1
|
Sun J, Lu F, Luo Y, Bie L, Xu L, Wang Y. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 2023:7146343. [PMID: 37114999 DOI: 10.1093/nar/gkad313] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Advancements in comparative genomics research have led to a growing interest in studying species evolution and genetic diversity. To facilitate this research, OrthoVenn3 has been developed as a powerful, web-based tool that enables users to efficiently identify and annotate orthologous clusters and infer phylogenetic relationships across a range of species. The latest upgrade of OrthoVenn includes several important new features, including enhanced orthologous cluster identification accuracy, improved visualization capabilities for numerous sets of data, and wrapped phylogenetic analysis. Furthermore, OrthoVenn3 now provides gene family contraction and expansion analysis to support researchers better understanding the evolutionary history of gene families, as well as collinearity analysis to detect conserved and variable genomic structures. With its intuitive user interface and robust functionality, OrthoVenn3 is a valuable resource for comparative genomics research. The tool is freely accessible at https://orthovenn3.bioinfotoolkits.net.
Collapse
Affiliation(s)
- Jiahe Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Fang Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yongjiang Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Lingzi Bie
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ling Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Feng Y, Neme R, Beh LY, Chen X, Braun J, Lu MW, Landweber LF. Comparative genomics reveals insight into the evolutionary origin of massively scrambled genomes. eLife 2022; 11:e82979. [PMID: 36421078 PMCID: PMC9797194 DOI: 10.7554/elife.82979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Ciliates are microbial eukaryotes that undergo extensive programmed genome rearrangement, a natural genome editing process that converts long germline chromosomes into smaller gene-rich somatic chromosomes. Three well-studied ciliates include Oxytricha trifallax, Tetrahymena thermophila, and Paramecium tetraurelia, but only the Oxytricha lineage has a massively scrambled genome, whose assembly during development requires hundreds of thousands of precisely programmed DNA joining events, representing the most complex genome dynamics of any known organism. Here we study the emergence of such complex genomes by examining the origin and evolution of discontinuous and scrambled genes in the Oxytricha lineage. This study compares six genomes from three species, the germline and somatic genomes for Euplotes woodruffi, Tetmemena sp., and the model ciliate O. trifallax. We sequenced, assembled, and annotated the germline and somatic genomes of E. woodruffi, which provides an outgroup, and the germline genome of Tetmemena sp. We find that the germline genome of Tetmemena is as massively scrambled and interrupted as Oxytricha's: 13.6% of its gene loci require programmed translocations and/or inversions, with some genes requiring hundreds of precise gene editing events during development. This study revealed that the earlier diverged spirotrich, E. woodruffi, also has a scrambled genome, but only roughly half as many loci (7.3%) are scrambled. Furthermore, its scrambled genes are less complex, together supporting the position of Euplotes as a possible evolutionary intermediate in this lineage, in the process of accumulating complex evolutionary genome rearrangements, all of which require extensive repair to assemble functional coding regions. Comparative analysis also reveals that scrambled loci are often associated with local duplications, supporting a gradual model for the origin of complex, scrambled genomes via many small events of DNA duplication and decay.
Collapse
Affiliation(s)
- Yi Feng
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Rafik Neme
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
- Department of Chemistry and Biology, Universidad del NorteBarranquillaColombia
| | - Leslie Y Beh
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Xiao Chen
- Pacific BiosciencesMenlo ParkUnited States
| | - Jasper Braun
- Department of Mathematics and Statistics, University of South FloridaTampaUnited States
| | - Michael W Lu
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Laura F Landweber
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| |
Collapse
|
3
|
Two hypotrichs (Ciliophora, Hypotricha) from China: morphology and SSU rDNA sequence of Holosticha aestuarina nov. spec. and H. muuiensis. Eur J Protistol 2022; 86:125931. [DOI: 10.1016/j.ejop.2022.125931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
|
4
|
Rzeszutek I, Maurer-Alcalá XX, Nowacki M. Programmed genome rearrangements in ciliates. Cell Mol Life Sci 2020; 77:4615-4629. [PMID: 32462406 PMCID: PMC7599177 DOI: 10.1007/s00018-020-03555-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Ciliates are a highly divergent group of unicellular eukaryotes with separate somatic and germline genomes found in distinct dimorphic nuclei. This characteristic feature is tightly linked to extremely laborious developmentally regulated genome rearrangements in the development of a new somatic genome/nuclei following sex. The transformation from germline to soma genome involves massive DNA elimination mediated by non-coding RNAs, chromosome fragmentation, as well as DNA amplification. In this review, we discuss the similarities and differences in the genome reorganization processes of the model ciliates Paramecium and Tetrahymena (class Oligohymenophorea), and the distantly related Euplotes, Stylonychia, and Oxytricha (class Spirotrichea).
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Xyrus X Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
5
|
Feng Y, Beh LY, Chang WJ, Landweber LF. SIGAR: Inferring Features of Genome Architecture and DNA Rearrangements by Split-Read Mapping. Genome Biol Evol 2020; 12:1711-1718. [PMID: 32790832 PMCID: PMC7586852 DOI: 10.1093/gbe/evaa147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/03/2022] Open
Abstract
Ciliates are microbial eukaryotes with distinct somatic and germline genomes. Postzygotic development involves extensive remodeling of the germline genome to form somatic chromosomes. Ciliates therefore offer a valuable model for studying the architecture and evolution of programed genome rearrangements. Current studies usually focus on a few model species, where rearrangement features are annotated by aligning reference germline and somatic genomes. Although many high-quality somatic genomes have been assembled, a high-quality germline genome assembly is difficult to obtain due to its smaller DNA content and abundance of repetitive sequences. To overcome these hurdles, we propose a new pipeline, SIGAR (Split-read Inference of Genome Architecture and Rearrangements) to infer germline genome architecture and rearrangement features without a germline genome assembly, requiring only short DNA sequencing reads. As a proof of principle, 93% of rearrangement junctions identified by SIGAR in the ciliate Oxytricha trifallax were validated by the existing germline assembly. We then applied SIGAR to six diverse ciliate species without germline genome assemblies, including Ichthyophthirius multifilii, a fish pathogen. Despite the high level of somatic DNA contamination in each sample, SIGAR successfully inferred rearrangement junctions, short eliminated sequences, and potential scrambled genes in each species. This pipeline enables pilot surveys or exploration of DNA rearrangements in species with limited DNA material access, thereby providing new insights into the evolution of chromosome rearrangements.
Collapse
Affiliation(s)
- Yi Feng
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia University
| | - Leslie Y Beh
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia University
| | - Wei-Jen Chang
- Department of Biology, Hamilton College, Clinton, New York
| | - Laura F Landweber
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia University
| |
Collapse
|
6
|
Hajij M, Jonoska N, Kukushkin D, Saito M. Graph based analysis for gene segment organization In a scrambled genome. J Theor Biol 2020; 494:110215. [PMID: 32112806 DOI: 10.1016/j.jtbi.2020.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
DNA recombinant processes can involve gene segments that overlap or interleave with gene segments of another gene. Such gene segment appearances relative to each other are called here gene segment organization. We use graphs to represent the gene segment organization in a chromosome locus. Vertices of the graph represent contigs resulting after the recombination and the edges represent the gene segment organization prior to rearrangement. To each graph we associate a vector whose entries correspond to graph properties, and consider this vector as a point in a higher dimensional Euclidean space such that cluster formations and analysis can be performed with a hierarchical clustering method. The analysis is applied to a recently sequenced model organism Oxytricha trifallax, a species of ciliate with highly scrambled genome that undergoes massive rearrangement process after conjugation. The analysis shows some emerging star-like graph structures indicating that segments of a single gene can interleave, or even contain all of the segments from fifteen or more other genes in between its segments. We also observe that as many as six genes can have their segments mutually interleaving or overlapping.
Collapse
Affiliation(s)
- Mustafa Hajij
- Department of Computer Science, Ohio State University, Columbus, OH 43210, USA
| | - Nataša Jonoska
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33612, USA.
| | - Denys Kukushkin
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33612, USA
| | - Masahico Saito
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Yerlici VT, Lu MW, Hoge CR, Miller RV, Neme R, Khurana JS, Bracht JR, Landweber LF. Programmed genome rearrangements in Oxytricha produce transcriptionally active extrachromosomal circular DNA. Nucleic Acids Res 2019; 47:9741-9760. [PMID: 31504770 PMCID: PMC6765146 DOI: 10.1093/nar/gkz725] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/02/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is both a driver of eukaryotic genome instability and a product of programmed genome rearrangements, but its extent had not been surveyed in Oxytricha, a ciliate with elaborate DNA elimination and translocation during development. Here, we captured rearrangement-specific circular DNA molecules across the genome to gain insight into its processes of programmed genome rearrangement. We recovered thousands of circularly excised Tc1/mariner-type transposable elements and high confidence non-repetitive germline-limited loci. We verified their bona fide circular topology using circular DNA deep-sequencing, 2D gel electrophoresis and inverse polymerase chain reaction. In contrast to the precise circular excision of transposable elements, we report widespread heterogeneity in the circular excision of non-repetitive germline-limited loci. We also demonstrate that circular DNAs are transcribed in Oxytricha, producing rearrangement-specific long non-coding RNAs. The programmed formation of thousands of eccDNA molecules makes Oxytricha a model system for studying nucleic acid topology. It also suggests involvement of eccDNA in programmed genome rearrangement.
Collapse
Affiliation(s)
- V Talya Yerlici
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael W Lu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Carla R Hoge
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Richard V Miller
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rafik Neme
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jaspreet S Khurana
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Bracht
- Department of Biology, American University, Washington, DC 20016, USA
| | - Laura F Landweber
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Russian Doll Genes and Complex Chromosome Rearrangements in Oxytricha trifallax. G3-GENES GENOMES GENETICS 2018; 8:1669-1674. [PMID: 29545465 PMCID: PMC5940158 DOI: 10.1534/g3.118.200176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ciliates have two different types of nuclei per cell, with one acting as a somatic, transcriptionally active nucleus (macronucleus; abbr. MAC) and another serving as a germline nucleus (micronucleus; abbr. MIC). Furthermore, Oxytricha trifallax undergoes extensive genome rearrangements during sexual conjugation and post-zygotic development of daughter cells. These rearrangements are necessary because the precursor MIC loci are often both fragmented and scrambled, with respect to the corresponding MAC loci. Such genome architectures are remarkably tolerant of encrypted MIC loci, because RNA-guided processes during MAC development reorganize the gene fragments in the correct order to resemble the parental MAC sequence. Here, we describe the germline organization of several nested and highly scrambled genes in Oxytricha trifallax These include cases with multiple layers of nesting, plus highly interleaved or tangled precursor loci that appear to deviate from previously described patterns. We present mathematical methods to measure the degree of nesting between precursor MIC loci, and revisit a method for a mathematical description of scrambling. After applying these methods to the chromosome rearrangement maps of O. trifallax we describe cases of nested arrangements with up to five layers of embedded genes, as well as the most scrambled loci in O. trifallax.
Collapse
|
9
|
Abstract
In modern molecular biology, RNA has emerged as a versatile macromolecule capable of mediating an astonishing number of biological functions beyond its role as a transient messenger of genetic information. The recent discovery and functional analyses of new classes of noncoding RNAs (ncRNAs) have revealed their widespread use in many pathways, including several in the nucleus. This Review focuses on the mechanisms by which nuclear ncRNAs directly contribute to the maintenance of genome stability. We discuss how ncRNAs inhibit spurious recombination among repetitive DNA elements, repress mobilization of transposable elements (TEs), template or bridge DNA double-strand breaks (DSBs) during repair, and direct developmentally regulated genome rearrangements in some ciliates. These studies reveal an unexpected repertoire of mechanisms by which ncRNAs contribute to genome stability and even potentially fuel evolution by acting as templates for genome modification.
Collapse
|
10
|
Morphology, morphogenesis, and molecular phylogeny of Uroleptus ( Caudiholosticha ) stueberi (Foissner, 1987) comb. nov. (Ciliophora, Hypotricha), and reclassification of the remaining Caudiholosticha species. Eur J Protistol 2017; 59:82-98. [DOI: 10.1016/j.ejop.2016.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 11/21/2022]
|
11
|
Bondarenko VS, Gelfand MS. Evolution of the Exon-Intron Structure in Ciliate Genomes. PLoS One 2016; 11:e0161476. [PMID: 27603699 PMCID: PMC5014332 DOI: 10.1371/journal.pone.0161476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/06/2016] [Indexed: 12/27/2022] Open
Abstract
A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33–35 bp, 47–51 bp, and 78–80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in various representatives of Ciliates.
Collapse
Affiliation(s)
- Vladyslav S. Bondarenko
- Institute of Molecular Biology and Genetics, NASU, Zabolotnogo Str. 150, Kyiv, 03680, Ukraine
- * E-mail:
| | - Mikhail S. Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorobievy Gory 1–73, Moscow GSP-1, 119234, Russia
| |
Collapse
|
12
|
Burns J, Kukushkin D, Chen X, Landweber LF, Saito M, Jonoska N. Recurring patterns among scrambled genes in the encrypted genome of the ciliate Oxytricha trifallax. J Theor Biol 2016; 410:171-180. [PMID: 27593332 DOI: 10.1016/j.jtbi.2016.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/21/2016] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
Some genera of ciliates, such as Oxytricha and Stylonychia, undergo massive genome reorganization during development and provide model organisms to study DNA rearrangement. A common feature of these ciliates is the presence of two types of nuclei: a germline micronucleus and a transcriptionally-active somatic macronucleus containing over 16,000 gene sized "nano-chromosomes". During conjugation the old parental macronucleus disintegrates and a new macronucleus forms from a copy of the zygotic micronucleus. During this process, macronuclear chromosomes assemble through DNA processing events that delete 90-98% of the DNA content of the micronucleus. This includes the deletion of noncoding DNA segments that interrupt precursor DNA regions in the micronucleus, as well as transposons and other germline-limited DNA. Each macronuclear locus may be present in the micronucleus as several nonconsecutive, permuted, and/or inverted DNA segments. Here we investigate the genome-wide range of scrambled gene architectures that describe all precursor-product relationships in Oxytricha trifallax, the first completely sequenced scrambled genome. We find that five general, recurrent patterns in the sets of scrambled micronuclear precursor pieces can describe over 80% of Oxytricha's scrambled genes. These include instances of translocations and inversions, and other specific patterns characterized by alternating stretches of consecutive odd and even DNA segments. Moreover, we find that iterating patterns of alternating odd-even segments up to four times can describe over 96% of the scrambled precursor loci. Recurrence of these highly structured genetic architectures within scrambled genes presumably reflects recurrent evolutionary events that gave rise to over 3000 of scrambled loci in the germline genome.
Collapse
Affiliation(s)
- Jonathan Burns
- Department of Mathematics & Statistics, University of South Florida, Tampa, FL 33620.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Denys Kukushkin
- Department of Mathematics & Statistics, University of South Florida, Tampa, FL 33620
| | - Xiao Chen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Laura F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Masahico Saito
- Department of Mathematics & Statistics, University of South Florida, Tampa, FL 33620
| | - Nataša Jonoska
- Department of Mathematics & Statistics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
13
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
14
|
Paiva TDS, Shao C, Fernandes NM, Borges BDN, da Silva-Neto ID. Description and Phylogeny of Urostyla grandis wiackowskii
subsp. nov. (Ciliophora, Hypotricha) from an Estuarine Mangrove in Brazil. J Eukaryot Microbiol 2015; 63:247-61. [DOI: 10.1111/jeu.12273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/08/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Thiago da Silva Paiva
- Laboratório de Protistologia; Departamento de Zoologia; Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro - RJ Brazil
- Laboratório de Biologia Molecular “Francisco Mauro Salzano”; Instituto de Ciências Biológicas; Universidade Federal do Pará; Belém Pará Brazil
| | - Chen Shao
- The Key Laboratory of Biomedical Information Engineering Ministry of Education; Department of Biology and Engineering; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Noemi Mendes Fernandes
- Laboratório de Biologia Evolutiva Teórica e Aplicada; Departamento de Genética, Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro - RJ Brazil
| | | | - Inácio Domingos da Silva-Neto
- Laboratório de Protistologia; Departamento de Zoologia; Instituto de Biologia; Universidade Federal do Rio de Janeiro; Rio de Janeiro - RJ Brazil
| |
Collapse
|
15
|
Chen X, Jung S, Beh LY, Eddy SR, Landweber LF. Combinatorial DNA Rearrangement Facilitates the Origin of New Genes in Ciliates. Genome Biol Evol 2015; 7:2859-70. [PMID: 26338187 PMCID: PMC4684698 DOI: 10.1093/gbe/evv172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Programmed genome rearrangements in the unicellular eukaryote Oxytricha trifallax produce a transcriptionally active somatic nucleus from a copy of its germline nucleus during development. This process eliminates noncoding sequences that interrupt coding regions in the germline genome, and joins over 225,000 remaining DNA segments, some of which require inversion or complex permutation to build functional genes. This dynamic genomic organization permits some single DNA segments in the germline to contribute to multiple, distinct somatic genes via alternative processing. Like alternative mRNA splicing, the combinatorial assembly of DNA segments contributes to genetic variation and facilitates the evolution of new genes. In this study, we use comparative genomic analysis to demonstrate that the emergence of alternative DNA splicing is associated with the origin of new genes. Short duplications give rise to alternative gene segments that are spliced to the shared gene segments. Alternative gene segments evolve faster than shared, constitutive segments. Genes with shared segments frequently have different expression profiles, permitting functional divergence. This study reports alternative DNA splicing as a mechanism of new gene origination, illustrating how the process of programmed genome rearrangement gives rise to evolutionary innovation.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Molecular Biology, Princeton University
| | - Seolkyoung Jung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Leslie Y Beh
- Department of Ecology and Evolutionary Biology, Princeton University
| | - Sean R Eddy
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia Present address: Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, and John A. Paulson School of Engineering and Applied Sciences, Harvard University
| | - Laura F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University
| |
Collapse
|
16
|
Jung JH, Park KM, Min GS. Morphology and Molecular Phylogeny of Pseudocyrtohymena koreana
n. g., n. sp. and Antarctic Neokeronopsis asiatica
Foissner et al., 2010 (Ciliophora, Sporadotrichida), with a Brief Discussion of the Cyrtohymena
Undulating Membranes Pattern. J Eukaryot Microbiol 2014; 62:280-97. [DOI: 10.1111/jeu.12179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Jae-Ho Jung
- Department of Biological Sciences; Inha University; Incheon 402-751 South Korea
| | - Kyung-Min Park
- Department of Biological Sciences; Inha University; Incheon 402-751 South Korea
| | - Gi-Sik Min
- Department of Biological Sciences; Inha University; Incheon 402-751 South Korea
| |
Collapse
|
17
|
Chen T, Yi Z, Huang J, Lin X. Evolution of the germline actin gene in hypotrichous ciliates: multiple nonscrambled IESs at extremely conserved locations in two urostylids. J Eukaryot Microbiol 2014; 62:188-95. [PMID: 25106041 DOI: 10.1111/jeu.12158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 11/30/2022]
Abstract
In hypotrichous ciliates, macronuclear chromosomes are gene-sized, and micronuclear genes contain short, noncoding internal eliminated segments (IESs) as well as macronuclear-destined segments (MDSs). In the present study, we characterized the complete macronuclear gene and two to three types of micronuclear actin genes of two urostylid species, i.e. Pseudokeronopsis rubra and Uroleptopsis citrina. Our results show that (1) the gain/loss of IES happens frequently in the subclass Hypotrichia (formerly Stichotrichia), and high fragmentation of germline genes does not imply for gene scrambling; and (2) the micronuclear actin gene is scrambled in the order Sporadotrichida but nonscrambled in the orders Urostylida and Stichotrichida, indicating the independent evolution of MIC-actin gene patterns in different orders of hypotrichs; (3) locations of MDS-IES junctions of micronuclear actin gene in coding regions are conserved among closely related species.
Collapse
Affiliation(s)
- Tianbing Chen
- Laboratory of Protozoology, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | | | | | | |
Collapse
|
18
|
Transcription-independent functions of an RNA polymerase II subunit, Rpb2, during genome rearrangement in the ciliate, Oxytricha trifallax. Genetics 2014; 197:839-49. [PMID: 24793090 DOI: 10.1534/genetics.114.163279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA polymerase II (Pol-II) holoenzyme, responsible for messenger RNA production, typically consists of 10-12 subunits. Our laboratory previously demonstrated that maternally deposited, long, noncoding, template RNAs are essential for programmed genome rearrangements in the ciliate Oxytricha trifallax. Here we show that such RNAs are bidirectionally transcribed and transported to the zygotic nucleus. The gene encoding the second-largest subunit of Pol-II, Rpb2, has undergone gene duplication, and the two paralogs, Rpb2-a and -b, display different expression patterns. Immunoprecipitation of double-stranded RNAs identified an association with Rpb2-a. Through immunoprecipitation and mass spectrometry, we show that Rpb2-a in early zygotes appears surprisingly unassociated with other Pol II subunits. A partial loss of function of Rpb2-a leads to an increase in expression of transposons and other germline-limited satellite repeats. We propose that evolutionary divergence of the Rpb2 paralogs has led to acquisition of transcription-independent functions during sexual reproduction that may contribute to the negative regulation of germline gene expression.
Collapse
|
19
|
Abstract
Ciliates are an ancient and diverse group of microbial eukaryotes that have emerged as powerful models for RNA-mediated epigenetic inheritance. They possess extensive sets of both tiny and long noncoding RNAs that, together with a suite of proteins that includes transposases, orchestrate a broad cascade of genome rearrangements during somatic nuclear development. This Review emphasizes three important themes: the remarkable role of RNA in shaping genome structure, recent discoveries that unify many deeply diverged ciliate genetic systems, and a surprising evolutionary "sign change" in the role of small RNAs between major species groups.
Collapse
|
20
|
Zoller SD, Hammersmith RL, Swart EC, Higgins BP, Doak TG, Herrick G, Landweber LF. Characterization and taxonomic validity of the ciliate Oxytricha trifallax (Class Spirotrichea) based on multiple gene sequences: limitations in identifying genera solely by morphology. Protist 2012; 163:643-57. [PMID: 22325790 PMCID: PMC3433844 DOI: 10.1016/j.protis.2011.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 01/08/2023]
Abstract
Oxytricha trifallax - an established model organism for studying genome rearrangements, chromosome structure, scrambled genes, RNA-mediated epigenetic inheritance, and other phenomena - has been the subject of a nomenclature controversy for several years. Originally isolated as a sibling species of O. fallax, O. trifallax was reclassified in 1999 as Sterkiella histriomuscorum, a previously identified species, based on morphological similarity. The proper identification of O. trifallax is crucial to resolve in order to prevent confusion in both the comparative genomics and the general scientific communities. We analyzed nine conserved nuclear gene sequences between the two given species and several related ciliates. Phylogenetic analyses suggest that O. trifallax and a bona fide S. histriomuscorum have accumulated significant evolutionary divergence from each other relative to other ciliates such that they should be unequivocally classified as separate species. We also describe the original isolation of O. trifallax, including its comparison to O. fallax, and we provide criteria to identify future isolates of O. trifallax.
Collapse
Affiliation(s)
- Stephen D. Zoller
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544, USA
| | | | - Estienne C. Swart
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544, USA
| | - Brian P. Higgins
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544, USA
| | - Thomas G. Doak
- Department of Biology, Indiana University, IN 47405, USA
| | - Glenn Herrick
- Department of Biology, University of Utah, UT 84112, USA
| | - Laura F. Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544, USA
| |
Collapse
|
21
|
Baetu TM. Genes after the human genome project. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2012; 43:191-201. [PMID: 22326088 DOI: 10.1016/j.shpsc.2011.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 08/20/2011] [Accepted: 10/16/2011] [Indexed: 05/31/2023]
Abstract
While the Human Genome Nomenclature Committee (HGNC) concept of the gene can accommodate a wide variety of genomic sequences contributing to phenotypic outcomes, it fails to specify how sequences should be grouped when dealing with complex loci consisting of adjacent/overlapping sequences contributing to the same phenotype, distant sequences shown to contribute to the same gene product, and partially overlapping sequences identified by different techniques. The purpose of this paper is to review recently proposed concepts of the gene and critically assess how well they succeed in addressing the above problems while preserving the degree of generality achieved by the HGNC concept. I conclude that a dynamic interplay between mapping and syntax-based concepts is required in order to satisfy these desiderata.
Collapse
Affiliation(s)
- Tudor M Baetu
- Department of Philosophy, University of Maryland, 1107D Skinner Building, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Nowacki M, Shetty K, Landweber LF. RNA-Mediated Epigenetic Programming of Genome Rearrangements. Annu Rev Genomics Hum Genet 2011; 12:367-89. [PMID: 21801022 DOI: 10.1146/annurev-genom-082410-101420] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha's somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
23
|
Chalker DL, Yao MC. DNA elimination in ciliates: transposon domestication and genome surveillance. Annu Rev Genet 2011; 45:227-46. [PMID: 21910632 DOI: 10.1146/annurev-genet-110410-132432] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ciliated protozoa extensively remodel their somatic genomes during nuclear development, fragmenting their chromosomes and removing large numbers of internal eliminated sequences (IESs). The sequences eliminated are unique and repetitive DNAs, including transposons. Recent studies have identified transposase proteins that appear to have been domesticated and are used by these cells to eliminate DNA not wanted in the somatic macronucleus. This DNA elimination process is guided by meiotically produced small RNAs, generated in the germline nucleus, that recognize homologous sequences leading to their removal. These scan RNAs are found in complexes with PIWI proteins. Before they search the developing genome for IESs to eliminate, they scan the parental somatic nucleus and are removed from the pool if they match homologous sequences in that previously reorganized genome. In Tetrahymena, the scan RNAs target heterochromatin modifications to mark IESs for elimination. This DNA elimination pathway in ciliates shares extensive similarity with piRNA-mediated silencing of metazoans and highlights the remarkable ability of homologous RNAs to shape developing genomes.
Collapse
Affiliation(s)
- Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
24
|
Möllenbeck M, Zhou Y, Cavalcanti ARO, Jönsson F, Higgins BP, Chang WJ, Juranek S, Doak TG, Rozenberg G, Lipps HJ, Landweber LF. The pathway to detangle a scrambled gene. PLoS One 2008; 3:e2330. [PMID: 18523559 PMCID: PMC2394655 DOI: 10.1371/journal.pone.0002330] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/26/2008] [Indexed: 01/22/2023] Open
Abstract
Background Programmed DNA elimination and reorganization frequently occur during cellular differentiation. Development of the somatic macronucleus in some ciliates presents an extreme case, involving excision of internal eliminated sequences (IESs) that interrupt coding DNA segments (macronuclear destined sequences, MDSs), as well as removal of transposon-like elements and extensive genome fragmentation, leading to 98% genome reduction in Stylonychia lemnae. Approximately 20–30% of the genes are estimated to be scrambled in the germline micronucleus, with coding segment order permuted and present in either orientation on micronuclear chromosomes. Massive genome rearrangements are therefore critical for development. Methodology/Principal Findings To understand the process of DNA deletion and reorganization during macronuclear development, we examined the population of DNA molecules during assembly of different scrambled genes in two related organisms in a developmental time-course by PCR. The data suggest that removal of conventional IESs usually occurs first, accompanied by a surprising level of error at this step. The complex events of inversion and translocation seem to occur after repair and excision of all conventional IESs and via multiple pathways. Conclusions/Significance This study reveals a temporal order of DNA rearrangements during the processing of a scrambled gene, with simpler events usually preceding more complex ones. The surprising observation of a hidden layer of errors, absent from the mature macronucleus but present during development, also underscores the need for repair or screening of incorrectly-assembled DNA molecules.
Collapse
Affiliation(s)
| | - Yi Zhou
- Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Andre R. O. Cavalcanti
- Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Franziska Jönsson
- Institute of Cell Biology, University Witten/Herdecke, Witten, Germany
| | - Brian P. Higgins
- Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Wei-Jen Chang
- Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Stefan Juranek
- Institute of Cell Biology, University Witten/Herdecke, Witten, Germany
| | - Thomas G. Doak
- Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Grzegorz Rozenberg
- Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Hans J. Lipps
- Institute of Cell Biology, University Witten/Herdecke, Witten, Germany
| | - Laura F. Landweber
- Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Affiliation(s)
- Laura F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
27
|
GONG JUN, KIM SEJOO, KIM SUNYOUNG, MIN GISIK, ROBERTS DAVIDM, WARREN ALAN, CHOI JOONGKI. Taxonomic Redescriptions of Two Ciliates, Protogastrostyla pulchra n. g., n. comb. and Hemigastrostyla enigmatica (Ciliophora: Spirotrichea, Stichotrichia), with Phylogenetic Analyses Based on 18S and 28S rRNA Gene Sequences. J Eukaryot Microbiol 2007; 54:468-78. [DOI: 10.1111/j.1550-7408.2007.00288.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Huvos PE. Extensive changes in the locations and sequence content of developmentally deleted DNA between Tetrahymena thermophila and its closest relative, T. malaccensis. J Eukaryot Microbiol 2007; 54:73-82. [PMID: 17300523 DOI: 10.1111/j.1550-7408.2006.00148.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrahymena thermophila has two different types of nuclei in a single cell. The development of the transcriptionally active macronucleus from a transcriptionally inert micronucleus is accompanied by the elimination of numerous DNA segments, called deletion elements or internally eliminated sequences (IESs). To try to distinguish between alternative modes for the generation of IESs during evolution, DNA sequences at three loci that contain IESs in T. thermophila were examined in Tetrahymena malaccensis, the closest relative of T. thermophila. In T. malaccensis, two loci examined do not seem to contain IESs. At one of these sites, the presence of the IES in T. thermophila can be accounted for either by insertion of a novel IES into T. thermophila or its precise deletion from T. malaccensis. At a third locus, the newly discovered EFZ IES (named after neighboring EF-hand/Zinc finger genes), both T. thermophila and T. malaccensis contain IESs, but of different length and sequence content. If the three locations examined are a representative sample, the evolution of IESs seems to have been very rapid, and has led to substantial changes in the IES content of these two closely related species. Although insertion-deletion events are likely to have shaped IES evolution, none of the IESs examined here could be identified as transposon-like elements.
Collapse
Affiliation(s)
- Piroska E Huvos
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA.
| |
Collapse
|
29
|
|
30
|
Chang WJ, Addis VM, Li AJ, Axelsson E, Ardell DH, Landweber LF. Intron Evolution and Information processing in the DNA polymerase alpha gene in spirotrichous ciliates: a hypothesis for interconversion between DNA and RNA deletion. Biol Direct 2007; 2:6. [PMID: 17270054 PMCID: PMC1805493 DOI: 10.1186/1745-6150-2-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/01/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The somatic DNA molecules of spirotrichous ciliates are present as linear chromosomes containing mostly single-gene coding sequences with short 5' and 3' flanking regions. Only a few conserved motifs have been found in the flanking DNA. Motifs that may play roles in promoting and/or regulating transcription have not been consistently detected. Moreover, comparing subtelomeric regions of 1,356 end-sequenced somatic chromosomes failed to identify more putatively conserved motifs. RESULTS We sequenced and compared DNA and RNA versions of the DNA polymerase alpha (pol alpha) gene from nine diverged spirotrichous ciliates. We identified a G-C rich motif aaTACCGC(G/C/T) upstream from transcription start sites in all nine pol alpha orthologs. Furthermore, we consistently found likely polyadenylation signals, similar to the eukaryotic consensus AAUAAA, within 35 nt upstream of the polyadenylation sites. Numbers of introns differed among orthologs, suggesting independent gain or loss of some introns during the evolution of this gene. Finally, we discuss the occurrence of short direct repeats flanking some introns in the DNA pol alpha genes. These introns flanked by direct repeats resemble a class of DNA sequences called internal eliminated sequences (IES) that are deleted from ciliate chromosomes during development. CONCLUSION Our results suggest that conserved motifs are present at both 5' and 3' untranscribed regions of the DNA pol alpha genes in nine spirotrichous ciliates. We also show that several independent gains and losses of introns in the DNA pol alpha genes have occurred in the spirotrichous ciliate lineage. Finally, our statistical results suggest that proven introns might also function in an IES removal pathway. This could strengthen a recent hypothesis that introns evolve into IESs, explaining the scarcity of introns in spirotrichs. Alternatively, the analysis suggests that ciliates might occasionally use intron splicing to correct, at the RNA level, failures in IES excision during developmental DNA elimination.
Collapse
Affiliation(s)
- Wei-Jen Chang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Biology, Hamilton College, Clinton, NY 13323, USA
| | - Victoria M Addis
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Anya J Li
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Elin Axelsson
- Linnaeus Centre for Bioinformatics, Uppsala University, Box 598, SE 751 24 Uppsala Sweden
| | - David H Ardell
- Linnaeus Centre for Bioinformatics, Uppsala University, Box 598, SE 751 24 Uppsala Sweden
| | - Laura F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
31
|
Möllenbeck M, Cavalcanti ARO, Jönsson F, Lipps HJ, Landweber LF. Interconversion of germline-limited and somatic DNA in a scrambled gene. J Mol Evol 2006; 63:69-73. [PMID: 16755354 DOI: 10.1007/s00239-005-0166-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 02/02/2006] [Indexed: 11/28/2022]
Abstract
Ciliates have a somatic and a germline nucleus; after sexual conjugation a new somatic nucleus forms from the new zygotic germline nucleus. Formation of the somatic nucleus involves precise elimination of a large portion of DNA sequences from the germline. Here we compare the architecture of the germline and somatic versions of the actin I gene in two geographically isolated strains of Stylonychia lemnae. We show that the structure of the germline gene is surprisingly mercurial, with the distinction between germline-limited and somatic sequences variable over the course of evolution. This is, to our knowledge, the first example of evolutionary swapping of retained versus deleted sequences during ciliate development, with sequences deleted during development that are specifically retained in another strain.
Collapse
Affiliation(s)
- Matthias Möllenbeck
- Institute of Cell Biology, Witten/Herdecke University, 58448, Witten, Germany
| | | | | | | | | |
Collapse
|
32
|
McFarland CP, Chang WJ, Kuo S, Landweber LF. Conserved linkage of two genes on the same macronuclear chromosome in spirotrichous ciliates. Chromosoma 2006; 115:129-38. [PMID: 16520956 DOI: 10.1007/s00412-005-0040-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/30/2022]
Abstract
Macronuclear chromosomes of spirotrichous ciliates are mainly "nanochromosomes" containing only a single gene. We identified a two-gene chromosome in the spirotrich Sterkiella histriomuscorum (formerly Oxytricha trifallax) which, unlike other characterized two-gene molecules, contains reading frames oriented tail to tail. These are homologs of ribosomal protein L29 (RPL29) and cyclophilin. We found that both genes are transcribed, with their polyadenylation sites on opposite strands separated by only 135 bp. Furthermore, both genes in S. histriomuscorum are present only on one macronuclear chromosome and do not occur alone or linked to other genes. The corresponding micronuclear locus is fragmented into three nonscrambled gene segments (MDSs), separated by two noncoding segments (IESs). We also found that these two genes are linked on a macronuclear chromosome, similarly arranged tail to tail, in the three spirotrichs Stylonychia lemnae, Uroleptus sp., and Holosticha sp.. In addition, single-gene macronuclear chromosomes containing only the RPL29 gene were detected in the earlier diverged Holosticha and Uroleptus. These observations suggest a possible evolutionary trend towards loss of chromosomal breakage between these two genes. This study is the first to examine gene linkage in the macronucleus of several spirotrichs and may provide insight into the evolution of multi-gene macronuclear chromosomes and chromosomal fragmentation in spirotrichs.
Collapse
Affiliation(s)
- Craig P McFarland
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Gene unscrambling in spirotrichous ciliates involves massive genome-wide DNA deletion and rearrangement events during development. During each sexual cycle, the somatic nucleus (macronucleus) regenerates from the germ line nucleus (micronucleus). Development of the polyploid somatic genome requires programmed DNA deletion of micronuclear-limited intragenic noncoding sequences and permutation and amplification of the protein-coding regions. Recent studies suggest that, despite novel insertions of endogenous transposon or foreign DNA into the germ line genome, ciliates possess a whole-genome surveillance system that guides the recapitulation of a functional somatic genome. This renders the germ line genome an extremely dynamic structure over evolutionary time. Here we describe the germ line and somatic architectures of the gene encoding alpha-telomere-binding protein in three early-diverging species (Holosticha sp., Uroleptus sp., and Paraurostyla weissei) and trace the natural history of DNA rearrangements in this gene in six species, including three previously studied oxytrichids. Comparisons of homologous coding regions between earlier and later diverging species provide evidence for fusion of scrambled germ line fragments as small as 24 bp during evolution, as well as simultaneous fragmentation and scrambling of the germ line locus and shifting of the boundaries between coding and noncoding DNA, leading to distinct gene architectures in each species. We infer an evolutionary recombination pathway that passes through identified intermediate species and gives rise to the observed patterns in all known species, capitalizing on their unique DNA rearrangement machinery and germ line flexibility.
Collapse
Affiliation(s)
- Li Chin Wong
- Department of Molecular Biology, Princeton University, USA
| | | |
Collapse
|
34
|
Chang WJ, Kuo S, Landweber LF. A new scrambled gene in the ciliate Uroleptus. Gene 2005; 368:72-7. [PMID: 16316727 DOI: 10.1016/j.gene.2005.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/06/2005] [Accepted: 10/11/2005] [Indexed: 11/20/2022]
Abstract
In the germline micronucleus of spirotrichous ciliates, the gene segments, or macronuclear destined sequences (MDSs), that give rise to the somatic macronucleus are interrupted by internal eliminated sequences (IESs). For some genes, the MDSs are not arranged sequentially, but rather are scrambled, in the micronucleus. Three scrambled genes have been extensively studied in many species: actin I, alpha-telomere binding protein, and DNA polymerase alpha. However, in the past decade, no new scrambled genes have been reported, and the prevalence of scrambled genes is still an important question. To screen for scrambled genes, we completely sequenced 11 macronuclear chromosomes in the spirotrich Uroleptus sp., and then pursued their micronuclear organization. This allowed us to identify new scrambled genes, which also display novel features. In this study we describe one of these newly discovered scrambled genes. This gene, tentatively named USG1 (Unknown Scrambled Gene 1), encodes a putative protein of 1016 aa. While the function of this protein product is not clear, dN/dS calculated from the two alleles suggests the encoded protein is under purifying selection. USG1 consists of 16 germline MDSs, of which 14 are located on one locus. The other locus, which is at least 3 kb away from the main locus, contains two scrambled MDSs separated by a nonscrambled IES. Curiously, one MDS and its outgoing (3') pointer (direct repeat) overlap intron splice sites, indicating that these DNA sequences may be under dual (or multiple) constraints. Our findings identify a new scrambled gene in the micronuclear genome of a spirotrichous ciliate, and suggest that even more complicated structures may be present.
Collapse
Affiliation(s)
- Wei-Jen Chang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
35
|
Kuo S, Chang WJ, Landweber LF. Complex germline architecture: two genes intertwined on two loci. Mol Biol Evol 2005; 23:4-6. [PMID: 16162864 DOI: 10.1093/molbev/msj017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The germline micronuclear genome of some ciliated protists can be scrambled, with coding segments disordered relative to the expressed macronuclear genome. Here, we report a surprisingly complex pair of genes that assemble from interwoven segments on two germline loci in the ciliate Uroleptus. This baroque organization requires two scrambled genes to be disentangled from each other from two clusters in the genome, one containing segments 1-2-4-5-6-8-11-13-15-16 and the other 7-9-3-10-12-14, with pieces 1-5 comprising the first gene and 6-16 the second gene. Both genes remain linked in the somatic genome on a 1.5-kb "nanochromosome." This study is the first to reveal that two genes can become scrambled during evolution with their coding segments intertwined. These twin scrambled genes underscore the beauty and exceptions of protist genome architecture, pointing to the critical need for evolutionary biologists to survey protist genomes broadly.
Collapse
|