).
Collapse
Affiliation(s)
- He G Sun
- Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry and Biochemistry and Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-0128, USA
| | | | | | | | | |
Collapse
|
18
|
Quaye O, Nguyen T, Gannavaram S, Pennati A, Gadda G. Rescuing of the hydride transfer reaction in the Glu312Asp variant of choline oxidase by a substrate analogue. Arch Biochem Biophys 2010; 499:1-5. [DOI: 10.1016/j.abb.2010.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
|
19
|
Saam J, Rosini E, Molla G, Schulten K, Pollegioni L, Ghisla S. O2 reactivity of flavoproteins: dynamic access of dioxygen to the active site and role of a H+ relay system in D-amino acid oxidase. J Biol Chem 2010; 285:24439-46. [PMID: 20498362 DOI: 10.1074/jbc.m110.131193] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular dynamics simulations and implicit ligand sampling methods have identified trajectories and sites of high affinity for O(2) in the protein framework of the flavoprotein D-amino-acid oxidase (DAAO). A specific dynamic channel for the diffusion of O(2) leads from solvent to the flavin Si-side (amino acid substrate and product bind on the Re-side). Based on this, amino acids that flank the putative O(2) high affinity sites have been exchanged with bulky residues to introduce steric constraints. In G52V DAAO, the valine side chain occupies the site that in wild-type DAAO has the highest O(2) affinity. In this variant, the reactivity of the reduced enzyme with O(2) is decreased >or=100-fold and the turnover number approximately 1000-fold thus verifying the concept. In addition, the simulations have identified a chain of three water molecules that might serve in relaying a H(+) from the product imino acid =NH(2)(+) group bound on the flavin Re-side to the developing peroxide on the Si-side. This function would be comparable with that of a similarly located histidine in the flavoprotein glucose oxidase.
Collapse
Affiliation(s)
- Jan Saam
- Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Expression in Escherichia coli of an unnamed protein gene from Aspergillus oryzae RIB40 and cofactor analyses of the gene product as formate oxidase. Biosci Biotechnol Biochem 2009; 73:2645-9. [PMID: 19966484 DOI: 10.1271/bbb.90497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An unnamed protein of Aspergillus oryzae RIB40 (accession no. XP_001727378), the amino acid sequence of which shows high similarity to those of formate oxidase isoforms produced by Debaryomyces vanjiriae MH201, was produced in Escherichia coli in C-His(6)-tagged form. The gene product, purified by affinity column chromatography, catalyzed the oxidation of formate to yield hydrogen peroxide but showed no evidence of activity on the other substrates tested. The K(m) and V(max) values at 30 degrees C at pH 4.5 were 7.9 mM and 26.3 micromole/min mg respectively. The purified enzyme showed UV-visible spectra atypical of ordinary flavoproteins. The UV-visible spectra of the enzyme and the UV-visible spectra, fluorescence spectra, and mass spectrometry of the extract obtained by boiling the purified enzyme suggested that the enzyme has a non-covalently bound FAD analog, which is expected to be 8-formyl-FAD.
Collapse
|
22
|
Frago S, Lans I, Navarro JA, Hervás M, Edmondson DE, De la Rosa MA, Gómez-Moreno C, Mayhew SG, Medina M. Dual role of FMN in flavodoxin function: electron transfer cofactor and modulation of the protein-protein interaction surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:262-71. [PMID: 19900400 DOI: 10.1016/j.bbabio.2009.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
Flavodoxin (Fld) replaces Ferredoxin (Fd) as electron carrier from Photosystem I (PSI) to Ferredoxin-NADP(+) reductase (FNR). A number of Anabaena Fld (AnFld) variants with replacements at the interaction surface with FNR and PSI indicated that neither polar nor hydrophobic residues resulted critical for the interactions, particularly with FNR. This suggests that the solvent exposed benzenoid surface of the Fld FMN cofactor might contribute to it. FMN has been replaced with analogues in which its 7- and/or 8-methyl groups have been replaced by chlorine and/or hydrogen. The oxidised Fld variants accept electrons from reduced FNR more efficiently than Fld, as expected from their less negative midpoint potential. However, processes with PSI (including reduction of Fld semiquinone by PSI, described here for the first time) are impeded at the steps that involve complex re-arrangement and electron transfer (ET). The groups introduced, particularly chlorine, have an electron withdrawal effect on the pyrazine and pyrimidine rings of FMN. These changes are reflected in the magnitude and orientation of the molecular dipole moment of the variants, both factors appearing critical for the re-arrangement of the finely tuned PSI:Fld complex. Processes with FNR are also slightly modulated. Despite the displacements observed, the negative end of the dipole moment points towards the surface that contains the FMN, still allowing formation of complexes competent for efficient ET. This agrees with several alternative binding modes in the FNR:Fld interaction. In conclusion, the FMN in Fld not only contributes to the redox process, but also to attain the competent interaction of Fld with FNR and PSI.
Collapse
Affiliation(s)
- Susana Frago
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Institute of Biocomputation and Physics of Complex Systems (BIFI). Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zirak P, Penzkofer A, Mathes T, Hegemann P. Absorption and emission spectroscopic characterization of BLUF protein Slr1694 from Synechocystis sp. PCC6803 with roseoflavin cofactor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 97:61-70. [DOI: 10.1016/j.jphotobiol.2009.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 07/08/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
|
24
|
Tyagi A, Zirak P, Penzkofer A, Mathes T, Hegemann P, Mack M, Ghisla S. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2009.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Rosini E, Pollegioni L, Ghisla S, Orru R, Molla G. Optimization of D-amino acid oxidase for low substrate concentrations--towards a cancer enzyme therapy. FEBS J 2009; 276:4921-32. [PMID: 19694805 DOI: 10.1111/j.1742-4658.2009.07191.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
D-amino acid oxidase (DAAO) has recently become of interest as a biocatalyst for industrial applications and for therapeutic treatments. It has been used in gene-directed enzyme prodrug therapies, in which its production of H2O2 in tumor cells can be regulated by administration of substrate. This approach is limited by the locally low O2 concentration and the high K(m) for this substrate. Using the directed evolution approach, one DAAO mutant was identified that has increased activity at low O2 and D-Ala concentrations and a 10-fold lower K(m) for O2. We report on the mechanism of this DAAO variant and on its cytotoxicity towards various mammalian cancer cell lines. The higher activity observed at low O2 and D-Ala concentrations results from a combination of modifications of specific kinetic steps, each being of small magnitude. These results highlight the potential in vivo applicability of this evolved mutant DAAO for tumor therapy.
Collapse
Affiliation(s)
- Elena Rosini
- Dipartimento di Biotecnologie e Scienze Molecolari, Università degli studi dell'Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
26
|
Host-directed evolution of a novel lactate oxidase in Streptococcus iniae isolates from barramundi (Lates calcarifer). Appl Environ Microbiol 2009; 75:2908-19. [PMID: 19270123 DOI: 10.1128/aem.02147-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus iniae, lactate metabolism is dependent upon two proteins, lactate permease that mediates uptake and lactate oxidase, a flavin mononucleotide-dependent enzyme that catalyzes oxidation of alpha-hydroxyacids. A novel variant of the lactate oxidase gene, lctO, in Australian isolates of S. iniae from diseased barramundi was found during a diagnostic screen using LOX-1 and LOX-2 primers, yielding amplicons of 920 bp instead of the expected 869 bp. Sequencing of the novel gene variant (type 2) revealed a 51-nucleotide insertion in lctO, resulting in a 17-amino-acid repeat in the gene product, and three-dimensional modeling indicated formation of an extra loop in the monomeric protein structure. The activities of the lactate oxidase enzyme variants expressed in Escherichia coli were examined, indicating that the higher-molecular-weight type 2 enzyme exhibited higher activity. Growth rates of S. iniae expressing the novel type 2 enzyme were not reduced at lactate concentrations of 0.3% and 0.5%, whereas a strain expressing the type 1 enzyme exhibited reduced growth rates at these lactate concentrations. During a retrospective screen of 105 isolates of S. iniae from Australia, the United States, Canada, Israel, Réunion Island, and Thailand, the type 2 variant arose only in isolates from a single marine farm with unusually high tidal flow in the Northern Territory, Australia. Elevated plasma lactate levels in the fish, resulting from the effort of swimming in tidal flows of up to 3 knots, may exert sufficient selective pressure to maintain the novel, high-molecular-weight enzyme variant.
Collapse
|
27
|
Zirak P, Penzkofer A, Mathes T, Hegemann P. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2008.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Gadda G. Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases. Biochemistry 2009; 47:13745-53. [PMID: 19053234 DOI: 10.1021/bi801994c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Choline oxidase (E.C. 1.1.3.17; choline-oxygen 1-oxidoreductase) catalyzes the two-step, four-electron oxidation of choline to glycine betaine with betaine aldehyde as enzyme-associated intermediate and molecular oxygen as final electron acceptor. Biochemical, structural, and mechanistic studies on the wild-type and a number of mutant forms of choline oxidase from Arthrobacter globiformis have recently been carried out, allowing for the delineation at molecular and atomic levels of the mechanism of alcohol oxidation catalyzed by the enzyme. First, the alcohol substrate is activated to its alkoxide species by the removal of the hydroxyl proton in the enzyme-substrate complex. The resulting activated alkoxide is correctly positioned for catalysis through electrostatic and hydrogen bonding interactions with a number of active site residues. After substrate activation and correct positioning are attained, alcohol oxidation occurs in a highly preorganized enzyme-substrate complex through quantum mechanical transfer of a hydride ion from the alpha-carbon of the chelated, alkoxide species to the N(5) atom of the enzyme-bound flavin. This mechanism in its essence is shared by another class of alcohol oxidizing enzymes that utilize a catalytic zinc to stabilize an alkoxide intermediate and NAD(P)(+) as the organic cofactor that accepts the hydride ion, whose paradigm example is alcohol dehydrogenase. It will be interesting to experimentally evaluate the attractive hypothesis of whether the mechanism of choline oxidase can be extended to other flavin-dependent enzymes as well as enzymes that utilize cofactors other than flavins in the oxidation of alcohols.
Collapse
Affiliation(s)
- Giovanni Gadda
- Departments of Chemistry and Biology, and The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, USA.
| |
Collapse
|
29
|
Ma C, Gao C, Qiu J, Hao J, Liu W, Wang A, Zhang Y, Wang M, Xu P. Membrane-bound L- and D-lactate dehydrogenase activities of a newly isolated Pseudomonas stutzeri strain. Appl Microbiol Biotechnol 2007; 77:91-8. [PMID: 17805529 DOI: 10.1007/s00253-007-1132-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/16/2007] [Accepted: 07/20/2007] [Indexed: 10/22/2022]
Abstract
Pseudomonas stutzeri SDM was newly isolated from soil, and two stereospecific NAD-independent lactate dehydrogenase (iLDH) activities were detected in membrane of the cells cultured in a medium containing DL-lactate as the sole carbon source. Neither enzyme activities was constitutive, but both of them might be induced by either enantiomer of lactate. P. stutzeri SDM preferred to utilize lactate to growth, when both L-lactate and glucose were available, and the consumption of glucose was observed only after lactate had been exhausted. The Michaelis-Menten constant for L-lactate was higher than that for D-lactate. The L-iLDH activity was more stable at 55 degrees C, while the D-iLDH activity was lost. Both enzymes exhibited different solubilization with different detergents and different oxidation rates with different electron acceptors. Combining activity staining and previous proteomic analysis, the results suggest that there are two separate enzymes in P. stutzeri SDM, which play an important role in converting lactate to pyruvate.
Collapse
Affiliation(s)
- Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Choe YK, Nagase S, Nishimoto K. Theoretical study of the electronic spectra of oxidized and reduced states of lumiflavin and its derivative. J Comput Chem 2007; 28:727-39. [PMID: 17226839 DOI: 10.1002/jcc.20533] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Time-dependent density functional theory has been applied to investigate the electronic absorption spectrum of oxidized and reduced lumiflavin and its derivative, 8-NH(2)-lumiflavin. The calculations allow the authors to explain the origin of the difference in spectral features between oxidized and reduced states of lumiflavin. For the reduced lumiflavin, a reasonable assignment of the experimental spectrum has been made for the first time. Furthermore, the results obtained reveal that the NH(2) group plays a critical role in shaping the spectral features of 8-NH(2)-lumiflavin, and offer a reasonable explanation for the spectral changes upon substituting the NH(2) group for the CH(3) group of lumiflavin.
Collapse
Affiliation(s)
- Yoong-Kee Choe
- Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Centeral-2, Umezono 1-1-1, Tsukuba 305-8578, Japan.
| | | | | |
Collapse
|
31
|
Lim L, Molla G, Guinn N, Ghisla S, Pollegioni L, Vrielink A. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase. Biochem J 2006; 400:13-22. [PMID: 16856877 PMCID: PMC1635447 DOI: 10.1042/bj20060664] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cholesterol oxidase is a monomeric flavoenzyme that catalyses the oxidation of cholesterol to cholest-5-en-3-one followed by isomerization to cholest-4-en-3-one. The enzyme from Brevibacterium sterolicum contains the FAD cofactor covalently bound to His121. It was previously demonstrated that the H121A substitution results in a approximately 100 mV decrease in the midpoint redox potential and a approximately 40-fold decrease in turnover number compared to wild-type enzyme [Motteran, Pilone, Molla, Ghisla and Pollegioni (2001) Journal of Biological Chemistry 276, 18024-18030]. A detailed kinetic analysis of the H121A mutant enzyme shows that the decrease in turnover number is largely due to a corresponding decrease in the rate constant of flavin reduction, whilst the re-oxidation reaction is only marginally altered and the isomerization reaction is not affected by the substitution and precedes product dissociation. The X-ray structure of the mutant protein, determined to 1.7 A resolution (1 A identical with 0.1 nm), reveals only minor changes in the overall fold of the protein, namely: two loops have slight movements and a tryptophan residue changes conformation by a rotation of 180 degrees about chi1 compared to the native enzyme. Comparison of the isoalloxazine ring moiety of the FAD cofactor between the structures of the native and mutant proteins shows a change from a non-planar to a planar geometry (resulting in a more tetrahedral-like geometry for N5). This change is proposed to be a major factor contributing to the observed alteration in redox potential. Since a similar distortion of the flavin has not been observed in other covalent flavoproteins, it is proposed to represent a specific mode to facilitate flavin reduction in covalent cholesterol oxidase.
Collapse
Affiliation(s)
- Louis Lim
- *Department of Chemistry and Biochemistry, Sinsheimer Laboratory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, U.S.A
| | - Gianluca Molla
- †Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Nicole Guinn
- *Department of Chemistry and Biochemistry, Sinsheimer Laboratory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, U.S.A
| | - Sandro Ghisla
- ‡Fachbereich Biologie, University of Konstanz, Konstanz, Germany
| | - Loredano Pollegioni
- †Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Alice Vrielink
- *Department of Chemistry and Biochemistry, Sinsheimer Laboratory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
Mattevi A. To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem Sci 2006; 31:276-83. [PMID: 16600599 DOI: 10.1016/j.tibs.2006.03.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 02/21/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
Flavin-dependent enzymes catalyse a wide range of reactions and, thereby, facilitate a variety of cellular processes. Among the properties that equip flavoenzymes with this chemical versatility is their reactivity towards oxygen, which shows huge variation among flavoproteins. A survey of known 3D structures of flavin-dependent oxidases and dehydrogenases and the correlation with their functional properties indicates that there are no structural rules that enable prediction of whether or how a flavoenzyme reacts with oxygen. Combinations of subtle factors such as dipole pre-organization, charge distribution, dynamics and solvation in the active centre determine the balance of interactions that control oxygen reactivity. The chemical basis of oxygen reactivity remains a puzzling problem and represents one of the challenging questions in modern flavoenzymology.
Collapse
Affiliation(s)
- Andrea Mattevi
- Department of Genetics and Microbiology, University of Pavia, via Ferrata 1, Pavia 27100, Italy.
| |
Collapse
|
33
|
Streitenberger SA, López-Mas JA, Sánchez-Ferrer A, García-Carmona F. A study on the kinetic mechanism of apoenzyme reconstitution from Aerococcus viridans lactate oxidase. J Enzyme Inhib Med Chem 2003; 18:285-8. [PMID: 14506921 DOI: 10.1080/1475636031000090041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The preparation of a reconstitutable apoprotein is widely recognized as an important tool for studying the interactions between protein and coenzyme and also for characterizing the coenzyme-binding site of the protein. Here is described the kinetic analysis of the reconstitution of Aerococcus viridans lactate oxidase apoenzyme with FMN and FAD in the presence of substrate. The reconstitution was followed by measuring the increase in catalytic capacity with time. Lactate oxidase activity was easily removed by obtaining its apoenzyme in an acidic saturated ammonium sulphate solution. When the apoenzyme was reconstituted by the addition of FMN or FAD, a marked lag period was observed, after which the system reached a steady state (linear rate). To explain the binding mechanism of the cofactors to the apoenzyme, a kinetic model is proposed, in which the constants, k3 and k-3, representing the interaction of apoenzyme with cofactor are considered slow and responsible for the lag in the expression of activity. The affinity of apoenzyme was 51-fold higher for FMN than FAD.
Collapse
Affiliation(s)
- Sergio A Streitenberger
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30071 Murcia, Spain
| | | | | | | |
Collapse
|
34
|
Abstract
Flavoproteins are ubiquitous redox proteins that are involved in many biological processes. In the majority of flavoproteins, the flavin cofactor is tightly but noncovalently bound. Reversible dissociation of flavoproteins into apoprotein and flavin prosthetic group yields valuable insights in flavoprotein folding, function and mechanism. Replacement of the natural cofactor with artificial flavins has proved to be especially useful for the determination of the solvent accessibility, polarity, reaction stereochemistry and dynamic behaviour of flavoprotein active sites. In this review we summarize the advances made in the field of flavoprotein deflavination and reconstitution. Several sophisticated chromatographic procedures to either deflavinate or reconstitute the flavoprotein on a large scale are discussed. In a subset of flavoproteins, the flavin cofactor is covalently attached to the polypeptide chain. Studies from riboflavin-deficient expression systems and site-directed mutagenesis suggest that the flavinylation reaction is a post-translational, rather than a cotranslational, process. These genetic approaches have also provided insight into the mechanism of covalent flavinylation and the rationale for this atypical protein modification.
Collapse
Affiliation(s)
- Marco H Hefti
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | | |
Collapse
|
35
|
Hefti MH, Milder FJ, Boeren S, Vervoort J, van Berkel WJH. A His-tag based immobilization method for the preparation and reconstitution of apoflavoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:139-43. [PMID: 12527109 DOI: 10.1016/s0304-4165(02)00474-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The NifL PAS domain from Azotobacter vinelandii is a flavoprotein with FAD as the prosthetic group. Here we describe a novel immobilization procedure for the large-scale preparation of apo NifL PAS domain and its efficient reconstitution with either 2,4a-13C-FAD or 2,4a-13C-FMN. In this procedure, the His-tagged holoprotein is bound to an immobilized metal affinity column and the flavin is released by washing the column with buffer containing 2 M KBr and 2 M urea. The apoprotein is reconstituted on-column with the (artificial) flavin cofactor, and then eluted with buffer containing 250 mM imidazole. Alternatively, the immobilized apoprotein can be released from the column matrix before reconstitution. The His-tag based immobilization method of preparing reconstituted (or apo) NifL PAS domain protein has the advantage that it combines a protein affinity chromatography technique with limited protein loss, resulting in a high protein yield with extremely efficient flavin reconstitution. This on-column reconstitution method can also be used in cases where the apoprotein is unstable. Therefore, it may develop as a universal method for replacement of flavin or other cofactors.
Collapse
Affiliation(s)
- Marco H Hefti
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Tahallah N, Van Den Heuvel RHH, Van Den Berg WAM, Maier CS, Van Berkel WJH, Heck AJR. Cofactor-dependent assembly of the flavoenzyme vanillyl-alcohol oxidase. J Biol Chem 2002; 277:36425-32. [PMID: 12107187 DOI: 10.1074/jbc.m205841200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oligomerization of the flavoprotein vanillyl-alcohol oxidase (VAO) and its site-directed mutant H61T was studied by mass spectrometry. Native VAO has a covalently bound FAD and forms primarily octameric assemblies of 507 kDa. H61T is purified as a FAD-free apoprotein and mainly exists as a dimeric species of 126 kDa. Binding of FAD to apoH61T rapidly restores enzyme activity and induces octamerization, although association of H61T dimers seems not to be crucial for enzyme activity. Reconstitution of H61T with the cofactor analog 5'-ADP also promotes octamerization. FMN on the other hand, interacts with apoH61T without stimulating dimer association. These results are in line with observations made for several other flavoenzymes, which contain a Rossmann fold. Members of the VAO flavoprotein family do not contain a Rossmann fold but do share two conserved loops that are responsible for binding the pyrophosphate moiety of FAD. Therefore, the observed FAD-induced oligomerization might be general for this family. We speculate that upon FAD binding, small conformational changes in the ADP-binding pocket of the dimeric VAO species are transmitted to the protein surface, promoting oligomerization.
Collapse
Affiliation(s)
- Nora Tahallah
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Sacchi S, Lorenzi S, Molla G, Pilone MS, Rossetti C, Pollegioni L. Engineering the substrate specificity of D-amino-acid oxidase. J Biol Chem 2002; 277:27510-6. [PMID: 12021281 DOI: 10.1074/jbc.m203946200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high resolution crystal structure of D-amino-acid oxidase (DAAO) from the yeast Rhodotorula gracilis provided us with the tool to engineer the substrate specificity of this flavo-oxidase. DAAO catalyzes the oxidative deamination of D-amino acids, with the exception of D-aspartate and D-glutamate (which are oxidized by D-aspartate oxidase, DASPO). Following sequence homology, molecular modeling, and simulated annealing docking analyses, the active site residue Met-213 was mutated to arginine. The mutant enzyme showed properties close to those of DASPO (e.g. the oxidation of D-aspartate and the binding of l-tartrate), and it was still active on D-alanine. The presence of an additional guanidinium group in the active site of the DAAO mutant allowed the binding (and thus the oxidation) of D-aspartate, but it was also responsible for a lower catalytic activity on D-alanine. Similar results were also obtained when two additional arginines were simultaneously introduced in the active site of DAAO (M213R/Y238R mutant, yielding an architecture of the active site more similar to that obtained for the DASPO model), but the double mutant showed very low stability in solution. The decrease in maximal activity observed with these DAAO mutants could be due to alterations in the precise orbital alignment required for efficient catalysis, although even the change in the redox properties (more evident in the DAAO-benzoate complex) could play a role. The rational design approach was successful in producing an enzymatic activity with a new, broader substrate specificity, and this approach could also be used to develop DAAO variants suitable for use in biotechnological applications.
Collapse
Affiliation(s)
- Silvia Sacchi
- Department of Structural and Functional Biology, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Harris CM, Pollegioni L, Ghisla S. pH and kinetic isotope effects in d-amino acid oxidase catalysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5504-20. [PMID: 11683874 DOI: 10.1046/j.1432-1033.2001.02462.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of pH, solvent isotope, and primary isotope replacement on substrate dehydrogenation by Rhodotorula gracilis d-amino acid oxidase were investigated. The rate constant for enzyme-FAD reduction by d-alanine increases approximately fourfold with pH, reflecting apparent pKa values of approximately 6 and approximately 8, and reaches plateaus at high and low pH. Such profiles are observed in all presteady-state and steady-state kinetic experiments, using both d-alanine and d-asparagine as substrates, and are inconsistent with the operation of a base essential to catalysis. A solvent deuterium isotope effect of 3.1 +/- 1.1 is observed on the reaction with d-alanine at pH 6; it decreases to 1.2 +/- 0.2 at pH 10. The primary substrate isotope effect on the reduction rate with [2-D]d-alanine is 9.1 +/- 1.5 at low and 2.3 +/- 0.3 at high pH. At pH 6.0, the solvent isotope effect is 2.9 +/- 0.8 with [2-D]d-alanine, and the primary isotope effect is 8.4 +/- 2.4 in D2O. Thus, primary and solvent kinetic isotope effects (KIEs) are independent of the presence of the other isotope, i.e. the 'double' kinetic isotope effect is the product of the individual KIEs, consistent with a transition state in which rupture of the two bonds of the substrate to hydrogen is concerted. These results support a hydride transfer mechanism for the dehydrogenation reaction in d-amino acid oxidase and argue against the occurrence of any intermediates in the process. A pKa,app of approximately 8 is interpreted to arise from the microscopic ionization of the substrate amino acid alpha-amino group, but also includes contributions from kinetic parameters.
Collapse
Affiliation(s)
- C M Harris
- Department of Structural and Functional Biology, University of Insubria, Varese, Italy
| | | | | |
Collapse
|
40
|
Blaesse M, Kupke T, Huber R, Steinbacher S. Crystal structure of the peptidyl-cysteine decarboxylase EpiD complexed with a pentapeptide substrate. EMBO J 2000; 19:6299-310. [PMID: 11101502 PMCID: PMC305864 DOI: 10.1093/emboj/19.23.6299] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Revised: 10/06/2000] [Accepted: 10/10/2000] [Indexed: 11/13/2022] Open
Abstract
Epidermin from Staphylococcus epidermidis Tü3298 is an antimicrobial peptide of the lantibiotic family that contains, amongst other unusual amino acids, S:-[(Z:)- 2-aminovinyl]-D-cysteine. This residue is introduced by post-translational modification of the ribosomally synthesized precursor EpiA. Modification starts with the oxidative decarboxylation of its C-terminal cysteine by the flavoprotein EpiD generating a reactive (Z:)-enethiol intermediate. We have determined the crystal structures of EpiD and EpiD H67N in complex with the substrate pentapeptide DSYTC at 2.5 A resolution. Rossmann-type monomers build up a dodecamer of 23 point symmetry with trimers disposed at the vertices of a tetrahedron. Oligomer formation is essential for binding of flavin mononucleotide and substrate, which is buried by an otherwise disordered substrate recognition clamp. A pocket for the tyrosine residue of the substrate peptide is formed by an induced fit mechanism. The substrate contacts flavin mononucleotide only via Cys-Sgamma, suggesting its oxidation as the initial step. A thioaldehyde intermediate could undergo spontaneous decarboxylation. The unusual substrate recognition mode and the type of chemical reaction performed provide insight into a novel family of flavoproteins.
Collapse
Affiliation(s)
- M Blaesse
- Abteilung für Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152, Germany
| | | | | | | |
Collapse
|
41
|
Yorita K, Matsuoka T, Misaki H, Massey V. Interaction of two arginine residues in lactate oxidase with the enzyme flavin: conversion of FMN to 8-formyl-FMN. Proc Natl Acad Sci U S A 2000; 97:13039-44. [PMID: 11078532 PMCID: PMC27174 DOI: 10.1073/pnas.250472297] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two arginine residues, Arg-181 and Arg-268, are conserved throughout the known family of FMN-containing enzymes that catalyze the oxidation of alpha-hydroxyacids. In the lactate oxidase from Aerococcus viridans, these residues have been changed to lysine in two single mutations and in a double mutant form. In addition, Arg-181 has been replaced by methionine to determine the effect of removing the positive charge on the residue. The effects of these replacements on the kinetic and thermodynamic properties are reported. With all mutant forms, there are only small effects on the reactivity of the reduced flavin with oxygen. On the other hand, the efficiency of reduction of the oxidized flavin by l-lactate is greatly reduced, particularly with the R268K mutant forms. The results demonstrate the importance of the two arginine residues in the binding of substrate and its interaction with the flavin, and are consistent with a previous hypothesis that they also play a role of charge neutralization in the transition state of substrate dehydrogenation. The replacement of Arg-268 by lysine also results in a slow conversion of the 8-CH(3)- substituent of FMN to yield 8-formyl-FMN, still tightly bound to the enzyme, and with significantly different physical and chemical properties from those of the FMN-enzyme.
Collapse
Affiliation(s)
- K Yorita
- Institute for Enzyme Research, University of Tokushima, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|