1
|
Martinez-Fernandez V, Barascu A, Teixeira MT. Life and Death without Telomerase: The Saccharomyces cerevisiae Model. Cold Spring Harb Perspect Biol 2025; 17:a041699. [PMID: 39694811 PMCID: PMC12047662 DOI: 10.1101/cshperspect.a041699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Saccharomyces cerevisiae, a model organism in telomere biology, has been instrumental in pioneering a comprehensive understanding of the molecular processes that occur in the absence of telomerase across eukaryotes. This exploration spans investigations into telomere dynamics, intracellular signaling cascades, and organelle-mediated responses, elucidating their impact on proliferative capacity, genome stability, and cellular variability. Through the lens of budding yeast, numerous sources of cellular heterogeneity have been identified, dissected, and modeled, shedding light on the risks associated with telomeric state transitions, including the evasion of senescence. Moreover, the unraveling of the intricate interplay between the nucleus and other organelles upon telomerase inactivation has provided insights into eukaryotic evolution and cellular communication networks. These contributions, akin to milestones achieved using budding yeast, such as the discovery of the cell cycle, DNA damage checkpoint mechanisms, and DNA replication and repair processes, have been of paramount significance for the telomere field. Particularly, these insights extend to understanding replicative senescence as an anticancer mechanism in humans and enhancing our understanding of eukaryotes' evolution.
Collapse
Affiliation(s)
- Veronica Martinez-Fernandez
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Aurélia Barascu
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| |
Collapse
|
2
|
Robinson LG, Kalmbach K, Sumerfield O, Nomani W, Wang F, Liu L, Keefe DL. Telomere dynamics and reproduction. Fertil Steril 2024; 121:4-11. [PMID: 37993053 DOI: 10.1016/j.fertnstert.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
The oocyte, a long-lived, postmitotic cell, is the locus of reproductive aging in women. Female germ cells replicate only during fetal life and age throughout reproductive life. Mechanisms of oocyte aging include the accumulation of oxidative damage, mitochondrial dysfunction, and disruption of proteins, including cohesion. Nobel Laureate Bob Edwards also discovered a "production line" during oogonial replication in the mouse, wherein the last oocytes to ovulate in the adult-derived from the last oogonia to exit mitotic replication in the fetus. On the basis of this, we proposed a two-hit "telomere theory of reproductive aging" to integrate the myriad features of oocyte aging. The first hit was that oocytes remaining in older women traversed more cell cycles during fetal oogenesis. The second hit was that oocytes accumulated more environmental and endogenous oxidative damage throughout the life of the woman. Telomeres (Ts) could mediate both of these aspects of oocyte aging. Telomeres provide a "mitotic clock," with T attrition an inevitable consequence of cell division because of the end replication problem. Telomere's guanine-rich sequence renders them especially sensitive to oxidative damage, even in postmitotic cells. Telomerase, the reverse transcriptase that restores Ts, is better at maintaining than elongating T. Moreover, telomerase remains inactive during much of oogenesis and early development. Oocytes are left with short Ts, on the brink of viability. In support of this theory, mice with induced T attrition and women with naturally occurring telomeropathy suffer diminished ovarian reserve, abnormal embryo development, and infertility. In contrast, sperm are produced throughout the life of the male by a telomerase-active progenitor, spermatogonia, resulting in the longest Ts in the body. In mice, cleavage-stage embryos elongate Ts via "alternative lengthening of telomeres," a recombination-based mechanism rarely encountered outside of telomerase-deficient cancers. Many questions about Ts and reproduction are raised by these findings: does the "normal" T attrition observed in human oocytes contribute to their extraordinarily high rate of meiotic nondisjunction? Does recombination-based T elongation render embryos susceptible to mitotic nondisjunction (and mosaicism)? Can some features of Ts serve as markers of oocyte quality?
Collapse
Affiliation(s)
- LeRoy G Robinson
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York; Department of Biology, San Francisco State University, San Francisco, California
| | - Keri Kalmbach
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Olivia Sumerfield
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Wafa Nomani
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York.
| |
Collapse
|
3
|
Selected ellipticine derivatives, known to target topoisomerase II, suppress the alternative lengthening of telomere (ALT) pathway in telomerase-negative cells. J Cancer Res Clin Oncol 2020; 146:1671-1676. [PMID: 32333143 DOI: 10.1007/s00432-020-03213-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND DNA topoisomerase and telomerase enzymes are popular targets of several anti-tumor drugs. Smooth proceeding of telomeric recombination requires Topoisomerase II (Top2), which is involved in telomere-telomere recombination through functioning in relaxation of positive supercoils among the cells adopting telomerase-independent Alternative lengthening of telomere (ALT) pathway. Most of the inhibitors reported so far have been designed to targetsolely telomerase-positive cells, which can potentially lead to therapeutic failure because tumor cells treated with telomerase inhibitors can activate the ALT pathway for telomere maintenance. Knowing that ALT cells are more sensitive against a Top2 inhibitor, ICRF-93 agent, compared to telomerase-positive cells, we analyzed two selected ellipticine derivatives that we recently reported as TopII-targeting compounds, to assess their effects on the formation of DNA breaks and suppression of ALT pathway. METHODS Cell viability, Comet, C-Circle assays, dot blot, immunofluorescence staining, and telomere fluorescence in situ hybridization (FISH) staining were used for determining the effect of the compounds on ALT status of tumor cells. RESULTS AND CONCLUSIONS Treatment of ALT cells with ellipticine derivatives resulted in the formation of DNA breaks and suppression of ALT-associated phenotypes in vitro. Our results will contribute to the development of therapeutic strategies combining telomerase and ALT pathway inhibitors.
Collapse
|
4
|
Alternative Lengthening of Telomeres in the Budding Yeast Naumovozyma castellii. G3-GENES GENOMES GENETICS 2019; 9:3345-3358. [PMID: 31427453 PMCID: PMC6778800 DOI: 10.1534/g3.119.400428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enzyme telomerase ensures the integrity of linear chromosomes by maintaining telomere length. As a hallmark of cancer, cell immortalization and unlimited proliferation is gained by reactivation of telomerase. However, a significant fraction of cancer cells instead uses alternative telomere lengthening mechanisms to ensure telomere function, collectively known as Alternative Lengthening of Telomeres (ALT). Although the budding yeast Naumovozyma castellii (Saccharomyces castellii) has a proficient telomerase activity, we demonstrate here that telomeres in N. castellii are efficiently maintained by a novel ALT mechanism after telomerase knockout. Remarkably, telomerase-negative cells proliferate indefinitely without any major growth crisis and display wild-type colony morphology. Moreover, ALT cells maintain linear chromosomes and preserve a wild-type DNA organization at the chromosome termini, including a short stretch of terminal telomeric sequence. Notably, ALT telomeres are elongated by the addition of ∼275 bp repeats containing a short telomeric sequence and the subtelomeric DNA located just internally (TelKO element). Although telomeres may be elongated by several TelKO repeats, no dramatic genome-wide amplification occurs, thus indicating that the repeat addition may be regulated. Intriguingly, a short interstitial telomeric sequence (ITS) functions as the initiation point for the addition of the TelKO element. This implies that N. castellii telomeres are structurally predisposed to efficiently switch to the ALT mechanism as a response to telomerase dysfunction.
Collapse
|
5
|
Louzon M, Coeurdassier M, Gimbert F, Pauget B, de Vaufleury A. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. ENVIRONMENT INTERNATIONAL 2019; 131:105025. [PMID: 31352262 DOI: 10.1016/j.envint.2019.105025] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Telomeres (TLs) play major roles in stabilizing the genome and are usually shortened with ageing. The maintenance of TLs is ensured by two mechanisms involving telomerase (TA) enzyme and alternative lengthening telomeres (ALT). TL shortening and/or TA inhibition have been related to health effects on organisms (leading to reduced reproductive lifespan and survival), suggesting that they could be key processes in toxicity mechanisms (at molecular and cellular levels) and relevant as an early warning of exposure and effect of chemicals on human health and animal population dynamics. Consequently, a critical analysis of knowledge about relationships between TL dynamic and environmental pollution is essential to highlight the relevance of TL measurement in environmental toxicology. The first objective of this review is to provide a survey on the basic knowledge about TL structure, roles, maintenance mechanisms and causes of shortening in both vertebrates (including humans) and invertebrates. Overall, TL length decreases with ageing but some unexpected exceptions are reported (e.g., in species with different lifespans, such as the nematode Caenorhabditis elegans or the crustacean Homarus americanus). Inconsistent results reported in various biological groups or even between species of the same genus (e.g., the microcrustacean Daphnia sp.) indicate that the relation usually proposed between TL shortening and a decrease in TA activity cannot be generalized and depends on the species, stage of development or lifespan. Although the scientific literature provides evidence of the effect of ageing on TL shortening, much less information on the relationships between shortening, maintenance of TLs, influence of other endogenous and environmental drivers, including exposure to chemical pollutants, is available, especially in invertebrates. The second objective of this review is to connect knowledge on TL dynamic and exposure to contaminants. Most of the studies published on humans rely on correlative epidemiological approaches and few in vitro experiments. They have shown TL attrition when exposed to contaminants, such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), pesticides and metallic elements (ME). In other vertebrates, the studies we found deals mainly with birds and, overall, report a disturbance of TL dynamic consecutively to exposure to chemicals, including metals and organic compounds. In invertebrates, no data are available and the potential of TL dynamic in environmental risk assessment remains to be explored. On the basis of the main gaps identified some research perspectives (e.g., impact of endogenous and environmental drivers, dose response effects, link between TL length, TA activity, longevity and ageing) are proposed to better understand the potential of TL and TA measurements in humans and animals in environmental toxicology.
Collapse
Affiliation(s)
- Maxime Louzon
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Michael Coeurdassier
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Frédéric Gimbert
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Benjamin Pauget
- TESORA, Le Visium, 22 avenue Aristide Briand, 94110 Arcueil, France
| | - Annette de Vaufleury
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France.
| |
Collapse
|
6
|
Abstract
The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR). HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, which is why such repair is normally inhibited. However, some HR-mediated processes are required for proper telomere function. The need for some recombination activities at telomeres but not others necessitates careful and complex regulation, defects in which can lead to catastrophic consequences. Furthermore, some cell types can maintain telomeres via telomerase-independent, recombination-mediated mechanisms. In humans, these mechanisms are called alternative lengthening of telomeres (ALT) and are used in a subset of human cancer cells. In this review, we summarize the different recombination activities occurring at telomeres and discuss how they are regulated. Much of the current knowledge is derived from work using yeast models, which is the focus of this review, but relevant studies in mammals are also included.
Collapse
Affiliation(s)
- Clémence Claussin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Telomere recombination preferentially occurs at short telomeres in telomerase-null type II survivors. PLoS One 2014; 9:e90644. [PMID: 24594632 PMCID: PMC3940914 DOI: 10.1371/journal.pone.0090644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/03/2014] [Indexed: 01/17/2023] Open
Abstract
In telomerase negative yeast cells, Rad52-dependent recombination is activated to maintain telomeres. This recombination-mediated telomere elongation usually involves two independent pathways, type I and type II, and leads to generation of type I and type II survivors. It remains elusive whether the recombination-mediated telomere elongation prefers to take place on shorter or longer telomeres. In this study, we exploited the de novo telomere addition system to examine the telomere recombination event in telomerase negative cells. We show that recombination preferentially occurs on shorter rather than longer telomeres in both pre-survivors and established type II survivors. In type II survivors, the short VII–L telomeres could invade either terminal TG1–3 sequence or short tracts of TG1–3 sequence in subtelomeric Y′-X and Y′-Y′ junction to initiate recombination. Unexpectedly, short VII–L telomere recombination still takes place in type II survivors lacking either Rad50 or Rad59, which are required for type II survivor generation in senescing telomerase-null cells. Our results support the notion that Rad50 and Rad59 are not essential for the maintenance of type II survivors once established.
Collapse
|
8
|
Teixeira MT. Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening. Front Oncol 2013; 3:101. [PMID: 23638436 PMCID: PMC3636481 DOI: 10.3389/fonc.2013.00101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/11/2013] [Indexed: 01/22/2023] Open
Abstract
In many somatic human tissues, telomeres shorten progressively because of the DNA-end replication problem. Consequently, cells cease to proliferate and are maintained in a metabolically viable state called replicative senescence. These cells are characterized by an activation of DNA damage checkpoints stemming from eroded telomeres, which are bypassed in many cancer cells. Hence, replicative senescence has been considered one of the most potent tumor suppressor pathways. However, the mechanism through which short telomeres trigger this cellular response is far from being understood. When telomerase is removed experimentally in Saccharomyces cerevisiae, telomere shortening also results in a gradual arrest of population growth, suggesting that replicative senescence also occurs in this unicellular eukaryote. In this review, we present the key steps that have contributed to the understanding of the mechanisms underlying the establishment of replicative senescence in budding yeast. As in mammals, signals stemming from short telomeres activate the DNA damage checkpoints, suggesting that the early cellular response to the shortest telomere(s) is conserved in evolution. Yet closer analysis reveals a complex picture in which the apparent single checkpoint response may result from a variety of telomeric alterations expressed in the absence of telomerase. Accordingly, the DNA replication of eroding telomeres appears as a critical challenge for senescing budding yeast cells and the easy manipulation of S. cerevisiae is providing insights into the way short telomeres are integrated into their chromatin and nuclear environments. Finally, the loss of telomerase in budding yeast triggers a more general metabolic alteration that remains largely unexplored. Thus, telomerase-deficient S. cerevisiae cells may have more common points than anticipated with somatic cells, in which telomerase depletion is naturally programed, thus potentially inspiring investigations in mammalian cells.
Collapse
Affiliation(s)
- M Teresa Teixeira
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique Paris, France
| |
Collapse
|
9
|
Xu J, McEachern MJ. Long telomeres produced by telomerase-resistant recombination are established from a single source and are subject to extreme sequence scrambling. PLoS Genet 2012; 8:e1003017. [PMID: 23133400 PMCID: PMC3486848 DOI: 10.1371/journal.pgen.1003017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Considerable evidence now supports the idea that the moderate telomere lengthening produced by recombinational telomere elongation (RTE) in a Kluyveromyces lactis telomerase deletion mutant occurs through a roll-and-spread mechanism. However, it is unclear whether this mechanism can account for other forms of RTE that produce much longer telomeres such as are seen in human alternative lengthening of telomere (ALT) cells or in the telomerase-resistant type IIR “runaway” RTE such as occurs in the K. lactis stn1-M1 mutant. In this study we have used mutationally tagged telomeres to examine the mechanism of RTE in an stn1-M1 mutant both with and without telomerase. Our results suggest that the establishment stage of the mutant state in newly generated stn1-M1 ter1-Δ mutants surprisingly involves a first stage of sudden telomere shortening. Our data also show that, as predicted by the roll-and-spread mechanism, all lengthened telomeres in a newly established mutant cell commonly emerge from a single telomere source. However, in sharp contrast to the RTE of telomerase deletion survivors, we show that the RTE of stn1-M1 ter1-Δ cells produces telomeres whose sequences undergo continuous intense scrambling via recombination. While telomerase was not necessary for the long telomeres in stn1-M1 cells, its presence during their establishment was seen to interfere with the amplification of repeats via recombination, a result consistent with telomerase retaining its ability to add repeats during active RTE. Finally, we observed that the presence of active mismatch repair or telomerase had important influences on telomeric amplification and/or instability. Indefinite growth of tumor cells requires a mechanism to maintain telomeres. While most cancers use telomerase for this, some maintain long and heterogeneous telomeres using a recombination-dependent mechanism termed alternative lengthening of telomeres (ALT). What causes ALT and how their long and heterogeneous telomeres form and are maintained are not well understood. In this study, we use mutationally tagged telomeric repeats to probe the mechanisms by which highly elongated telomeres are generated by recombination in an ALT–like yeast mutant. Our data show that most or all lengthened telomeres in a newly established mutant cell are commonly generated by amplifying sequence from a single telomere source. This is consistent with the roll-and-spread model, which proposes that a single circle of telomeric DNA can be the ultimate source of all newly amplified telomeres. Other evidence showed that the telomeres of the mutant are exceptionally dynamic. Rapid terminal deletions preceded telomere elongation at the establishment of the mutant state. Also, patterns of telomeric repeats present in long telomeres became rapidly scrambled. These findings may have implications for the establishment and maintenance of long telomeres in human ALT cells.
Collapse
Affiliation(s)
| | - Michael J. McEachern
- Department of Genetics, Fred Davision Life Science Complex, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Xu J, McEachern MJ. Maintenance of very long telomeres by recombination in the Kluyveromyces lactis stn1-M1 mutant involves extreme telomeric turnover, telomeric circles, and concerted telomeric amplification. Mol Cell Biol 2012; 32:2992-3008. [PMID: 22645309 PMCID: PMC3434524 DOI: 10.1128/mcb.00430-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/09/2012] [Indexed: 01/26/2023] Open
Abstract
Some cancers utilize the recombination-dependent process of alternative lengthening of telomeres (ALT) to maintain long heterogeneous telomeres. Here, we studied the recombinational telomere elongation (RTE) of the Kluyveromyces lactis stn1-M1 mutant. We found that the total amount of the abundant telomeric DNA in stn1-M1 cells is subject to rapid variation and that it is likely to be primarily extrachromosomal. Rad50 and Rad51, known to be required for different RTE pathways in Saccharomyces cerevisiae, were not essential for the production of either long telomeres or telomeric circles in stn1-M1 cells. Circles of DNA containing telomeric repeats (t-circles) either present at the point of establishment of long telomeres or introduced later into stn1-M1 cells each led to the formation of long tandem arrays of the t-circle's sequence, which were incorporated at multiple telomeres. These tandem arrays were extraordinarily unstable and showed evidence of repeated rounds of concerted amplification. Our results suggest that the maintenance of telomeres in the stn1-M1 mutant involves extreme turnover of telomeric sequences from processes including both large deletions and the copying of t-circles.
Collapse
Affiliation(s)
- Jianing Xu
- Department of Genetics, Fred Davison Life Science Complex, University of Georgia, Athens, Georgia
| | | |
Collapse
|
11
|
Recombination can either help maintain very short telomeres or generate longer telomeres in yeast cells with weak telomerase activity. EUKARYOTIC CELL 2011; 10:1131-42. [PMID: 21666075 DOI: 10.1128/ec.05079-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Yeast mutants lacking telomerase are able to elongate their telomeres through processes involving homologous recombination. In this study, we investigated telomeric recombination in several mutants that normally maintain very short telomeres due to the presence of a partially functional telomerase. The abnormal colony morphology present in some mutants was correlated with especially short average telomere length and with a requirement for RAD52 for indefinite growth. Better-growing derivatives of some of the mutants were occasionally observed and were found to have substantially elongated telomeres. These telomeres were composed of alternating patterns of mutationally tagged telomeric repeats and wild-type repeats, an outcome consistent with amplification occurring via recombination rather than telomerase. Our results suggest that recombination at telomeres can produce two distinct outcomes in the mutants we studied. In occasional cells, recombination generates substantially longer telomeres, apparently through the roll-and-spread mechanism. However, in most cells, recombination appears limited to helping to maintain very short telomeres. The latter outcome likely represents a simplified form of recombinational telomere maintenance that is independent of the generation and copying of telomeric circles.
Collapse
|
12
|
Recombination can cause telomere elongations as well as truncations deep within telomeres in wild-type Kluyveromyces lactis cells. EUKARYOTIC CELL 2010; 10:226-36. [PMID: 21148753 DOI: 10.1128/ec.00209-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we examined the role of recombination at the telomeres of the yeast Kluyveromyces lactis. We demonstrated that an abnormally long and mutationally tagged telomere was subject to high rates of telomere rapid deletion (TRD) that preferentially truncated the telomere to near-wild-type size. Unlike the case in Saccharomyces cerevisiae, however, there was not a great increase in TRD in meiosis. About half of mitotic TRD events were associated with deep turnover of telomeric repeats, suggesting that telomeres were often cleaved to well below normal length prior to being reextended by telomerase. Despite its high rate of TRD, the long telomere showed no increase in the rate of subtelomeric gene conversion, a highly sensitive test of telomere dysfunction. We also showed that the long telomere was subject to appreciable rates of becoming elongated substantially further through a recombinational mechanism that added additional tagged repeats. Finally, we showed that the deep turnover that occurs within normal-length telomeres was diminished in the absence of RAD52. Taken together, our results suggest that homologous recombination is a significant process acting on both abnormally long and normally sized telomeres in K. lactis.
Collapse
|
13
|
Basenko EY, Cesare AJ, Iyer S, Griffith JD, McEachern MJ. Telomeric circles are abundant in the stn1-M1 mutant that maintains its telomeres through recombination. Nucleic Acids Res 2009; 38:182-9. [PMID: 19858100 PMCID: PMC2800209 DOI: 10.1093/nar/gkp814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Some human cancers maintain their telomeres using the alternative lengthening of telomeres (ALT) mechanism; a process thought to involve recombination. Different types of recombinational telomere elongation pathways have been identified in yeasts. In senescing yeast telomerase deletion (ter1-Δ) mutants with very short telomeres, it has been hypothesized that copying a tiny telomeric circle (t-circle) by a rolling circle mechanism is the key event in telomere elongation. In other cases more closely resembling ALT cells, such as the stn1-M1 mutant of Kluyveromyces lactis, the telomeres appear to be continuously unstable and routinely reach very large sizes. By employing two-dimensional gel electrophoresis and electron microscopy, we show that stn1-M1 cells contain abundant double stranded t-circles ranging from ∼100 to 30 000 bp in size. We also observed small single-stranded t-circles, specifically composed of the G-rich telomeric strand and tailed circles resembling rolling circle replication intermediates. The t-circles most likely arose from recombination events that also resulted in telomere truncations. The findings strengthen the possibility that t-circles contribute to telomere maintenance in stn1-M1 and ALT cells.
Collapse
Affiliation(s)
- Evelina Y Basenko
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
14
|
Large telomerase RNA, telomere length heterogeneity and escape from senescence in Candida glabrata. FEBS Lett 2009; 583:3605-10. [PMID: 19840797 DOI: 10.1016/j.febslet.2009.10.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/10/2009] [Accepted: 10/13/2009] [Indexed: 11/23/2022]
Abstract
Telomerase, the key enzyme essential for the maintenance of eukaryotic chromosome ends, contains a reverse transcriptase and an RNA that provides the template for the synthesis of telomeric repeats. Here, we characterize the telomerase subunits in the hemiascomycete yeast Candida glabrata. We propose a secondary structure model for the telomerase RNA that is the largest described to date. Telomerase deletion mutants show a progressive shortening of telomeres and a modest loss of viability. Frequent post-senescence survivors emerge that possess long telomeric repeat tracts. We suggest that the high telomere length heterogeneity accounts for this distinct senescence phenotype.
Collapse
|
15
|
Tomaska L, Nosek J, Kramara J, Griffith JD. Telomeric circles: universal players in telomere maintenance? Nat Struct Mol Biol 2009; 16:1010-5. [PMID: 19809492 PMCID: PMC4041010 DOI: 10.1038/nsmb.1660] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To maintain linear DNA genomes, organisms have evolved numerous means of solving problems associated with DNA ends (telomeres), including telomere-associated retrotransposons, palindromes, hairpins, covalently bound proteins and the addition of arrays of simple DNA repeats. Telomeric arrays can be maintained through various mechanisms such as telomerase activity or recombination. The recombination-dependent maintenance pathways may include telomeric loops (t-loops) and telomeric circles (t-circles). The potential involvement of t-circles in telomere maintenance was first proposed for linear mitochondrial genomes. The occurrence of t-circles in a wide range of organisms, spanning yeasts, plants and animals, suggests the involvement of t-circles in many phenomena including the alternative-lengthening of telomeres (ALT) pathway and telomere rapid deletion (TRD). In this Perspective, we summarize these findings and discuss how t-circles may be related to t-loops and how t-circles may have initiated the evolution of telomeres.
Collapse
Affiliation(s)
- Lubomir Tomaska
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
16
|
Muntoni A, Neumann AA, Hills M, Reddel RR. Telomere elongation involves intra-molecular DNA replication in cells utilizing alternative lengthening of telomeres. Hum Mol Genet 2008; 18:1017-27. [PMID: 19095716 PMCID: PMC2649016 DOI: 10.1093/hmg/ddn436] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomere length maintenance mechanism based on recombination, where telomeres use other telomeric DNA as a template for DNA synthesis. About 10% of all human tumors depend on ALT for their continued growth, and understanding its molecular details is critically important for the development of cancer treatments that target this mechanism. We have previously shown that telomeres of ALT-positive human cells can become lengthened via inter-telomeric copying, i.e. by copying the telomere of another chromosome. The possibility that such telomeres could elongate by using other sources of telomeric DNA as copy templates has not been investigated previously. In this study, we have determined whether a telomere can become lengthened by copying its own sequences, without the need for using another telomere as a copy template. To test this, we transduced an ALT cell line with a telomere-targeting construct and obtained clones with a single tagged telomere. We showed that the telomere tag can be amplified without the involvement of other telomeres, indicating that telomere elongation can also occur by intra-telomeric DNA copying. This is the first direct evidence that the ALT mechanism involves more than one method of telomere elongation.
Collapse
Affiliation(s)
- Alessandra Muntoni
- Cancer Research Unit, Children's Medical Research Institute, Sydney, NSW 2145, Australia
| | | | | | | |
Collapse
|
17
|
Mutant telomeric repeats in yeast can disrupt the negative regulation of recombination-mediated telomere maintenance and create an alternative lengthening of telomeres-like phenotype. Mol Cell Biol 2008; 29:626-39. [PMID: 19029249 DOI: 10.1128/mcb.00423-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent of human ALT cells. In this study, we generated telomeres composed of either of two types of mutant telomeric repeats, Acc and SnaB, that each alter the binding site for the telomeric protein Rap1. We show here that arrays of both types of mutant repeats present basally on a telomere were defective in negatively regulating telomere length in the presence of telomerase. Similarly, when each type of mutant repeat was spread to all chromosome ends in cells lacking telomerase, they led to the formation of telomeres produced by RTE that were much longer than those seen in cells with only wild-type telomeric repeats. The Acc repeats produced the more severe defect in both types of telomere maintenance, consistent with their more severe Rap1 binding defect. Curiously, although telomerase deletion mutants with telomeres composed of Acc repeats invariably showed extreme telomere elongation, they often also initially showed persistent very short telomeres with few or no Acc repeats. We suggest that these result from futile cycles of recombinational elongation and truncation of the Acc repeats from the telomeres. The presence of extensive 3' overhangs at mutant telomeres suggests that Rap1 may normally be involved in controlling 5' end degradation.
Collapse
|
18
|
The telotype defines the telomere state in Saccharomyces cerevisiae and is inherited as a dominant non-Mendelian characteristic in cells lacking telomerase. Genetics 2008; 178:245-57. [PMID: 18202371 DOI: 10.1534/genetics.107.083030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres are an unusual component of the genome because they do not encode genes, but their structure and cellular maintenance machinery (which we define as "telotype") are essential for chromosome stability. Cells can switch between different phenotypic states. One such example is when they switch from maintenance mediated by telomerase (TERT telotype) to one of the two alternative mechanisms of telomere preservation (ALT I and ALT II telotype). The nature of this switch is largely unknown. Reintroduction of telomerase into ALT II, but not ALT I, yeast led to the loss of their ability to survive a second round of telomerase withdrawal. Mating-based genetic analysis of ALT I and II revealed that both types of telomerase-independent telomere maintenance are inherited as a non-Mendelian trait dominant over senescence (SEN telotype). Additionally, inheritance of ALT I and ALT II did not depend on either the mitochondrial genome or a prion-based mechanism. Type I, but not type II, survivor cells exhibited impaired gene silencing, potentially connecting the switch to the ALT telotype epigenetic changes. These data provide evidence that nonprion epigenetic-like mechanisms confer flexibility on cells as a population to adjust to the life-threatening situation of telomerase loss, allowing cells to switch from TERT to ALT telotypes that can sustain viable populations.
Collapse
|
19
|
Cesare AJ, Reddel RR. Telomere uncapping and alternative lengthening of telomeres. Mech Ageing Dev 2007; 129:99-108. [PMID: 18215414 DOI: 10.1016/j.mad.2007.11.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 11/23/2007] [Accepted: 11/30/2007] [Indexed: 11/17/2022]
Abstract
A substantial number of human tumors utilize a telomerase-independent telomere length maintenance mechanism referred to as alternative lengthening of telomeres (ALT). Although it is known that ALT is a telomere-specific, loss of function phenotype, which involves lengthening of telomeres by homologous recombination-mediated replication of telomeric DNA, many of the details of these processes require elucidation. Here we discuss the current literature on ALT and telomere capping, specifically focusing on how alterations in telomere capping functions may permit activation of ALT and explain the phenotypic characteristics of cells in which this occurs.
Collapse
Affiliation(s)
- Anthony J Cesare
- Cancer Research Unit, Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia
| | | |
Collapse
|
20
|
Lee JY, Kozak M, Martin JD, Pennock E, Johnson FB. Evidence that a RecQ helicase slows senescence by resolving recombining telomeres. PLoS Biol 2007; 5:e160. [PMID: 17550308 PMCID: PMC1885831 DOI: 10.1371/journal.pbio.0050160] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 04/13/2007] [Indexed: 12/27/2022] Open
Abstract
RecQ helicases, including Saccharomyces cerevisiae Sgs1p and the human Werner syndrome protein, are important for telomere maintenance in cells lacking telomerase activity. How maintenance is accomplished is only partly understood, although there is evidence that RecQ helicases function in telomere replication and recombination. Here we use two-dimensional gel electrophoresis (2DGE) and telomere sequence analysis to explore why cells lacking telomerase and Sgs1p (tlc1 sgs1 mutants) senesce more rapidly than tlc1 mutants with functional Sgs1p. We find that apparent X-shaped structures accumulate at telomeres in senescing tlc1 sgs1 mutants in a RAD52- and RAD53-dependent fashion. The X-structures are neither Holliday junctions nor convergent replication forks, but instead may be recombination intermediates related to hemicatenanes. Direct sequencing of examples of telomere I-L in senescing cells reveals a reduced recombination frequency in tlc1 sgs1 compared with tlc1 mutants, indicating that Sgs1p is needed for tlc1 mutants to complete telomere recombination. The reduction in recombinants is most prominent at longer telomeres, consistent with a requirement for Sgs1p to generate viable progeny following telomere recombination. We therefore suggest that Sgs1p may be required for efficient resolution of telomere recombination intermediates, and that resolution failure contributes to the premature senescence of tlc1 sgs1 mutants. Because telomeres are situated at the ends of chromosomes, they are both essential for chromosome integrity and particularly susceptible to processes that lead to loss of their own DNA sequences. The enzyme telomerase can counter these losses, but there are also other means of telomere maintenance, some of which depend on DNA recombination. The RecQ family of DNA helicases process DNA recombination intermediates and also help ensure telomere integrity, but the relationship between these activities is poorly understood. Family members include yeast Sgs1p and human WRN and BLM, which are deficient in the Werner premature aging syndrome and the Bloom cancer predisposition syndrome, respectively. We have found that the telomeres of yeast cells lacking both telomerase and Sgs1p accumulate structures that resemble recombination intermediates. Further, we provide evidence that the inability of cells lacking Sgs1p to process these telomere recombination intermediates leads to the premature arrest of cell division. We predict that similar defects in the processing of recombination intermediates may contribute to telomere defects in human Werner and Bloom syndrome cells. Yeast cells lacking the RecQ helicase Sgs1p show an accumulation of telomere recombination intermediates associated with premature senescence.
Collapse
Affiliation(s)
- Julia Y Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marina Kozak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joel D Martin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erin Pennock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - F. Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Telomere loops and homologous recombination-dependent telomeric circles in a Kluyveromyces lactis telomere mutant strain. Mol Cell Biol 2007; 28:20-9. [PMID: 17967889 DOI: 10.1128/mcb.01122-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kluyveromyces lactis ter1-16T strain contains mutant telomeres that are poorly bound by Rap1, resulting in a telomere-uncapping phenotype and significant elongation of the telomeric DNA. The elongated telomeres of ter1-16T allowed the isolation and examination of native yeast telomeric DNA by electron microscopy. In the telomeric DNA isolated from ter1-16T, looped molecules were observed with the physical characteristics of telomere loops (t-loops) previously described in mammalian and plant cells. ter1-16T cells were also found to contain free circular telomeric DNA molecules (t-circles) ranging up to the size of an entire telomere. When the ter1-16T uncapping phenotype was repressed by overexpression of RAP1 or recombination was inhibited by deletion of rad52, the isolated telomeric DNA contained significantly fewer t-loops and t-circles. These results suggest that disruption of Rap1 results in elevated recombination at telomeres, leading to increased strand invasion of the 3' overhang within t-loop junctions and resolution of the t-loop junctions into free t-circles.
Collapse
|
22
|
Abstract
When a telomere becomes unprotected or if only one end of a chromosomal double-strand break succeeds in recombining with a template sequence, DNA can be repaired by a recombination-dependent DNA replication process termed break-induced replication (BIR). In budding yeasts, there are two BIR pathways, one dependent on the Rad51 recombinase protein and one Rad51 independent; these two repair processes lead to different types of survivors in cells lacking the telomerase enzyme that is required for normal telomere maintenance. Recombination at telomeres is triggered by either excessive telomere shortening or disruptions in the function of telomere-binding proteins. Telomere elongation by BIR appears to often occur through a "roll and spread" mechanism. In this process, a telomeric circle produced by recombination at a dysfunctional telomere acts as a template for a rolling circle BIR event to form an elongated telomere. Additional BIR events can then copy the elongated sequence to all other telomeres.
Collapse
|
23
|
Steinberg-Neifach O, Lue NF. Modulation of telomere terminal structure by telomerase components in Candida albicans. Nucleic Acids Res 2006; 34:2710-22. [PMID: 16714448 PMCID: PMC1464115 DOI: 10.1093/nar/gkl345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The telomerase ribonucleoprotein in Candida albicans is presumed to contain at least three Est proteins: CaEst1p, CaEst2p/TERT and CaEst3p. We constructed mutants missing each of the protein subunit of telomerase and analyzed overall telomere dynamics and single-stranded telomere overhangs over the course of many generations. The est1-ΔΔ mutant manifested abrupt telomere loss and recovery, consistent with heightened recombination. Both the est2-ΔΔ and est3-ΔΔ mutant exhibited progressive telomere loss, followed by the gradual emergence of survivors with long telomeres. In no case was telomere loss accompanied by severe growth defects, suggesting that cells with short telomeres can continue to proliferate. Furthermore, the amount of G-strand terminal overhangs was greatly increased in the est2-ΔΔ mutant, but not others. Our results suggest that in addition to their well-characterized function in telomere elongation, both CaEst1p and CaEst2p mediate some aspects of telomere protection in Candida, with the former suppressing excessive recombination, and the latter preventing excessive C-strand degradation.
Collapse
Affiliation(s)
| | - Neal F. Lue
- To whom correspondence should be addressed. Tel: +1 212 746 6506; Fax: +1 212 746 8587;
| |
Collapse
|
24
|
Abstract
Chromosomes may be either circular or linear, the latter being prone to erosion caused by incomplete replication, degradation and inappropriate repair. Despite these problems, the linear form of DNA is frequently found in viruses, bacteria, eukaryotic nuclei and organelles. The high incidence of linear chromosomes and/or genomes evokes why and how they emerged in evolution. Here we suggest that the primordial terminal structures (telomeres) of linear chromosomes in eukaryotic nuclei were derived from selfish element(s), which caused the linearization of ancestral circular genome. The telomeres were then essential in solving the emerged problems. Molecular fossils of such elements were recently identified in phylogenetically distant genomes and were shown to generate terminal arrays of tandem repeats. These arrays might mediate the formation of higher order structures at chromosomal termini that stabilize the linear chromosomal form by fulfilling essential telomeric functions.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Comenius University, Bratislava, Slovakia.
| | | | | |
Collapse
|
25
|
Bhattacharyya MK, Lustig AJ. Telomere dynamics in genome stability. Trends Biochem Sci 2006; 31:114-22. [PMID: 16406636 DOI: 10.1016/j.tibs.2005.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 10/19/2005] [Accepted: 12/15/2005] [Indexed: 01/11/2023]
Abstract
The past several years have seen an increasing interest in telomere recombinational interactions that provide many functions in telomere capping, in telomere size homeostasis and in overcoming the catastrophic effects of telomerase deficiency. Several key recombination mechanisms have emerged from recent investigations. In the yeasts, these mechanisms include exchange between subtelomeric regions and telomere sequences, rapid telomere expansion and telomere deletion. These processes proceed by pathways that use both the cellular recombination machinery and novel mechanisms such as rolling circle replication. The insights gained from recent studies extend our understanding of similar processes in higher eukaryotes and suggest that the recombinational dynamics of telomeres have additional roles that contribute to genomic stability and instability.
Collapse
Affiliation(s)
- Mrinal K Bhattacharyya
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
26
|
Cerone MA, Autexier C, Londoño-Vallejo JA, Bacchetti S. A human cell line that maintains telomeres in the absence of telomerase and of key markers of ALT. Oncogene 2005; 24:7893-901. [PMID: 16116482 DOI: 10.1038/sj.onc.1208934] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In human somatic cells proliferation results in telomere shortening due to the end replication problem and the absence of adequate levels of telomerase activity. The progressive loss of telomeric DNA has been associated with replicative senescence. Maintenance of telomere structure and function is, therefore, an essential requisite for cells that proliferate indefinitely. Human cells that have acquired the immortal phenotype mostly rely on telomerase to compensate for telomere shortening with cell division. However, a certain percentage of immortalized cell lines and human tumors maintain their telomeres by Alternative Lengthening of Telomeres (ALT), a mechanism not fully understood but apparently based on homologous recombination. Here, we report the isolation of an immortal human cell line that is derived from an ALT cell line but maintains telomeres in the absence of key features of ALT and of telomerase. The properties of these cells suggest that the identification of ALT cells may not be reliably based on known ALT markers. This finding is of relevance for discriminating between the mortal and immortal phenotype among telomerase-negative cells in vitro and in vivo, particularly in regard to the development of pharmacological approaches for cancer treatment based on telomerase inhibition.
Collapse
Affiliation(s)
- Maria A Cerone
- Department of Anatomy and Cell Biology, McGill University, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
27
|
Iyer S, Chadha AD, McEachern MJ. A mutation in the STN1 gene triggers an alternative lengthening of telomere-like runaway recombinational telomere elongation and rapid deletion in yeast. Mol Cell Biol 2005; 25:8064-73. [PMID: 16135798 PMCID: PMC1234331 DOI: 10.1128/mcb.25.18.8064-8073.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/13/2005] [Accepted: 07/11/2005] [Indexed: 11/20/2022] Open
Abstract
Some human cancer cells achieve immortalization by using a recombinational mechanism termed ALT (alternative lengthening of telomeres). A characteristic feature of ALT cells is the presence of extremely long and heterogeneous telomeres. The molecular mechanism triggering and maintaining this pathway is currently unknown. In Kluyveromyces lactis, we have identified a novel allele of the STN1 gene that produces a runaway ALT-like telomeric phenotype by recombination despite the presence of an active telomerase pathway. Additionally, stn1-M1 cells are synthetically lethal in combination with rad52 and display chronic growth and telomere capping defects including extensive 3' single-stranded telomere DNA and highly elevated subtelomere gene conversion. Strikingly, stn1-M1 cells undergo a very high rate of telomere rapid deletion (TRD) upon reintroduction of STN1. Our results suggest that the protein encoded by STN1, which protects the terminal 3' telomere DNA, can regulate both ALT and TRD.
Collapse
Affiliation(s)
- Shilpa Iyer
- Department of Genetics, Fred C. Davison Life Science Complex, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
28
|
Cohen S, Agmon N, Yacobi K, Mislovati M, Segal D. Evidence for rolling circle replication of tandem genes in Drosophila. Nucleic Acids Res 2005; 33:4519-26. [PMID: 16091629 PMCID: PMC1184221 DOI: 10.1093/nar/gki764] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is one characteristic of the plasticity of the eukaryotic genome. It is found in various organisms and contains sequences derived primarily from repetitive chromosomal DNA. Using 2D gel electrophoresis, we have previously detected eccDNA composed of chromosomal tandem repeats throughout the life cycle of Drosophila. Here, we report for the first time evidence suggesting the occurrence of rolling circle replication of eccDNA in Drosophila. We show, on 2D gels, specific structures that can be enriched by benzoylated naphthoylated DEAE-cellulose chromatography and were identified in other systems as rolling circle intermediates (RCIs). These RCIs are homologous to histone genes, Stellate and Suppressor of Stellate, which are all organized in the chromosomes as tandem repeats. RCIs are detected throughout the life cycle of Drosophila and in cultured fly cells. These structures are found regardless of the expression of the replicated gene or of its chromosomal copy number.
Collapse
Affiliation(s)
- Sarit Cohen
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University Tel Aviv 69978, Israel.
| | | | | | | | | |
Collapse
|
29
|
Current awareness on yeast. Yeast 2005; 22:919-26. [PMID: 16201058 DOI: 10.1002/yea.1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Groff-Vindman C, Cesare AJ, Natarajan S, Griffith JD, McEachern MJ. Recombination at long mutant telomeres produces tiny single- and double-stranded telomeric circles. Mol Cell Biol 2005; 25:4406-12. [PMID: 15899847 PMCID: PMC1140610 DOI: 10.1128/mcb.25.11.4406-4412.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recombinational telomere elongation (RTE) known as alternate lengthening of telomeres is the mechanism of telomere maintenance in up to 5 to 10% of human cancers. The telomeres of yeast mutants lacking telomerase can also be maintained by recombination. Previously, we proposed the roll-and-spread model to explain this elongation in the yeast Kluveromyces lactis. This model suggests that a very small ( approximately 100-bp) circular molecule of telomeric DNA is copied by a rolling circle event to generate a single long telomere. The sequence of this primary elongated telomere is then spread by recombination to all remaining telomeres. Here we show by two-dimensional gel analysis and electron microscopy that small circles of single- and double-stranded telomeric DNA are commonly made by recombination in a K. lactis mutant with long telomeres. These circles were found to be especially abundant between 100 and 400 bp (or nucleotides). Interestingly, the single-stranded circles consist of only the G-rich telomeric strand sequence. To our knowledge this is the first report of single-stranded telomeric circles as a product of telomere dysfunction. We propose that the small telomeric circles form through the resolution of an intratelomeric strand invasion which resembles a t-loop. Our data reported here demonstrate that K. lactis can, in at least some circumstances, make telomeric circles of the very small sizes predicted by the roll-and-spread model. The very small circles seen here are both predicted products of telomere rapid deletion, a process observed in both human and yeast cells, and predicted templates for roll-and-spread RTE.
Collapse
Affiliation(s)
- Cindy Groff-Vindman
- University of Georgia at Athens, Department of Genetics, Room C318, Life Sciences Building, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|