1
|
Arata Y, Jurica P, Parrish N, Sako Y. Bioinformatic Annotation of Transposon DNA Processing Genes on the Long-Read Genome Assembly of Caenorhabditis elegans. Bioinform Biol Insights 2024; 18:11779322241304668. [PMID: 39713040 PMCID: PMC11662393 DOI: 10.1177/11779322241304668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Transposable elements (TEs) or transposons are thought to play roles in animal physiological processes, such as germline, early embryonic, and brain development, as well as aging. However, their roles have not been systematically investigated through experimental studies. In this study, we created a catalog of genes directly involved in replication, excision, or integration of transposon-coding DNA, which we refer to as transposon DNA processing genes (TDPGs). Specifically, to bridge the gap to experimental studies, we sought potentially functional TDPGs which maintain intact open reading frames and the amino acids at their catalytic cores on the latest long-read genome assembly of Caenorhabditis elegans, VC2010. Among 52 519 TE loci, we identified 145 potentially functional TDPGs encoded in long terminal repeat elements, long interspersed nuclear elements, terminal inverted repeat elements, Helitrons, and Mavericks/Polintons. Our TDPG catalog, which contains a feasible number of genes, allows for the experimental manipulation of TE mobility in vivo, regardless of whether the TEs are autonomous or non-autonomous, thereby potentially promoting the study of the physiological functions of TE mobility.
Collapse
Affiliation(s)
- Yukinobu Arata
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Peter Jurica
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Nicholas Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
2
|
Frangieh CJ, Wilkinson ME, Strebinger D, Strecker J, Walsh ML, Faure G, Yushenova IA, Macrae RK, Arkhipova IR, Zhang F. Internal initiation of reverse transcription in a Penelope-like retrotransposon. Mob DNA 2024; 15:12. [PMID: 38863000 PMCID: PMC11167929 DOI: 10.1186/s13100-024-00322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Eukaryotic retroelements are generally divided into two classes: long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. A third class of eukaryotic retroelement, the Penelope-like elements (PLEs), has been well-characterized bioinformatically, but relatively little is known about the transposition mechanism of these elements. PLEs share some features with the R2 retrotransposon from Bombyx mori, which uses a target-primed reverse transcription (TPRT) mechanism, but their distinct phylogeny suggests PLEs may utilize a novel mechanism of mobilization. Using protein purified from E. coli, we report unique in vitro properties of a PLE from the green anole (Anolis carolinensis), revealing mechanistic aspects not shared by other retrotransposons. We found that reverse transcription is initiated at two adjacent sites within the transposon RNA that is not homologous to the cleaved DNA, a feature that is reflected in the genomic "tail" signature shared between and unique to PLEs. Our results for the first active PLE in vitro provide a starting point for understanding PLE mobilization and biology.
Collapse
Affiliation(s)
- Chris J Frangieh
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Max E Wilkinson
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Strebinger
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jonathan Strecker
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michelle L Walsh
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Guilhem Faure
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Rhiannon K Macrae
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Terrazzan A, Vanini R, Ancona P, Bianchi N, Taccioli C, Aguiari G. State-of-the-art in transposable element modulation affected by drugs in malignant prostatic cancer cells. J Cell Biochem 2024; 125:e30557. [PMID: 38501160 DOI: 10.1002/jcb.30557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Over recent years, the investigation of transposable elements (TEs) has granted researchers a deeper comprehension of their characteristics and functions, particularly regarding their significance in the mechanisms contributing to cancer development. This manuscript focuses on prostate carcinoma cell lines and offers a comprehensive review intended to scrutinize the associations and interactions between TEs and genes, as well as their response to treatment using various chemical drugs, emphasizing their involvement in cancer progression. We assembled a compendium of articles retrieved from the PubMed database to construct networks demonstrating correlations with genes and pharmaceuticals. In doing so, we linked the transposition of certain TE types to the expression of specific transcripts directly implicated in carcinogenesis. Additionally, we underline that treatment employing different drugs revealed unique patterns of TE reactivation. Our hypothesis gathers the current understanding and guides research toward evidence-based investigations, emphasizing the association between antiviral drugs, chemotherapy, and the reduced expression of TEs in patients affected by prostate cancer.
Collapse
Affiliation(s)
- Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, Ferrara, Italy
| | - Riccardo Vanini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Craig RJ, Yushenova IA, Rodriguez F, Arkhipova IR. An ancient clade of Penelope-like retroelements with permuted domains is present in the green lineage and protists, and dominates many invertebrate genomes. Mol Biol Evol 2021; 38:5005-5020. [PMID: 34320655 PMCID: PMC8557442 DOI: 10.1093/molbev/msab225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Penelope-like elements (PLEs) are an enigmatic clade of retrotransposons whose reverse transcriptases (RTs) share a most recent common ancestor with telomerase RTs. The single ORF of canonical endonuclease (EN)+ PLEs encodes RT and a C-terminal GIY–YIG EN that enables intrachromosomal integration, whereas EN− PLEs lack EN and are generally restricted to chromosome termini. EN+ PLEs have only been found in animals, except for one case of horizontal transfer to conifers, whereas EN− PLEs occur in several kingdoms. Here, we report a new, deep-branching PLE clade with a permuted domain order, whereby an N-terminal GIY–YIG EN is linked to a C-terminal RT by a short domain with a characteristic CxC motif. These N-terminal EN+ PLEs share a structural organization, including pseudo-LTRs and complex tandem/inverted insertions, with canonical EN+ PLEs from Penelope/Poseidon, Neptune, and Nematis clades, and show insertion bias for microsatellites, but lack canonical hammerhead ribozyme motifs. However, their phylogenetic distribution is much broader. The Naiads, found in numerous invertebrate phyla, can reach tens of thousands of copies per genome. In spiders and clams, Naiads independently evolved to encode selenoproteins containing multiple selenocysteines. Chlamys, which lack the CCHH motif universal to PLE ENs, occur in green algae, spike mosses (targeting ribosomal DNA), and slime molds. Unlike canonical PLEs, RTs of N-terminal EN+ PLEs contain the insertion-in-fingers domain (IFD), strengthening the link between PLEs and telomerases. Additionally, we describe Hydra, a novel metazoan C-terminal EN+ clade. Overall, we conclude that PLE diversity, taxonomic distribution, and abundance are comparable with non-LTR and LTR-retrotransposons.
Collapse
Affiliation(s)
- Rory J Craig
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
5
|
Kojima KK. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet Syst 2019; 94:233-252. [DOI: 10.1266/ggs.18-00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kenji K. Kojima
- Genetic Information Research Institute
- Department of Life Sciences, National Cheng Kung University
| |
Collapse
|
6
|
Weinberg CE, Weinberg Z, Hammann C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res 2019; 47:9480-9494. [PMID: 31504786 PMCID: PMC6765202 DOI: 10.1093/nar/gkz737] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Small endonucleolytic ribozymes promote the self-cleavage of their own phosphodiester backbone at a specific linkage. The structures of and the reactions catalysed by members of individual families have been studied in great detail in the past decades. In recent years, bioinformatics studies have uncovered a considerable number of new examples of known catalytic RNA motifs. Importantly, entirely novel ribozyme classes were also discovered, for most of which both structural and biochemical information became rapidly available. However, for the majority of the new ribozymes, which are found in the genomes of a variety of species, a biological function remains elusive. Here, we concentrate on the different approaches to find catalytic RNA motifs in sequence databases. We summarize the emerging principles of RNA catalysis as observed for small endonucleolytic ribozymes. Finally, we address the biological functions of those ribozymes, where relevant information is available and common themes on their cellular activities are emerging. We conclude by speculating on the possibility that the identification and characterization of proteins that we hypothesize to be endogenously associated with catalytic RNA might help in answering the ever-present question of the biological function of the growing number of genomically encoded, small endonucleolytic ribozymes.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Christian Hammann
- Ribogenetics & Biochemistry, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
7
|
Abstract
Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes.
Collapse
Affiliation(s)
- Amelia Cervera
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| | - Marcos De la Peña
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Valencia, Spain
| |
Collapse
|
8
|
|
9
|
Abstract
Homing endonucleases are strong drivers of genetic exchange and horizontal transfer of both their own genes and their local genetic environment. The mechanisms that govern the function and evolution of these genetic oddities have been well documented over the past few decades at the genetic, biochemical, and structural levels. This wealth of information has led to the manipulation and reprogramming of the endonucleases and to their exploitation in genome editing for use as therapeutic agents, for insect vector control and in agriculture. In this chapter we summarize the molecular properties of homing endonucleases and discuss their strengths and weaknesses in genome editing as compared to other site-specific nucleases such as zinc finger endonucleases, TALEN, and CRISPR-derived endonucleases.
Collapse
|
10
|
Arkhipova IR, Yushenova IA, Rodriguez F. Endonuclease-containing Penelope retrotransposons in the bdelloid rotifer Adineta vaga exhibit unusual structural features and play a role in expansion of host gene families. Mob DNA 2013; 4:19. [PMID: 23981484 PMCID: PMC3846280 DOI: 10.1186/1759-8753-4-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 08/16/2013] [Indexed: 12/02/2022] Open
Abstract
Background Penelope-like elements (PLEs) are an enigmatic group of retroelements sharing a common ancestor with telomerase reverse transcriptases. In our previous studies, we identified endonuclease-deficient PLEs that are associated with telomeres in bdelloid rotifers, small freshwater invertebrates best known for their long-term asexuality and high foreign DNA content. Completion of the high-quality draft genome sequence of the bdelloid rotifer Adineta vaga provides us with the opportunity to examine its genomic transposable element (TE) content, as well as TE impact on genome function and evolution. Results We performed an exhaustive search of the A. vaga genome assembly, aimed at identification of canonical PLEs combining both the reverse transcriptase (RT) and the GIY-YIG endonuclease (EN) domains. We find that the RT/EN-containing Penelope families co-exist in the A. vaga genome with the EN-deficient RT-containing Athena retroelements. Canonical PLEs are present at very low copy numbers, often as a single-copy, and there is no evidence that they might preferentially co-mobilize EN-deficient PLEs. We also find that Penelope elements can participate in expansion of A. vaga multigene families via trans-action of their enzymatic machinery, as evidenced by identification of intron-containing host genes framed by the Penelope terminal repeats and characteristic target-site duplications generated upon insertion. In addition, we find that Penelope open reading frames (ORFs) in several families have incorporated long stretches of coding sequence several hundred amino acids (aa) in length that are highly enriched in asparagine residues, a phenomenon not observed in other retrotransposons. Conclusions Our results show that, despite their low abundance and low transcriptional activity in the A. vaga genome, endonuclease-containing Penelope elements can participate in expansion of host multigene families. We conclude that the terminal repeats represent the cis-acting sequences required for mobilization of the intervening region in trans by the Penelope-encoded enzymatic activities. We also hypothesize that the unusual capture of long N-rich segments by the Penelope ORF occurs as a consequence of peculiarities of its replication mechanism. These findings emphasize the unconventional nature of Penelope retrotransposons, which, in contrast to all other retrotransposon types, are capable of dispersing intron-containing genes, thereby questioning the validity of traditional estimates of gene retrocopies in PLE-containing eukaryotic genomes.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | | | | |
Collapse
|
11
|
Kleinstiver BP, Wolfs JM, Edgell DR. The monomeric GIY-YIG homing endonuclease I-BmoI uses a molecular anchor and a flexible tether to sequentially nick DNA. Nucleic Acids Res 2013; 41:5413-27. [PMID: 23558745 PMCID: PMC3664794 DOI: 10.1093/nar/gkt186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GIY-YIG nuclease domain is found within protein scaffolds that participate in diverse cellular pathways and contains a single active site that hydrolyzes DNA by a one-metal ion mechanism. GIY-YIG homing endonucleases (GIY-HEs) are two-domain proteins with N-terminal GIY-YIG nuclease domains connected to C-terminal DNA-binding and they are thought to function as monomers. Using I-BmoI as a model GIY-HE, we test mechanisms by which the single active site is used to generate a double-strand break. We show that I-BmoI is partially disordered in the absence of substrate, and that the GIY-YIG domain alone has weak affinity for DNA. Significantly, we show that I-BmoI functions as a monomer at all steps of the reaction pathway and does not transiently dimerize or use sequential transesterification reactions to cleave substrate. Our results are consistent with the I-BmoI DNA-binding domain acting as a molecular anchor to tether the GIY-YIG domain to substrate, permitting rotation of the GIY-YIG domain to sequentially nick each DNA strand. These data highlight the mechanistic differences between monomeric GIY-HEs and dimeric or tetrameric GIY-YIG restriction enzymes, and they have implications for the use of the GIY-YIG domain in genome-editing applications.
Collapse
Affiliation(s)
- Benjamin P Kleinstiver
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
12
|
Brachner A, Braun J, Ghodgaonkar M, Castor D, Zlopaša L, Ehrlich V, Jiricny J, Gotzmann J, Knasmüller S, Foisner R. The endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo. J Cell Sci 2012; 125:1048-57. [PMID: 22399800 PMCID: PMC4335191 DOI: 10.1242/jcs.098392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LEM domain (for lamina-associated polypeptide, emerin, MAN1 domain) defines a group of nuclear proteins that bind chromatin through interaction of the LEM motif with the conserved DNA crosslinking protein, barrier-to-autointegration factor (BAF). Here, we describe a LEM protein annotated in databases as 'Ankyrin repeat and LEM domain-containing protein 1' (Ankle1). We show that Ankle1 is conserved in metazoans and contains a unique C-terminal GIY-YIG motif that confers endonuclease activity in vitro and in vivo. In mammals, Ankle1 is predominantly expressed in hematopoietic tissues. Although most characterized LEM proteins are components of the inner nuclear membrane, ectopic Ankle1 shuttles between cytoplasm and nucleus. Ankle1 enriched in the nucleoplasm induces DNA cleavage and DNA damage response. This activity requires both the catalytic C-terminal GIY-YIG domain and the LEM motif, which binds chromatin via BAF. Hence, Ankle1 is an unusual LEM protein with a GIY-YIG-type endonuclease activity in higher eukaryotes.
Collapse
Affiliation(s)
- Andreas Brachner
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Juliane Braun
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Medini Ghodgaonkar
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | - Dennis Castor
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | - Livija Zlopaša
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Veronika Ehrlich
- Institute of Cancer Research, Inner Medicine I, Medical University of Vienna, Austria
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | - Josef Gotzmann
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| | - Siegfried Knasmüller
- Institute of Cancer Research, Inner Medicine I, Medical University of Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna, Austria
| |
Collapse
|
13
|
Kojima KK, Jurka J. Crypton transposons: identification of new diverse families and ancient domestication events. Mob DNA 2011; 2:12. [PMID: 22011512 PMCID: PMC3212892 DOI: 10.1186/1759-8753-2-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/19/2011] [Indexed: 01/27/2023] Open
Abstract
Background "Domestication" of transposable elements (TEs) led to evolutionary breakthroughs such as the origin of telomerase and the vertebrate adaptive immune system. These breakthroughs were accomplished by the adaptation of molecular functions essential for TEs, such as reverse transcription, DNA cutting and ligation or DNA binding. Cryptons represent a unique class of DNA transposons using tyrosine recombinase (YR) to cut and rejoin the recombining DNA molecules. Cryptons were originally identified in fungi and later in the sea anemone, sea urchin and insects. Results Herein we report new Cryptons from animals, fungi, oomycetes and diatom, as well as widely conserved genes derived from ancient Crypton domestication events. Phylogenetic analysis based on the YR sequences supports four deep divisions of Crypton elements. We found that the domain of unknown function 3504 (DUF3504) in eukaryotes is derived from Crypton YR. DUF3504 is similar to YR but lacks most of the residues of the catalytic tetrad (R-H-R-Y). Genes containing the DUF3504 domain are potassium channel tetramerization domain containing 1 (KCTD1), KIAA1958, zinc finger MYM type 2 (ZMYM2), ZMYM3, ZMYM4, glutamine-rich protein 1 (QRICH1) and "without children" (WOC). The DUF3504 genes are highly conserved and are found in almost all jawed vertebrates. The sequence, domain structure, intron positions and synteny blocks support the view that ZMYM2, ZMYM3, ZMYM4, and possibly QRICH1, were derived from WOC through two rounds of genome duplication in early vertebrate evolution. WOC is observed widely among bilaterians. There could be four independent events of Crypton domestication, and one of them, generating WOC/ZMYM, predated the birth of bilaterian animals. This is the third-oldest domestication event known to date, following the domestication generating telomerase reverse transcriptase (TERT) and Prp8. Many Crypton-derived genes are transcriptional regulators with additional DNA-binding domains, and the acquisition of the DUF3504 domain could have added new regulatory pathways via protein-DNA or protein-protein interactions. Conclusions Cryptons have contributed to animal evolution through domestication of their YR sequences. The DUF3504 domains are domesticated YRs of animal Crypton elements.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.
| | | |
Collapse
|
14
|
Kleinstiver BP, Bérubé-Janzen W, Fernandes AD, Edgell DR. Divalent metal ion differentially regulates the sequential nicking reactions of the GIY-YIG homing endonuclease I-BmoI. PLoS One 2011; 6:e23804. [PMID: 21887323 PMCID: PMC3161791 DOI: 10.1371/journal.pone.0023804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/26/2011] [Indexed: 01/30/2023] Open
Abstract
Homing endonucleases are site-specific DNA endonucleases that function as mobile genetic elements by introducing double-strand breaks or nicks at defined locations. Of the major families of homing endonucleases, the modular GIY-YIG endonucleases are least understood in terms of mechanism. The GIY-YIG homing endonuclease I-BmoI generates a double-strand break by sequential nicking reactions during which the single active site of the GIY-YIG nuclease domain must undergo a substantial reorganization. Here, we show that divalent metal ion plays a significant role in regulating the two independent nicking reactions by I-BmoI. Rate constant determination for each nicking reaction revealed that limiting divalent metal ion has a greater impact on the second strand than the first strand nicking reaction. We also show that substrate mutations within the I-BmoI cleavage site can modulate the first strand nicking reaction over a 314-fold range. Additionally, in-gel DNA footprinting with mutant substrates and modeling of an I-BmoI-substrate complex suggest that amino acid contacts to a critical GC-2 base pair are required to induce a bottom-strand distortion that likely directs conformational changes for reaction progress. Collectively, our data implies mechanistic roles for divalent metal ion and substrate bases, suggesting that divalent metal ion facilitates the re-positioning of the GIY-YIG nuclease domain between sequential nicking reactions.
Collapse
Affiliation(s)
- Benjamin P. Kleinstiver
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Wesley Bérubé-Janzen
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Andrew D. Fernandes
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
| | - David R. Edgell
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Nakayashiki H. The Trickster in the genome: contribution and control of transposable elements. Genes Cells 2011; 16:827-41. [DOI: 10.1111/j.1365-2443.2011.01533.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Sokolowska M, Czapinska H, Bochtler M. Hpy188I-DNA pre- and post-cleavage complexes--snapshots of the GIY-YIG nuclease mediated catalysis. Nucleic Acids Res 2010; 39:1554-64. [PMID: 20935048 PMCID: PMC3045582 DOI: 10.1093/nar/gkq821] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The GIY-YIG nuclease domain is present in all kingdoms of life and has diverse functions. It is found in the eukaryotic flap endonuclease and Holliday junction resolvase Slx1–Slx4, the prokaryotic nucleotide excision repair proteins UvrC and Cho, and in proteins of ‘selfish’ genetic elements. Here we present the structures of the ternary pre- and post-cleavage complexes of the type II GIY-YIG restriction endonuclease Hpy188I with DNA and a surrogate or catalytic metal ion, respectively. Our structures suggest that GIY-YIG nucleases catalyze DNA hydrolysis by a single substitution reaction. They are consistent with a previous proposal that a tyrosine residue (which we expect to occur in its phenolate form) acts as a general base for the attacking water molecule. In contrast to the earlier proposal, our data identify the general base with the GIY and not the YIG tyrosine. A conserved glutamate residue (Glu149 provided in trans in Hpy188I) anchors a single metal cation in the active site. This metal ion contacts the phosphate proS oxygen atom and the leaving group 3′-oxygen atom, presumably to facilitate its departure. Taken together, our data reveal striking analogy in the absence of homology between GIY-YIG and ββα-Me nucleases.
Collapse
Affiliation(s)
- Monika Sokolowska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
17
|
Folding, DNA recognition, and function of GIY-YIG endonucleases: crystal structures of R.Eco29kI. Structure 2010; 18:1321-31. [PMID: 20800503 DOI: 10.1016/j.str.2010.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 11/21/2022]
Abstract
The GIY-YIG endonuclease family comprises hundreds of diverse proteins and a multitude of functions; none have been visualized bound to DNA. The structure of the GIY-YIG restriction endonuclease R.Eco29kI has been solved both alone and bound to its target site. The protein displays a domain-swapped homodimeric structure with several extended surface loops encircling the DNA. Only three side chains from each protein subunit contact DNA bases, two directly and one via a bridging solvent molecule. Both tyrosine residues within the GIY-YIG motif are positioned in the catalytic center near a putative nucleophilic water; the remainder of the active site resembles the HNH endonuclease family. The structure illustrates how the GIY-YIG scaffold has been adapted for the highly specific recognition of a DNA restriction site, in contrast to nonspecific DNA cleavage by GIY-YIG domains in homing endonucleases or structure-specific cleavage by DNA repair enzymes such as UvrC.
Collapse
|
18
|
Kleinstiver BP, Fernandes AD, Gloor GB, Edgell DR. A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI. Nucleic Acids Res 2010; 38:2411-27. [PMID: 20061372 PMCID: PMC2853131 DOI: 10.1093/nar/gkp1223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/18/2009] [Accepted: 12/20/2009] [Indexed: 11/14/2022] Open
Abstract
Insight into protein structure and function is best obtained through a synthesis of experimental, structural and bioinformatic data. Here, we outline a framework that we call MUSE (mutual information, unigenic evolution and structure-guided elucidation), which facilitated the identification of previously unknown residues that are relevant for function of the GIY-YIG homing endonuclease I-BmoI. Our approach synthesizes three types of data: mutual information analyses that identify co-evolving residues within the GIY-YIG catalytic domain; a unigenic evolution strategy that identifies hyper- and hypo-mutable residues of I-BmoI; and interpretation of the unigenic and co-evolution data using a homology model. In particular, we identify novel positions within the GIY-YIG domain as functionally important. Proof-of-principle experiments implicate the non-conserved I71 as functionally relevant, with an I71N mutant accumulating a nicked cleavage intermediate. Moreover, many additional positions within the catalytic, linker and C-terminal domains of I-BmoI were implicated as important for function. Our results represent a platform on which to pursue future studies of I-BmoI and other GIY-YIG-containing proteins, and demonstrate that MUSE can successfully identify novel functionally critical residues that would be ignored in a traditional structure-function analysis within an extensively studied small domain of approximately 90 amino acids.
Collapse
Affiliation(s)
- Benjamin P. Kleinstiver
- Department of Biochemistry, Schulich School of Medicine & Dentistry and Department of Applied Mathematics, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Andrew D. Fernandes
- Department of Biochemistry, Schulich School of Medicine & Dentistry and Department of Applied Mathematics, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Gregory B. Gloor
- Department of Biochemistry, Schulich School of Medicine & Dentistry and Department of Applied Mathematics, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - David R. Edgell
- Department of Biochemistry, Schulich School of Medicine & Dentistry and Department of Applied Mathematics, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
19
|
Ravin VK, Sukchev MB, Zelentsova ES, Shostak NG, Evgen’ev MB. Structural and functional analysis of a new retrotransposon class in Drosophila species. Mol Biol 2009. [DOI: 10.1134/s0026893309020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Lagerbäck P, Carlson K. Amino acid residues in the GIY-YIG endonuclease II of phage T4 affecting sequence recognition and binding as well as catalysis. J Bacteriol 2008; 190:5533-44. [PMID: 18539732 PMCID: PMC2519379 DOI: 10.1128/jb.00094-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 05/26/2008] [Indexed: 11/20/2022] Open
Abstract
Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) similar to those described for I-TevI and UvrC; in addition, these residues were found to be important for substrate recognition and binding. The conserved glycine (G49) and arginine (R57) were essential for normal sequence recognition. Our results are in agreement with a role for these residues in forming the DNA-binding surface and exposing the substrate scissile bond at the active site. The conserved asparagine (N130) and an adjacent proline (P127) likely contribute to positioning the catalytic domain correctly. Enzymes in the EndoII subfamily of GIY-YIG endonucleases share a strongly conserved middle region (MR, residues 72 to 93, likely helical and possibly substituting for heterologous helices in I-TevI and UvrC) and a less strongly conserved N-terminal region (residues 12 to 24). Most of the conserved residues in these two regions appeared to contribute to binding strength without affecting the mode of substrate binding at the catalytic surface. EndoII K76, part of a conserved NUMOD3 DNA-binding motif of homing endonucleases found to overlap the MR, affected both sequence recognition and catalysis, suggesting a more direct involvement in positioning the substrate. Our data thus suggest roles for the MR and residues conserved in GIY-YIG enzymes in recognizing and binding the substrate.
Collapse
Affiliation(s)
- Pernilla Lagerbäck
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala, Sweden
| | | |
Collapse
|
21
|
Hizer SE, Tamulis WG, Robertson LM, Garcia DK. Evidence of multiple retrotransposons in two litopenaeid species. Anim Genet 2008; 39:363-73. [PMID: 18557973 DOI: 10.1111/j.1365-2052.2008.01739.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retrotransposons encompass a specific class of mobile genetic elements that are widespread across eukaryotic genomes. The impact of the varied types of retrotransposons on these genomes is just beginning to be deciphered. In a step towards understanding their role in litopenaeid shrimp, we have herein identified nine non-LTR retrotransposons, among which several appear to exist outside the standard defined clades. Two Litopenaeus stylirostris elements were discovered through degenerate PCR amplification using previously defined non-LTR degenerate primers, and through primers designed from a RAPD-derived sequence. A third genomic L. stylirostris element was identified using specific priming from an amplification protocol. These three PCR-derived sequences showed conserved domains of the non-LTR reverse transcriptase gene. In silico searching of genome databases and subsequent contig construction yielded six non-LTR retrotransposons (both genomic and expressed) in the Litopenaeus vannamei genome that also exhibited the highly conserved domains found in our PCR-derived sequences. Phylogenetic placement among representatives from all non-LTR clades showed a possibly novel monophyletic group that included five of our nine sequences. This group, which included elements from both L. stylirostris and L. vannamei, appeared most closely related to the highly active RTE clade. Our remaining four sequences placed in the CR1 and I clades of retrotransposons, with one showing strong similarity to ancient Penelope elements. This research describes three newly discovered retrotransposons in the L. stylirostris genome. Phylogenetic analysis clusters these in a monophyletic grouping with retrotransposons previously described from two closely related species, L. vannamei and Penaeus monodon.
Collapse
Affiliation(s)
- S E Hizer
- Department of Biological Sciences, California State University, San Marcos, CA 920296, USA
| | | | | | | |
Collapse
|
22
|
Schostak N, Pyatkov K, Zelentsova E, Arkhipova I, Shagin D, Shagina I, Mudrik E, Blintsov A, Clark I, Finnegan DJ, Evgen’ev M. Molecular dissection of Penelope transposable element regulatory machinery. Nucleic Acids Res 2008; 36:2522-9. [PMID: 18319284 PMCID: PMC2377424 DOI: 10.1093/nar/gkm1166] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 12/15/2007] [Accepted: 12/18/2007] [Indexed: 11/12/2022] Open
Abstract
Penelope-like elements (PLEs) represent a new class of retroelements identified in more than 80 species belonging to at least 10 animal phyla. Penelope isolated from Drosophila virilis is the only known transpositionally active representative of this class. Although the size and structure of the Penelope major transcript has been previously described in both D. virilis and D. melanogaster transgenic strains, the architecture of the Penelope regulatory region remains unknown. In order to determine the localization of presumptive Penelope promoter and enhancer-like elements, segments of the putative Penelope regulatory region were linked to a CAT reporter gene and introduced into D. melanogaster by P-element-mediated transformation. The results obtained using ELISA to measure CAT expression levels and RNA studies, including RT-PCR, suggest that the active Penelope transposon contains an internal promoter similar to the TATA-less promoters of LINEs. The results also suggest that some of the Penelope regulatory sequences control the preferential expression in the ovaries of the adult flies by enhancing expression in the ovary and reducing expression in the carcass. The possible significance of the intron within Penelope for the function and evolution of PLEs, and the effect of Penelope insertions on adjacent genes, are discussed.
Collapse
Affiliation(s)
- Nataliya Schostak
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Konstantin Pyatkov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Elena Zelentsova
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Irina Arkhipova
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Dmitrii Shagin
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Irina Shagina
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Elena Mudrik
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Anatolii Blintsov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Ivan Clark
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - David J. Finnegan
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| | - Michael Evgen’ev
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia, California Institute of Technology, Pasadena, CA, Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Evrogen JSC, Moscow, Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Moscow Region, Moscow State University, Moscow, Russia and Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh, Scotland, UK
| |
Collapse
|
23
|
Kojima KK, Kanehisa M. Systematic Survey for Novel Types of Prokaryotic Retroelements Based on Gene Neighborhood and Protein Architecture. Mol Biol Evol 2008; 25:1395-404. [DOI: 10.1093/molbev/msn081] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
24
|
Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 2008; 16:203-15. [DOI: 10.1007/s10577-007-1202-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Eickbush TH, Jamburuthugoda VK. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 2008; 134:221-34. [PMID: 18261821 DOI: 10.1016/j.virusres.2007.12.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/30/2022]
Abstract
A number of abundant mobile genetic elements called retrotransposons reverse transcribe RNA to generate DNA for insertion into eukaryotic genomes. Four major classes of retrotransposons are described here. First, the long-terminal-repeat (LTR) retrotransposons have similar structures and mechanisms to those of the vertebrate retroviruses. Genes that may enable these retrotransposons to leave a cell have been acquired by these elements in a number of animal and plant lineages. Second, the tyrosine recombinase retrotransposons are similar to the LTR retrotransposons except that they have substituted a recombinase for the integrase and recombine into the host chromosomes. Third, the non-LTR retrotransposons use a cleaved chromosomal target site generated by an encoded endonuclease to prime reverse transcription. Finally, the Penelope-like retrotransposons are not well understood but appear to also use cleaved DNA or the ends of chromosomes as primer for reverse transcription. Described in the second part of this review are the enzymatic properties of the reverse transcriptases (RTs) encoded by retrotransposons. The RTs of the LTR retrotransposons are highly divergent in sequence but have similar enzymatic activities to those of retroviruses. The RTs of the non-LTR retrotransposons have several unique properties reflecting their adaptation to a different mechanism of retrotransposition.
Collapse
Affiliation(s)
- Thomas H Eickbush
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
26
|
Strand-specific Contacts and Divalent Metal Ion Regulate Double-strand Break Formation by the GIY-YIG Homing Endonuclease I-BmoI. J Mol Biol 2007; 374:306-21. [DOI: 10.1016/j.jmb.2007.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/04/2007] [Accepted: 09/10/2007] [Indexed: 11/22/2022]
|
27
|
Curcio MJ, Belfort M. The beginning of the end: links between ancient retroelements and modern telomerases. Proc Natl Acad Sci U S A 2007; 104:9107-8. [PMID: 17517612 PMCID: PMC1890453 DOI: 10.1073/pnas.0703224104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- M. Joan Curcio
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208
| | - Marlene Belfort
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Gladyshev EA, Arkhipova IR. Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes. Proc Natl Acad Sci U S A 2007; 104:9352-7. [PMID: 17483479 PMCID: PMC1890498 DOI: 10.1073/pnas.0702741104] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionary origin of telomerases, enzymes that maintain the ends of linear chromosomes in most eukaryotes, is a subject of debate. Penelope-like elements (PLEs) are a recently described class of eukaryotic retroelements characterized by a GIY-YIG endonuclease domain and by a reverse transcriptase domain with similarity to telomerases and group II introns. Here we report that a subset of PLEs found in bdelloid rotifers, basidiomycete fungi, stramenopiles, and plants, representing four different eukaryotic kingdoms, lack the endonuclease domain and are located at telomeres. The 5' truncated ends of these elements are telomere-oriented and typically capped by species-specific telomeric repeats. Most of them also carry several shorter stretches of telomeric repeats at or near their 3' ends, which could facilitate utilization of the telomeric G-rich 3' overhangs to prime reverse transcription. Many of these telomere-associated PLEs occupy a basal phylogenetic position close to the point of divergence from the telomerase-PLE common ancestor and may descend from the missing link between early eukaryotic retroelements and present-day telomerases.
Collapse
Affiliation(s)
- Eugene A. Gladyshev
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and
| | - Irina R. Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Klenov MS, Stolyarenko AD, Ryazansky SS, Sokolova OA, Konstantinov IN, Gvozdev VA. Role of short RNAs in regulating the expression of genes and mobile elements in germ cells. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407030058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Dunin-Horkawicz S, Feder M, Bujnicki JM. Phylogenomic analysis of the GIY-YIG nuclease superfamily. BMC Genomics 2006; 7:98. [PMID: 16646971 PMCID: PMC1564403 DOI: 10.1186/1471-2164-7-98] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 04/28/2006] [Indexed: 11/28/2022] Open
Abstract
Background The GIY-YIG domain was initially identified in homing endonucleases and later in other selfish mobile genetic elements (including restriction enzymes and non-LTR retrotransposons) and in enzymes involved in DNA repair and recombination. However, to date no systematic search for novel members of the GIY-YIG superfamily or comparative analysis of these enzymes has been reported. Results We carried out database searches to identify all members of known GIY-YIG nuclease families. Multiple sequence alignments together with predicted secondary structures of identified families were represented as Hidden Markov Models (HMM) and compared by the HHsearch method to the uncharacterized protein families gathered in the COG, KOG, and PFAM databases. This analysis allowed for extending the GIY-YIG superfamily to include members of COG3680 and a number of proteins not classified in COGs and to predict that these proteins may function as nucleases, potentially involved in DNA recombination and/or repair. Finally, all old and new members of the GIY-YIG superfamily were compared and analyzed to infer the phylogenetic tree. Conclusion An evolutionary classification of the GIY-YIG superfamily is presented for the very first time, along with the structural annotation of all (sub)families. It provides a comprehensive picture of sequence-structure-function relationships in this superfamily of nucleases, which will help to design experiments to study the mechanism of action of known members (especially the uncharacterized ones) and will facilitate the prediction of function for the newly discovered ones.
Collapse
Affiliation(s)
- Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Marcin Feder
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
31
|
Liu Q, Derbyshire V, Belfort M, Edgell DR. Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res 2006; 34:1755-64. [PMID: 16582101 PMCID: PMC1421500 DOI: 10.1093/nar/gkl079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
GIY-YIG homing endonucleases are modular proteins, with conserved N-terminal catalytic domains connected by linkers to C-terminal DNA-binding domains. I-TevI, the T4 phage GIY-YIG intron endonuclease, functions both in promoting td intron homing, and in acting as a transcriptional autorepressor. Repression is achieved by binding to an operator, which is cleaved at 100-fold reduced efficiency relative to the intronless homing site. The linker includes a zinc finger, which functions in distance determination, to constrain the catalytic domain to cleave the homing site at a fixed position. Here we show that I-BmoI, a related GIY-YIG endonuclease lacking a zinc finger, also possesses some cleavage distance discrimination. Furthermore, hybrid endonucleases constructed by swapping the domains of I-BmoI and I-TevI are active, precise and demonstrate that features other than the zinc finger facilitate distance determination. Most importantly, I-TevI zinc finger mutants cleave the operator more efficiently than the homing site, the converse of wild-type protein. These results are consistent with the zinc finger acting as a measuring device, directing efficient cleavage of the homing site to promote intron mobility, while reducing cleavage at the operator to ensure transcriptional autorepression and phage viability.
Collapse
Affiliation(s)
- Qingqing Liu
- New York State Department of Health, Wadsworth Center, Center for Medical Science150 New Scotland Avenue, Albany, NY 12208, USA
- Department of Biological Sciences, State University of New York at AlbanyAlbany, NY 12222, USA
| | - Victoria Derbyshire
- New York State Department of Health, Wadsworth Center, Center for Medical Science150 New Scotland Avenue, Albany, NY 12208, USA
| | - Marlene Belfort
- New York State Department of Health, Wadsworth Center, Center for Medical Science150 New Scotland Avenue, Albany, NY 12208, USA
- To whom correspondence should be addressed. Tel: +1 518 473 3345; Fax: +1 518 474 3181;
| | - David R. Edgell
- New York State Department of Health, Wadsworth Center, Center for Medical Science150 New Scotland Avenue, Albany, NY 12208, USA
- Department of Biochemistry, University of Western OntarioLondon, ON N6A 5C1, Canada
| |
Collapse
|
32
|
Zhou Q, Froschauer A, Schultheis C, Schmidt C, Bienert GP, Wenning M, Dettai A, Volff JN. Helitron Transposons on the Sex Chromosomes of the PlatyfishXiphophorus maculatusand Their Evolution in Animal Genomes. Zebrafish 2006; 3:39-52. [DOI: 10.1089/zeb.2006.3.39] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Qingchun Zhou
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
- Present address: Department of Zoology and Stephenson Research & Technology Center, University of Oklahoma, Norman, Oklahoma
| | - Alexander Froschauer
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
- Present address: Institut für Zoologie, Technische Universität Dresden, Dresden, Germany
| | - Christina Schultheis
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Cornelia Schmidt
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Gerd P. Bienert
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Marina Wenning
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Agnès Dettai
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
- Present address: Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | - Jean-Nicolas Volff
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
33
|
Evgen'ev MB, Arkhipova IR. Penelope-like elements – a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet Genome Res 2005; 110:510-21. [PMID: 16093704 DOI: 10.1159/000084984] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 01/27/2004] [Indexed: 11/19/2022] Open
Abstract
Here we describe a new class of retroelements termed PLE (Penelope-like elements). The only transpositionally active representative of this lineage found so far has been isolated from Drosophila virilis. This element, Penelope, is responsible for the hybrid dysgenesis syndrome in this species, characterized by simultaneous mobilization of several unrelated TE families in the progeny of dysgenic crosses. Several lines of evidence favor the hypothesis of recent Penelope invasion into D. virilis. Moreover, when D. virilisPenelope was introduced by P element-mediated transformation into the genome of D. melanogaster, it underwent extensive amplification in the new host and induced several traits of the dysgenesis syndrome, including gonadal atrophy and numerous mutations. The single ORF encoded by PLE consists of two principal domains: reverse transcriptase (RT) and endonuclease (EN), which is similar to GIY-YIG intron-encoded endonucleases. With the appearance of a large number of PLEs in genome databases from diverse eukaryotes, including amoebae, fungi, cnidarians, rotifers, flatworms, roundworms, fish, amphibia, and reptilia, it becomes possible to resolve their phylogenetic relationships with other RT groups with a greater degree of confidence. On the basis of their peculiar structural features, distinct phylogenetic placement, and structure of transcripts, we conclude that PLE constitute a novel class of eukaryotic retroelements, different from non-LTR and LTR retrotransposons.
Collapse
Affiliation(s)
- M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Moscow, Russia.
| | | |
Collapse
|
34
|
A New Mechanism of Retrogene Formation in Mammalian Genomes: In Vivo Recombination during RNA Reverse Transcription. Mol Biol 2005. [DOI: 10.1007/s11008-005-0045-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Arnaud F, Peyretaillade E, Dastugue B, Vaury C. Functional characteristics of a reverse transcriptase encoded by an endogenous retrovirus from Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:323-331. [PMID: 15763468 DOI: 10.1016/j.ibmb.2004.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 12/17/2004] [Accepted: 12/27/2004] [Indexed: 05/24/2023]
Abstract
ZAM is an LTR-retrotransposon from Drosophila melanogaster that belongs to the genus errantivirus, viruses similar in structure and replication cycle to vertebrate retroviruses. A key component to its lifecycle is its reverse transcriptase which copies single-stranded genomic RNA into DNA. Here, we provide a detailed characterization of the enzymatic activities of the reverse transcriptase encoded by ZAM. When expressed in vitro, the reverse transcriptase domain associated with the RNase H domain encoded by the ZAM pol gene forms homodimers and displays an efficient RNA-dependent DNA-polymerase activity. It requires either Mg2+ or Mn2+ divalent cations, and works in basic pH, with a peak at around pH9. The so-called [RT-RH] polypeptide displays an optimal activity at 22 degrees C, a property that makes it well-adapted to the temperature of its host. This study contributes to our understanding of the general structures and functions of retroviral reverse transcriptases, a necessary process in the search for novel inhibitors.
Collapse
Affiliation(s)
- F Arnaud
- INSERM U384, Faculty de Medecine, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | | | | | | |
Collapse
|