1
|
Billah MM, Deng H, Dutta P, Liu J. Effects of receptor properties on particle internalization through receptor-mediated endocytosis. SOFT MATTER 2023; 19:5907-5915. [PMID: 37483086 DOI: 10.1039/d3sm00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Receptor-mediated endocytosis (RME) is a highly complex process carried out by bioparticles, such as viruses and drug carriers, to enter cells. The discovery of both clathrin-dependent and clathrin-free pathways makes the RME process even more intriguing. Numerical models have been developed to facilitate the exploration of the process. However, the impacts of the receptor properties on RME have been less studied partially due to the oversimplifications of the receptor models. In this paper, we implement a stochastic model to systematically investigate the effects of mechanical (receptor flexure), geometrical (receptor length) and biochemical (ligand-receptor cutoff) properties of receptors, on RME with and without the existence of clathrin. Our simulation results show that the receptor's flexural rigidity plays an important role in RME with clathrin. There is a threshold beyond which particle internalization will not occur. Without clathrin, it is very difficult to achieve complete endocytosis with ligand-receptor interactions alone. A shorter receptor length and longer ligand-receptor reaction cutoff promote the formation of ligand-receptor bonds and facilitate particle internalization. Complete internalization can only be obtained with an extremely short receptor length and long reaction cutoff. Therefore, there are most likely some additional mechanisms to drive the membrane deformation in clathrin-free RME. Our results yield important fundamental insights into RME and provide crucial guidance when correlating the simulation results with experimental observations.
Collapse
Affiliation(s)
- Md Muhtasim Billah
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | | | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
2
|
Küey C, Sittewelle M, Larocque G, Hernández-González M, Royle SJ. Recruitment of clathrin to intracellular membranes is sufficient for vesicle formation. eLife 2022; 11:e78929. [PMID: 35852853 PMCID: PMC9337851 DOI: 10.7554/elife.78929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The formation of a clathrin-coated vesicle (CCV) is a major membrane remodeling process that is crucial for membrane traffic in cells. Besides clathrin, these vesicles contain at least 100 different proteins although it is unclear how many are essential for the formation of the vesicle. Here, we show that intracellular clathrin-coated formation can be induced in living cells using minimal machinery and that it can be achieved on various membranes, including the mitochondrial outer membrane. Chemical heterodimerization was used to inducibly attach a clathrin-binding fragment 'hook' to an 'anchor' protein targeted to a specific membrane. Endogenous clathrin assembled to form coated pits on the mitochondria, termed MitoPits, within seconds of induction. MitoPits are double-membraned invaginations that form preferentially on high curvature regions of the mitochondrion. Upon induction, all stages of CCV formation - initiation, invagination, and even fission - were faithfully reconstituted. We found no evidence for the functional involvement of accessory proteins in this process. In addition, fission of MitoPit-derived vesicles was independent of known scission factors including dynamins and dynamin-related protein 1 (Drp1), suggesting that the clathrin cage generates sufficient force to bud intracellular vesicles. Our results suggest that, following its recruitment, clathrin is sufficient for intracellular CCV formation.
Collapse
Affiliation(s)
- Cansu Küey
- Centre for Mechanochemical Cell Biology and Division of Biomedical Cell Biology, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Méghane Sittewelle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Cell Biology, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Gabrielle Larocque
- Centre for Mechanochemical Cell Biology and Division of Biomedical Cell Biology, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Miguel Hernández-González
- Centre for Mechanochemical Cell Biology and Division of Biomedical Cell Biology, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Cell Biology, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| |
Collapse
|
3
|
Cail RC, Shirazinejad CR, Drubin DG. Induced nanoscale membrane curvature bypasses the essential endocytic function of clathrin. J Cell Biol 2022; 221:e202109013. [PMID: 35532382 PMCID: PMC9093045 DOI: 10.1083/jcb.202109013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
During clathrin-mediated endocytosis (CME), flat plasma membrane is remodeled to produce nanometer-scale vesicles. The mechanisms underlying this remodeling are not completely understood. The ability of clathrin to bind membranes of distinct geometries casts uncertainty on its specific role in curvature generation/stabilization. Here, we used nanopatterning to produce substrates for live-cell imaging, with U-shaped features that bend the ventral plasma membrane of a cell into shapes resembling energetically unfavorable CME intermediates. This induced membrane curvature recruits CME proteins, promoting endocytosis. Upon AP2, FCHo1/2, or clathrin knockdown, CME on flat substrates is severely diminished. However, induced membrane curvature recruits CME proteins in the absence of FCHo1/2 or clathrin and rescues CME dynamics/cargo uptake after clathrin (but not AP2 or FCHo1/2) knockdown. Induced membrane curvature enhances CME protein recruitment upon branched actin assembly inhibition under elevated membrane tension. These data establish that membrane curvature assists in CME nucleation and that the essential function of clathrin during CME is to facilitate curvature evolution, rather than scaffold protein recruitment.
Collapse
Affiliation(s)
- Robert C. Cail
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA
| | | | - David G. Drubin
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
4
|
Find your coat: Using correlative light and electron microscopy to study intracellular protein coats. Curr Opin Cell Biol 2021; 71:21-28. [PMID: 33684808 DOI: 10.1016/j.ceb.2021.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Protein coats, important for vesicular trafficking in eukaryotic cells, help shape membranes and package cargo. But their dynamic construction cannot be fully understood until the distinct steps of their assembly in their native intracellular context at molecular resolution can be visualized. For this, correlative light and electron microscopy (CLEM) is an essential tool. Here, we discuss how emerging CLEM techniques have been used to study the assembly of protein coats inside cells. We review how current and developing CLEM technologies are poised to answer fundamental questions of protein coat architecture at the nanoscale.
Collapse
|
5
|
Frey F, Schwarz US. Competing pathways for the invagination of clathrin-coated membranes. SOFT MATTER 2020; 16:10723-10733. [PMID: 33107553 DOI: 10.1039/d0sm01375g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clathrin-mediated endocytosis is the major pathway by which eukaryotic cells take up extracellular material, but it is still elusive which physical pathways are being taken during membrane invagination. From a continuum point of view, it can be driven by increases in coat stiffness, preferred curvature or line tension. Here we develop a comprehensive theoretical framework that can be solved analytically and that predicts the consequences of these different scenarios. We find that for the case of increasing stiffness or preferred curvature, curvature will be acquired gradually with growth, while for increasing line tension, the lattice must have grown to a certain size before a flat-to-curved transition can occur. At low membrane tension, the critical value for coat stiffness is 30 kBT, for preferred curvature it is 200 nm, and for line tension it is 6 pN. For high membrane tension, critical coat stiffness is 150 kBT and critical preferred curvature is 70 nm. In the mixed case when a coat with finite rigidity but increasing line tension is considered, a cup-to-sphere transition can occur for a line tension of 6 pN. The flat-to-curved and the cup-to-sphere transitions driven by line tension are both suppressed by high membrane tension.
Collapse
Affiliation(s)
- Felix Frey
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
| | | |
Collapse
|
6
|
Sanger A, Hirst J, Davies AK, Robinson MS. Adaptor protein complexes and disease at a glance. J Cell Sci 2019; 132:132/20/jcs222992. [PMID: 31636158 DOI: 10.1242/jcs.222992] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adaptor protein (AP) complexes are heterotetramers that select cargo for inclusion into transport vesicles. Five AP complexes (AP-1 to AP-5) have been described, each with a distinct localisation and function. Furthermore, patients with a range of disorders, particularly involving the nervous system, have now been identified with mutations in each of the AP complexes. In many cases this has been correlated with aberrantly localised membrane proteins. In this Cell Science at a Glance article and the accompanying poster, we summarize what is known about the five AP complexes and discuss how this helps to explain the clinical features of the different genetic disorders.
Collapse
Affiliation(s)
- Anneri Sanger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Alexandra K Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
7
|
Chen Y, Yong J, Martínez-Sánchez A, Yang Y, Wu Y, De Camilli P, Fernández-Busnadiego R, Wu M. Dynamic instability of clathrin assembly provides proofreading control for endocytosis. J Cell Biol 2019; 218:3200-3211. [PMID: 31451612 PMCID: PMC6781453 DOI: 10.1083/jcb.201804136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/03/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Clathrin-mediated endocytosis depends on the formation of functional clathrin-coated pits that recruit cargos and mediate the uptake of those cargos into the cell. However, it remains unclear whether the cargos in the growing clathrin-coated pits are actively monitored by the coat assembly machinery. Using a cell-free reconstitution system, we report that clathrin coat formation and cargo sorting can be uncoupled, indicating that a checkpoint is required for functional cargo incorporation. We demonstrate that the ATPase Hsc70 and a dynamic exchange of clathrin during assembly are required for this checkpoint. In the absence of Hsc70 function, clathrin assembles into pits but fails to enrich cargo. Using single-molecule imaging, we further show that uncoating takes place throughout the lifetime of the growing clathrin-coated pits. Our results suggest that the dynamic exchange of clathrin, at the cost of the reduced overall assembly rates, primarily serves as a proofreading mechanism for quality control of endocytosis.
Collapse
Affiliation(s)
- Yan Chen
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Jeffery Yong
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Yang Yang
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Yumei Wu
- Howard Hughes Medical Institute, Department of Cell Biology and Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Pietro De Camilli
- Howard Hughes Medical Institute, Department of Cell Biology and Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Rubén Fernández-Busnadiego
- Max Planck Institute for Biochemistry, Martinsried, Germany
- Department of Neuropathology, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Min Wu
- Centre for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore
| |
Collapse
|
8
|
Pennacchio FA, Caliendo F, Iaccarino G, Langella A, Siciliano V, Santoro F. Three-dimensionally Patterned Scaffolds Modulate the Biointerface at the Nanoscale. NANO LETTERS 2019; 19:5118-5123. [PMID: 31268343 DOI: 10.1021/acs.nanolett.9b01468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The main aim of cell instructive materials is to guide in a controlled way cellular behavior by fine-tuning cell-material crosstalk. In the last decades, several efforts have been spent in elucidating the relations between material cues and cellular fate at the nanoscale and in the development of novel strategies for gaining a superior control over cellular function modulation. In this context, a particular attention has been recently paid to the role played by cellular membrane rearrangement in triggering specific molecular pathways linked to the regulation of different cellular functions. Here, we characterize the effect of linear microtopographies upon cellular behavior in three-dimensional (3D) environments, with particular focus on the relations linking cytoskeleton structuration to membrane rearrangement and internalization tuning. The performed analysis shown that, by altering the cellular adhesion processes at the micro- and nanoscale, it is possible to alter the membrane physical state and cellular internalization capability. More specifically, our findings pointed out that an increased cytoskeletal structuration influences the formation of nanoinvagination membrane process at the cell-material interface and the expression of clathrin and caveolin, two of the main proteins involved in the endocytosis regulation. Moreover, we proved that such topographies enhance the engulfment of inert polystyrene nanoparticles attached on 3D patterned surfaces. Our results could give new guidelines for the design of innovative and more efficient 3D cell culture systems usable for diagnostic, therapeutic, and tissue engineering purposes.
Collapse
Affiliation(s)
- Fabrizio A Pennacchio
- Center for Advanced Biomaterials for Healthcare , Istituto Italiano di Tecnologia , 80125 Naples , Italy
| | - Fabio Caliendo
- Center for Advanced Biomaterials for Healthcare , Istituto Italiano di Tecnologia , 80125 Naples , Italy
| | - Giulia Iaccarino
- Center for Advanced Biomaterials for Healthcare , Istituto Italiano di Tecnologia , 80125 Naples , Italy
| | - Angela Langella
- Center for Advanced Biomaterials for Healthcare , Istituto Italiano di Tecnologia , 80125 Naples , Italy
| | - Velia Siciliano
- Center for Advanced Biomaterials for Healthcare , Istituto Italiano di Tecnologia , 80125 Naples , Italy
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare , Istituto Italiano di Tecnologia , 80125 Naples , Italy
| |
Collapse
|
9
|
The Molecular Architecture of Native BBSome Obtained by an Integrated Structural Approach. Structure 2019; 27:1384-1394.e4. [PMID: 31303482 DOI: 10.1016/j.str.2019.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/21/2019] [Accepted: 06/17/2019] [Indexed: 01/09/2023]
Abstract
The unique membrane composition of cilia is maintained by a diffusion barrier at the transition zone that is breached when the BBSome escorts signaling receptors out of cilia. Understanding how the BBSome removes proteins from cilia has been hampered by a lack of structural information. Here, we present a nearly complete Cα model of BBSome purified from cow retina. The model is based on a single-particle cryo-electron microscopy density map at 4.9-Å resolution that was interpreted with the help of comprehensive Rosetta-based structural modeling constrained by crosslinking mass spectrometry data. We find that BBSome subunits have a very high degree of interconnectivity, explaining the obligate nature of the complex. Furthermore, like other coat adaptors, the BBSome exists in an autoinhibited state in solution and must thus undergo a conformational change upon recruitment to membranes by the small GTPase ARL6/BBS3. Our model provides the first detailed view of the machinery enabling ciliary exit.
Collapse
|
10
|
Deng H, Dutta P, Liu J. Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis. SOFT MATTER 2019; 15:5128-5137. [PMID: 31190048 PMCID: PMC7570437 DOI: 10.1039/c9sm00751b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The membrane wrapping and internalization of nanoparticles, such as viruses and drug nanocarriers, through clathrin-mediated endocytosis (CME) are vitally important for intracellular transport. During CME, the shape of the particle plays crucial roles in the determination of particle-membrane interactions, but much of the previous work has been focused on spherical particles. In this work, we develop a stochastic model to study the CME of ellipsoidal particles. In our model, the deformation of the membrane and wrapping of the nanoparticles are driven by the accumulation of clathrin lattices, which is stimulated by the ligand-receptor interactions. Using our model, we systematically investigate the effect of particle shape (ellipsoids with different aspect ratios) on the CME. Our results show three entry modes: tip-first, tilted, and laying-down modes, used by ellipsoidal nanoparticles for internalization depending on the aspect ratio. Certain ellipsoids are able to take multiple entry modes for internalization. Interestingly, the prolate ellipsoid with an aspect ratio of 0.42 can be internalized with a significantly reduced number of ligand-receptor bonds. Particles which can be internalized with fewer bonds are excellent candidates for transcellular drug delivery. Moreover, our results demonstrate that internalization of ellipsoids with intermediate aspect ratios is easier than that of particles with low and high aspect ratios. Our model and simulations provide critical mechanistic insights into CME of ellipsoidal particles, and represent a viable platform for optimal design of nanoparticles for targeted drug delivery applications.
Collapse
Affiliation(s)
- Hua Deng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | | | | |
Collapse
|
11
|
From Flat to Curved Clathrin: Controlling a Plastic Ratchet. Trends Cell Biol 2019; 29:241-256. [DOI: 10.1016/j.tcb.2018.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 01/13/2023]
|
12
|
Haucke V, Kozlov MM. Membrane remodeling in clathrin-mediated endocytosis. J Cell Sci 2018; 131:131/17/jcs216812. [PMID: 30177505 DOI: 10.1242/jcs.216812] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clathrin-mediated endocytosis is an essential cellular mechanism by which all eukaryotic cells regulate their plasma membrane composition to control processes ranging from cell signaling to adhesion, migration and morphogenesis. The formation of endocytic vesicles and tubules involves extensive protein-mediated remodeling of the plasma membrane that is organized in space and time by protein-protein and protein-phospholipid interactions. Recent studies combining high-resolution imaging with genetic manipulations of the endocytic machinery and with theoretical approaches have led to novel multifaceted phenomenological data of the temporal and spatial organization of the endocytic reaction. This gave rise to various - often conflicting - models as to how endocytic proteins and their association with lipids regulate the endocytic protein choreography to reshape the plasma membrane. In this Review, we discuss these findings in light of the hypothesis that endocytic membrane remodeling may be determined by an interplay between protein-protein interactions, the ability of proteins to generate and sense membrane curvature, and the ability of lipids to stabilize and reinforce the generated membrane shape through adopting their lateral distribution to the local membrane curvature.
Collapse
Affiliation(s)
- Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany .,Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Takustrasse 3, 14195 Berlin, Germany
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis. Biochim Biophys Acta Gen Subj 2018; 1862:2104-2111. [PMID: 29959983 DOI: 10.1016/j.bbagen.2018.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Receptor dependent clathrin-mediated endocytosis (CME) is one of the most important endocytic pathways for the internalization of bioparticles into cells. During CME, the ligand-receptor interactions, development of clathrin-coated pit (CCP) and membrane evolution all act together to drive the internalization of bioparticles. In this work, we develop a stochastic computational model to investigate the CME based on the Metropolis Monte Carlo simulations. METHODS The model is based on the combination of a stochastic particle binding model with a membrane model. The energetic costs of membrane bending, CCP formation and ligand-receptor interactions are systematically linked together. RESULTS We implement our model to investigate the effects of particle size, ligand density and membrane stiffness on the overall process of CME from the drug delivery perspectives. Consistent with some experiments, our results show that the intermediate particle size and ligand density favor the particle internalization. Moreover, our results show that it is easier for a particle to enter a cell with softer membrane. CONCLUSIONS The model presented here is able to provide mechanistic insights into CME and can be readily modified to include other important factors, such as actins. The predictions from the model will aid in the therapeutic design of intracellular/transcellular drug delivery and antiviral interventions.
Collapse
|
14
|
Nachury MV. The molecular machines that traffic signaling receptors into and out of cilia. Curr Opin Cell Biol 2018; 51:124-131. [PMID: 29579578 PMCID: PMC5949257 DOI: 10.1016/j.ceb.2018.03.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
Cilia are surface-exposed organelles that dynamically concentrate signaling molecules to organize sensory, developmental and homeostatic pathways. Entry and exit of signaling receptors is germane to the processing of signals and the molecular machines for entry and exit have started to emerge. The IFT-A complex and its membrane recruitment factor Tulp3 complex promotes the entry of signaling receptors into cilia while the BBSome and its membrane recruitment factor Arl6GTP ferry activated signaling receptors out of cilia. Ciliary exit is a surprisingly complex process entailing passage through a first diffusion barrier at the transition zone, diffusion inside an intermediate compartment and crossing of a periciliary diffusion barrier. The two barriers may organize a privileged compartment where activated signaling receptors transiently reside.
Collapse
Affiliation(s)
- Maxence V Nachury
- UCSF School of Medicine, Department of Ophthalmology, United States.
| |
Collapse
|
15
|
Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nat Commun 2018; 9:419. [PMID: 29379015 PMCID: PMC5789089 DOI: 10.1038/s41467-018-02818-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) internalizes plasma membrane by reshaping small regions of the cell surface into spherical vesicles. The key mechanistic question of how coat assembly produces membrane curvature has been studied with molecular and cellular structural biology approaches, without direct visualization of the process in living cells; resulting in two competing models for membrane bending. Here we use polarized total internal reflection fluorescence microscopy (pol-TIRF) combined with electron, atomic force, and super-resolution optical microscopy to measure membrane curvature during CME. Surprisingly, coat assembly accommodates membrane bending concurrent with or after the assembly of the clathrin lattice. Once curvature began, CME proceeded to scission with robust timing. Four color pol-TIRF showed that CALM accumulated at high levels during membrane bending, implicating its auxiliary role in curvature generation. We conclude that clathrin-coat assembly is versatile and that multiple membrane-bending trajectories likely reflect the energetics of coat assembly relative to competing forces. Two distinct and opposing models for clathrin-mediated endocytosis have been inferred from EM and structural biology data. Here the authors develop an optical method to directly visualize membrane-bending dynamics and show that coat assembly accommodates membrane bending during or after the assembly of the clathrin lattice, which is not predicted by either model.
Collapse
|
16
|
Sahu BS, Manna PT, Edgar JR, Antrobus R, Mahata SK, Bartolomucci A, Borner GHH, Robinson MS. Role of clathrin in dense core vesicle biogenesis. Mol Biol Cell 2017; 28:2676-2685. [PMID: 28814506 PMCID: PMC5620375 DOI: 10.1091/mbc.e16-10-0742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 11/11/2022] Open
Abstract
The dense core vesicles (DCVs) of neuroendocrine cells are a rich source of bioactive molecules such as peptides, hormones, and neurotransmitters, but relatively little is known about how they are formed. Using fractionation profiling, a method that combines subcellular fractionation with mass spectrometry, we identified ∼1200 proteins in PC12 cell vesicle-enriched fractions, with DCV-associated proteins showing distinct profiles from proteins associated with other types of vesicles. To investigate the role of clathrin in DCV biogenesis, we stably transduced PC12 cells with an inducible short hairpin RNA targeting clathrin heavy chain, resulting in ∼85% protein loss. DCVs could still be observed in the cells by electron microscopy, but mature profiles were approximately fourfold less abundant than in mock-treated cells. By quantitative mass spectrometry, DCV-associated proteins were found to be reduced approximately twofold in clathrin-depleted cells as a whole and approximately fivefold in vesicle-enriched fractions. Our combined data sets enabled us to identify new candidate DCV components. Secretion assays revealed that clathrin depletion causes a near-complete block in secretagogue-induced exocytosis. Taken together, our data indicate that clathrin has a function in DCV biogenesis beyond its established role in removing unwanted proteins from the immature vesicle.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Paul T Manna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sushil K Mahata
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161.,Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455
| | - Georg H H Borner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
17
|
Schöneberg J, Lehmann M, Ullrich A, Posor Y, Lo WT, Lichtner G, Schmoranzer J, Haucke V, Noé F. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission. Nat Commun 2017. [PMID: 28627515 PMCID: PMC5481832 DOI: 10.1038/ncomms15873] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) involves membrane-associated scaffolds of the bin-amphiphysin-rvs (BAR) domain protein family as well as the GTPase dynamin, and is accompanied and perhaps triggered by changes in local lipid composition. How protein recruitment, scaffold assembly and membrane deformation is spatiotemporally controlled and coupled to fission is poorly understood. We show by computational modelling and super-resolution imaging that phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] synthesis within the clathrin-coated area of endocytic intermediates triggers selective recruitment of the PX-BAR domain protein SNX9, as a result of complex interactions of endocytic proteins competing for phospholipids. The specific architecture induces positioning of SNX9 at the invagination neck where its self-assembly regulates membrane constriction, thereby providing a template for dynamin fission. These data explain how lipid conversion at endocytic pits couples local membrane constriction to fission. Our work demonstrates how computational modelling and super-resolution imaging can be combined to unravel function and mechanisms of complex cellular processes. The spatiotemporal regulation of membrane scaffolds recruitment and coupling between membrane deformation and fission in endocytosis are unclear. Here the authors show that lipid conversion at endocytic pits recruits SNX9, which couples local membrane constriction to fission in endocytosis.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Martin Lehmann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Alexander Ullrich
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - York Posor
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Wen-Ting Lo
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Gregor Lichtner
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany.,Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Jan Schmoranzer
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Volker Haucke
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Virchowweg 6, Berlin 10117, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
18
|
Lampe M, Vassilopoulos S, Merrifield C. Clathrin coated pits, plaques and adhesion. J Struct Biol 2016; 196:48-56. [DOI: 10.1016/j.jsb.2016.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 11/27/2022]
|
19
|
Ma L, Umasankar PK, Wrobel AG, Lymar A, McCoy AJ, Holkar SS, Jha A, Pradhan-Sundd T, Watkins SC, Owen DJ, Traub LM. Transient Fcho1/2⋅Eps15/R⋅AP-2 Nanoclusters Prime the AP-2 Clathrin Adaptor for Cargo Binding. Dev Cell 2016; 37:428-43. [PMID: 27237791 PMCID: PMC4921775 DOI: 10.1016/j.devcel.2016.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
Clathrin-coated vesicles form by rapid assembly of discrete coat constituents into a cargo-sorting lattice. How the sequential phases of coat construction are choreographed is unclear, but transient protein-protein interactions mediated by short interaction motifs are pivotal. We show that arrayed Asp-Pro-Phe (DPF) motifs within the early-arriving endocytic pioneers Eps15/R are differentially decoded by other endocytic pioneers Fcho1/2 and AP-2. The structure of an Eps15/R⋅Fcho1 μ-homology domain complex reveals a spacing-dependent DPF triad, bound in a mechanistically distinct way from the mode of single DPF binding to AP-2. Using cells lacking FCHO1/2 and with Eps15 sequestered from the plasma membrane, we establish that without these two endocytic pioneers, AP-2 assemblies are fleeting and endocytosis stalls. Thus, distinct DPF-based codes within the unstructured Eps15/R C terminus direct the assembly of temporary Fcho1/2⋅Eps15/R⋅AP-2 ternary complexes to facilitate conformational activation of AP-2 by the Fcho1/2 interdomain linker to promote AP-2 cargo engagement. The endocytic pioneer protein Eps15 engages AP-2 and Fcho1/2 noncompetitively Structural analysis shows arrayed DPF motif triad in Eps15 for Fcho1/2 μHD binding DPF-based codes direct transient Fcho1/2⋅Eps15/R⋅AP-2 ternary complex formation In ternary complex, Fcho1 interdomain linker primes AP-2 for cargo capture
Collapse
Affiliation(s)
- Li Ma
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Perunthottathu K Umasankar
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Antoni G Wrobel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Anastasia Lymar
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Airlie J McCoy
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Sachin S Holkar
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Tirthadipa Pradhan-Sundd
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - David J Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA.
| |
Collapse
|
20
|
Dannhauser PN, Platen M, Böning H, Schaap IAT. Durable protein lattices of clathrin that can be functionalized with nanoparticles and active biomolecules. NATURE NANOTECHNOLOGY 2015; 10:954-957. [PMID: 26367107 DOI: 10.1038/nnano.2015.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
Biological molecules that self-assemble and interact with other molecules are attractive building blocks for engineering biological devices. DNA has been widely used for the creation of nanomaterials, but the use of proteins remains largely unexplored. Here, we show that clathrin can form homogeneous and extended two-dimensional lattices on a variety of substrates, including glass, metal, carbon and plastic. Clathrin is a three-legged protein complex with unique self-assembling properties and is relevant in the formation of membrane transport vesicles in eukaryotic cells. We used a fragment of the adaptor protein epsin to immobilize clathrin lattices on the substrates. The lattices span multiple square millimetres with a regular periodicity of 30 nm and can be functionalized via modified subunits of clathrin with either inorganic nanoparticles or active enzymes. The lattices can be stored for months after crosslinking and stabilization with uranyl acetate. They could be dehydrated and rehydrated without loss of function, offering potential applications in sensing and as biosynthetic reactors.
Collapse
Affiliation(s)
- P N Dannhauser
- Institute of Cell Biology, Centre of Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Structural &Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - M Platen
- IIIrd Institute of Physics, Georg August University, 37073 Göttingen, Germany
| | - H Böning
- Institute of Cell Biology, Centre of Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - I A T Schaap
- IIIrd Institute of Physics, Georg August University, 37073 Göttingen, Germany
- Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37077 Göttingen, Germany
| |
Collapse
|
21
|
Dannhauser PN, Platen M, Böning H, Ungewickell H, Schaap IA, Ungewickell EJ. Effect of Clathrin Light Chains on the Stiffness of Clathrin Lattices and Membrane Budding. Traffic 2015; 16:519-33. [DOI: 10.1111/tra.12263] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Philip N. Dannhauser
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| | - Mitja Platen
- IIIrd Institute of Physics; Georg August University; Göttingen Germany
| | - Heike Böning
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| | - Huberta Ungewickell
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| | - Iwan A.T. Schaap
- IIIrd Institute of Physics; Georg August University; Göttingen Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB); Göttingen Germany
| | - Ernst J. Ungewickell
- Institute of Cell Biology, Centre of Anatomy; Hannover Medical School; Carl-Neuberg Street 1 D-30625 Hannover Germany
| |
Collapse
|
22
|
A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nat Commun 2015; 6:6249. [PMID: 25695735 PMCID: PMC4346611 DOI: 10.1038/ncomms7249] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/09/2015] [Indexed: 01/22/2023] Open
Abstract
In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy. A relationship between membrane tension and clathrin polymerization during endocytosis has not been experimentally established. Here, the authors show using an in vitro reconstituted system and theoretical modelling that membrane tension regulates clathrin polymerization into spherical cages by varying the membrane budding energy.
Collapse
|
23
|
Cordella N, Lampo TJ, Melosh N, Spakowitz AJ. Membrane indentation triggers clathrin lattice reorganization and fluidization. SOFT MATTER 2015; 11:439-448. [PMID: 25412023 DOI: 10.1039/c4sm01650e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Clathrin-mediated endocytosis involves the coordinated assembly of clathrin cages around membrane indentations, necessitating fluid-like reorganization followed by solid-like stabilization. This apparent duality in clathrin's in vivo behavior provides some indication that the physical interactions between clathrin triskelia and the membrane effect a local response that triggers fluid-solid transformations within the clathrin lattice. We develop a computational model to study the response of clathrin protein lattices to spherical deformations of the underlying flexible membrane. These deformations are similar to the shapes assumed during intracellular trafficking of nanoparticles. Through Monte Carlo simulations of clathrin-on-membrane systems, we observe that these membrane indentations give rise to a greater than normal defect density within the overlaid clathrin lattice. In many cases, the bulk surrounding lattice remains in a crystalline phase, and the extra defects are localized to the regions of large curvature. This can be explained by the fact that the in-plane elastic stress in the clathrin lattice are reduced by coupling defects to highly curved regions. The presence of defects brought about by indentation can result in the fluidization of a lattice that would otherwise be crystalline, resulting in an indentation-driven, defect-mediated phase transition. Altering subunit elasticity or membrane properties is shown to drive a similar transition, and we present phase diagrams that map out the combined effects of these parameters on clathrin lattice properties.
Collapse
Affiliation(s)
- Nicholas Cordella
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA.
| | | | | | | |
Collapse
|
24
|
Merrifield CJ, Kaksonen M. Endocytic accessory factors and regulation of clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 2014; 6:a016733. [PMID: 25280766 DOI: 10.1101/cshperspect.a016733] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Up to 60 different proteins are recruited to the site of clathrin-mediated endocytosis in an ordered sequence. These accessory proteins have roles during all the different stages of clathrin-mediated endocytosis. First, they participate in the initiation of the endocytic event, thereby determining when and where endocytic vesicles are made; later they are involved in the maturation of the clathrin coat, recruitment of specific cargo molecules, bending of the membrane, and finally in scission and uncoating of the nascent vesicle. In addition, many of the accessory components are involved in regulating and coupling the actin cytoskeleton to the endocytic membrane. We will discuss the different accessory components and their various roles. Most of the data comes from studies performed with cultured mammalian cells or yeast cells. The process of endocytosis is well conserved between these different organisms, but there are also many interesting differences that may shed light on the mechanistic principles of endocytosis.
Collapse
Affiliation(s)
- Christien J Merrifield
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique UPR3082, 91198 Gif-sur-Yvette, France
| | - Marko Kaksonen
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
25
|
Tourdot RW, Bradley RP, Ramakrishnan N, Radhakrishnan R. Multiscale computational models in physical systems biology of intracellular trafficking. IET Syst Biol 2014; 8:198-213. [PMID: 25257021 PMCID: PMC4336166 DOI: 10.1049/iet-syb.2013.0057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 07/03/2014] [Accepted: 08/08/2014] [Indexed: 01/19/2023] Open
Abstract
In intracellular trafficking, a definitive understanding of the interplay between protein binding and membrane morphology remains incomplete. The authors describe a computational approach by integrating coarse-grained molecular dynamics (CGMD) simulations with continuum Monte Carlo (CM) simulations of the membrane to study protein-membrane interactions and the ensuing membrane curvature. They relate the curvature field strength discerned from the molecular level to its effect at the cellular length-scale. They perform thermodynamic integration on the CM model to describe the free energy landscape of vesiculation in clathrin-mediated endocytosis. The method presented here delineates membrane morphologies and maps out the free energy changes associated with membrane remodeling due to varying coat sizes, coat curvature strengths, membrane bending rigidities, and tensions; furthermore several constraints on mechanisms underlying clathrin-mediated endocytosis have also been identified, Their CGMD simulations have revealed the importance of PIP2 for stable binding of proteins essential for curvature induction in the bilayer and have provided a molecular basis for the positive curvature induction by the epsin N-terminal homology (EIMTH) domain. Calculation of the free energy landscape for vesicle budding has identified the critical size and curvature strength of a clathrin coat required for nucleation and stabilisation of a mature vesicle.
Collapse
Affiliation(s)
- Richard W Tourdot
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan P Bradley
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natesan Ramakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Grove J, Metcalf DJ, Knight AE, Wavre-Shapton ST, Sun T, Protonotarios ED, Griffin LD, Lippincott-Schwartz J, Marsh M. Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell 2014; 25:3581-94. [PMID: 25165141 PMCID: PMC4230618 DOI: 10.1091/mbc.e14-06-1154] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a fundamental property of eukaryotic cells. Classical CME proceeds via the formation of clathrin-coated pits (CCPs) at the plasma membrane, which invaginate to form clathrin-coated vesicles, a process that is well understood. However, clathrin also assembles into flat clathrin lattices (FCLs); these structures remain poorly described, and their contribution to cell biology is unclear. We used quantitative imaging to provide the first comprehensive description of FCLs and explore their influence on plasma membrane organization. Ultrastructural analysis by electron and superresolution microscopy revealed two discrete populations of clathrin structures. CCPs were typified by their sphericity, small size, and homogeneity. FCLs were planar, large, and heterogeneous and present on both the dorsal and ventral surfaces of cells. Live microscopy demonstrated that CCPs are short lived and culminate in a peak of dynamin recruitment, consistent with classical CME. In contrast, FCLs were long lived, with sustained association with dynamin. We investigated the biological relevance of FCLs using the chemokine receptor CCR5 as a model system. Agonist activation leads to sustained recruitment of CCR5 to FCLs. Quantitative molecular imaging indicated that FCLs partitioned receptors at the cell surface. Our observations suggest that FCLs provide stable platforms for the recruitment of endocytic cargo.
Collapse
Affiliation(s)
- Joe Grove
- MRC Laboratory for Molecular Cell Biology, London WC1E 6BT, United Kingdom Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom
| | - Daniel J Metcalf
- Biophysics and Diagnostics, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Alex E Knight
- Biophysics and Diagnostics, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | | | - Tony Sun
- MRC Laboratory for Molecular Cell Biology, London WC1E 6BT, United Kingdom
| | | | - Lewis D Griffin
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, London WC1E 6BT, United Kingdom
| |
Collapse
|
27
|
Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat Commun 2014; 5:3665. [DOI: 10.1038/ncomms4665] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 03/14/2014] [Indexed: 12/30/2022] Open
|
28
|
Orza A, Casciano D, Biris A. Nanomaterials for targeted drug delivery to cancer stem cells. Drug Metab Rev 2014; 46:191-206. [DOI: 10.3109/03602532.2014.900566] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Cordella N, Lampo TJ, Mehraeen S, Spakowitz AJ. Membrane fluctuations destabilize clathrin protein lattice order. Biophys J 2014; 106:1476-88. [PMID: 24703309 PMCID: PMC3976529 DOI: 10.1016/j.bpj.2013.11.4505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022] Open
Abstract
We develop a theoretical model of a clathrin protein lattice on a flexible cell membrane. The clathrin subunit is modeled as a three-legged pinwheel with elastic deformation modes and intersubunit binding interactions. The pinwheels are constrained to lie on the surface of an elastic sheet that opposes bending deformation and is subjected to tension. Through Monte Carlo simulations, we predict the equilibrium phase behavior of clathrin lattices at various levels of tension. High membrane tensions, which correspond to suppressed membrane fluctuations, tend to stabilize large, flat crystalline structures similar to plaques that have been observed in vivo on cell membranes that are adhered to rigid surfaces. Low tensions, on the other hand, give rise to disordered, defect-ridden lattices that behave in a fluidlike manner. The principles of two-dimensional melting theory are applied to our model system to further clarify how high tensions can stabilize crystalline order on flexible membranes. These results demonstrate the importance of environmental physical cues in dictating the collective behavior of self-assembled protein structures.
Collapse
Affiliation(s)
- Nicholas Cordella
- Chemical Engineering, Stanford University, Stanford, California; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Thomas J Lampo
- Chemical Engineering, Stanford University, Stanford, California
| | | | - Andrew J Spakowitz
- Chemical Engineering, Stanford University, Stanford, California; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California; Biophysics Program, Stanford University, Stanford, California.
| |
Collapse
|
30
|
Idrissi FZ, Geli MI. Zooming in on the molecular mechanisms of endocytic budding by time-resolved electron microscopy. Cell Mol Life Sci 2014; 71:641-57. [PMID: 24002236 PMCID: PMC11113444 DOI: 10.1007/s00018-013-1452-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/17/2013] [Accepted: 08/08/2013] [Indexed: 12/31/2022]
Abstract
Endocytic budding implies the remodeling of a plasma membrane portion from a flat sheet to a closed vesicle. Clathrin- and actin-mediated endocytosis in yeast has proven a very powerful model to study this process, with more than 60 evolutionarily conserved proteins involved in fashioning primary endocytic vesicles. Major progress in the field has been made during the last decades by defining the sequential recruitment of the endocytic machinery at the cell cortex using live-cell fluorescence microscopy. Higher spatial resolution has been recently achieved by developing time-resolved electron microscopy methods, allowing for the first time the visualization of changes in the plasma membrane shape, coupled to the dynamics of the endocytic machinery. Here, we highlight these advances and review recent findings from yeast and mammals that have increased our understanding of where and how endocytic proteins may apply force to remodel the plasma membrane during different stages of the process.
Collapse
Affiliation(s)
- Fatima-Zahra Idrissi
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (CSIC), Baldiri i Reixac 15, 08028, Barcelona, Spain,
| | | |
Collapse
|
31
|
Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Cam A, Sivaguru M, Gonzalez de Mejia E. Endocytic mechanism of internalization of dietary peptide lunasin into macrophages in inflammatory condition associated with cardiovascular disease. PLoS One 2013; 8:e72115. [PMID: 24039740 PMCID: PMC3764169 DOI: 10.1371/journal.pone.0072115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 07/03/2013] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States. Diet influences risk factors associated with CVD and atherosclerosis, a major vascular disease that arises from inflammation. Lunasin, a peptide derived from plant foods such as soybeans, contains a unique Arg-Gly-Asp cell-adhesion motif and inhibits the pathways involved in the inflammatory cascade. The objective was to determine the mechanism by which lunasin is internalized into human THP-1 macrophages, investigate the expression of endocytic membrane proteins in inflammatory conditions and to identify the pathways involved. While lipopolysaccharide (10 nM), vitronectin (130 nM) and a combination of these two molecules enhanced lunasin uptake and increased basal αVβ3 integrin expression, lunasin reduced αVβ3 expression by 25.5, 26.8 and 49.2%, respectively. The pretreatment of cells with brefeldin A (71 µM), an inhibitor of protein trafficking, inhibited lunasin internalization by up to 99.8%. Lunasin increased caveolin-1 expression by up to 204.8%, but did not modulate clathrin. The pretreatment of macrophages with nystatin (54 µM), an inhibitor of caveolae-dependent endocytosis, reduced lunasin internalization. The presence of amantadine (1 mM) and amiloride (1 mM), inhibitors of clathrin-mediated endocytosis and macropinocytosis, abolished lunasin cell entry. Lunasin elicited a transient reduction in intracellular levels of Ca2+ in LPS-induced macrophages. The results suggest that internalization of lunasin into macrophages is amplified in inflammatory conditions and is primarily mediated by endocytic mechanisms that involve integrin signaling, clathrin-coated structures and macropinosomes. Lunasin may be responsible for attenuation of CVD risk factors by interacting with pathways involved in endocytosis and inflammation.
Collapse
Affiliation(s)
- Anthony Cam
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mayandi Sivaguru
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Heymann JB, Winkler DC, Yim YI, Eisenberg E, Greene LE, Steven AC. Clathrin-coated vesicles from brain have small payloads: a cryo-electron tomographic study. J Struct Biol 2013; 184:43-51. [PMID: 23688956 DOI: 10.1016/j.jsb.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/25/2013] [Accepted: 05/09/2013] [Indexed: 02/02/2023]
Abstract
Clathrin coats, which stabilize membrane curvature during endocytosis and vesicular trafficking, form highly polymorphic fullerene lattices. We used cryo-electron tomography to visualize coated particles in isolates from bovine brain. The particles range from ∼66 to ∼134nm in diameter, and only 20% of them (all ⩾80nm) contain vesicles. The remaining 80% are clathrin "baskets", presumably artifactual assembly products. Polyhedral models were built for 54 distinct coat geometries. In true coated vesicles (CVs), most vesicles are offset to one side, leaving a crescent of interstitial space between the coat and the membrane for adaptor proteins and other components. The latter densities are fewer on the membrane-proximal side, which may represent the last part of the vesicle to bud off. A small number of densities - presumably cargo proteins - are associated with the interior surface of the vesicles. The clathrin coat, adaptor proteins, and vesicle membrane contribute almost all of the mass of a CV, with most cargoes accounting for only a few percent. The assembly of a CV therefore represents a massive biosynthetic effort to internalize a relatively diminutive payload. Such a high investment may be needed to overcome the resistance of membranes to high curvature.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD 20892, United States.
| | | | | | | | | | | |
Collapse
|
34
|
Agarwal S, Rastogi R, Gupta D, Patel N, Raje M, Mukhopadhyay A. Clathrin-mediated hemoglobin endocytosis is essential for survival of Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1065-77. [DOI: 10.1016/j.bbamcr.2013.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
|
35
|
Kargl J, Balenga N, Parzmair GP, Brown AJ, Heinemann A, Waldhoer M. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J Biol Chem 2012; 287:44234-48. [PMID: 23161546 PMCID: PMC3531739 DOI: 10.1074/jbc.m112.364109] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 11/15/2012] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors.
Collapse
MESH Headings
- Cannabinoids/metabolism
- Dimerization
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- HEK293 Cells
- Humans
- Lysophospholipids/metabolism
- Protein Binding
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Cannabinoid
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Transcriptional Activation
Collapse
Affiliation(s)
- Julia Kargl
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Nariman Balenga
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
- the Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1889
| | - Gerald P. Parzmair
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Andrew J. Brown
- the Department of Screening and Compound Profiling, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom, and
| | - Akos Heinemann
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Maria Waldhoer
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
36
|
Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 2012; 150:508-20. [PMID: 22863005 DOI: 10.1016/j.cell.2012.05.046] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 04/04/2012] [Accepted: 05/17/2012] [Indexed: 12/22/2022]
Abstract
Endocytosis, like many dynamic cellular processes, requires precise temporal and spatial orchestration of complex protein machinery to mediate membrane budding. To understand how this machinery works, we directly correlated fluorescence microscopy of key protein pairs with electron tomography. We systematically located 211 endocytic intermediates, assigned each to a specific time window in endocytosis, and reconstructed their ultrastructure in 3D. The resulting virtual ultrastructural movie defines the protein-mediated membrane shape changes during endocytosis in budding yeast. It reveals that clathrin is recruited to flat membranes and does not initiate curvature. Instead, membrane invagination begins upon actin network assembly followed by amphiphysin binding to parallel membrane segments, which promotes elongation of the invagination into a tubule. Scission occurs on average 9 s after initial bending when invaginations are ∼100 nm deep, releasing nonspherical vesicles with 6,400 nm2 mean surface area. Direct correlation of protein dynamics with ultrastructure provides a quantitative 4D resource.
Collapse
|
37
|
Cocucci E, Aguet F, Boulant S, Kirchhausen T. The first five seconds in the life of a clathrin-coated pit. Cell 2012; 150:495-507. [PMID: 22863004 DOI: 10.1016/j.cell.2012.05.047] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 01/12/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Coated pits assemble by growth of a clathrin lattice, which is linked by adaptors to the underlying membrane. How does this process start? We used live-cell TIRF imaging with single-molecule EGFP sensitivity and high temporal resolution to detect arrival of the clathrin triskelions and AP2 adaptors that initiate coat assembly. Unbiased object identification and trajectory tracking, together with a statistical model, yield the arrival times and numbers of individual proteins, as well as experimentally confirmed estimates of the extent of substitution of endogenous by expressed, fluorescently tagged proteins. Pits initiate by coordinated arrival of clathrin and AP2, which is usually detected as two sequential steps, each of one triskelion with two adaptors. PI-4,5-P2 is essential for initiation. The accessory proteins FCHo1/2 are not; instead, they are required for sustained growth. This objective picture of coated pit initiation also shows that methods outlined here will be broadly useful for studies of dynamic assemblies in living cells.
Collapse
Affiliation(s)
- Emanuele Cocucci
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
38
|
Idrissi FZ, Blasco A, Espinal A, Geli MI. Ultrastructural dynamics of proteins involved in endocytic budding. Proc Natl Acad Sci U S A 2012; 109:E2587-94. [PMID: 22949647 PMCID: PMC3465411 DOI: 10.1073/pnas.1202789109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence live-cell imaging has temporally resolved the conserved choreography of more than 30 proteins involved in clathrin and actin-mediated endocytic budding from the plasma membrane. However, the resolution of these studies is insufficient to unveil how the endocytic machinery actually drives membrane deformation in vivo. In this study, we use quantitative immuno-EM to introduce the temporal dimension to the ultrastructural analysis of membrane budding and define changes in the topography of the lipid bilayer coupled to the dynamics of endocytic proteins with unprecedented spatiotemporal resolution. Using this approach, we frame the emergence of membrane curvature with respect to the recruitment of endocytic factors and show that constriction of the invaginations correlates with translocation of membrane-sculpting proteins. Furthermore, we show that initial bending of the plasma membrane is independent of actin and clathrin polymerization and precedes building of an actin cap branched by the Arp2/3 complex. Finally, our data indicate that constriction and additional elongation of the endocytic profiles require the mechanochemical activity of the myosins-I. Altogether, this work provides major insights into the molecular mechanisms driving membrane deformation in a cellular context.
Collapse
Affiliation(s)
- Fatima-Zahra Idrissi
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (CSIC), 08028 Barcelona, Spain; and
| | - Anabel Blasco
- Servei d´Estadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Espinal
- Servei d´Estadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María Isabel Geli
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (CSIC), 08028 Barcelona, Spain; and
| |
Collapse
|
39
|
Banerjee A, Berezhkovskii A, Nossal R. Distributions of lifetime and maximum size of abortive clathrin-coated pits. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031907. [PMID: 23030944 PMCID: PMC4264111 DOI: 10.1103/physreve.86.031907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Indexed: 06/01/2023]
Abstract
Clathrin-mediated endocytosis is a complex process through which eukaryotic cells internalize nutrients, antigens, growth factors, pathogens, etc. The process occurs via the formation of invaginations on the cell membrane, called clathrin-coated pits (CCPs). Over the years, much has been learned about the mechanism of CCP assembly, but a complete understanding of the assembly process still remains elusive. In recent years, using fluorescence microscopy, studies have been done to determine the statistical properties of CCP formation. In this paper, using a recently proposed coarse-grained, stochastic model of CCP assembly [Banerjee, Berezhkovskii, and Nossal, Biophys. J. 102, 2725 (2012)], we suggest new ways of analyzing such experimental data. To be more specific, we derive analytical expressions for the distribution of maximum size of abortive CCPs, and the probability density of their lifetimes. Our results show how these functions depend on the kinetic and energetic parameters characterizing the assembly process, and therefore could be useful in extracting information about the mechanism of CCP assembly from experimental data. We find excellent agreement between our analytical results and those obtained from kinetic Monte Carlo simulations of the assembly process.
Collapse
Affiliation(s)
- Anand Banerjee
- Program in Physical Biology, Eunice Kennedy Shriver Institute of Child Health, and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
40
|
Liu J, Tourdot R, Ramanan V, Agrawal NJ, Radhakrishanan R. Mesoscale simulations of curvature-inducing protein partitioning on lipid bilayer membranes in the presence of mean curvature fields. Mol Phys 2012; 110:1127-1137. [PMID: 26500377 PMCID: PMC4613783 DOI: 10.1080/00268976.2012.664661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The membrane-surface migration of curvature-inducing proteins in response to membrane curvature gradients has been investigated using Monte Carlo simulations of a curvilinear membrane model based on the Helfrich Hamiltonian. Consistent with theoretical and experimental data, we find the proteins that generate curvature can also sense the background membrane curvature, wherein they preferentially partition to the high curvature regions. The partitioning strength depends linearly on local membrane curvature and the slope (or the coupling constant) of the partitioning probability versus mean curvature depends on the membrane bending rigidity and instantaneous curvature field caused by different proteins. Our simulation study allows us to quantitatively characterize and identify the important factors affecting the coupling constant (slope), which may be difficult to determine in experiments. Furthermore, the membrane model is used to study budding of vesicles where it is found that in order to stabilize a mature vesicle with a stable 'neck-region' (or stable membrane overhangs), the area (extent) of the intrinsic curvature region needs to exceed a threshold-critical value. The migration and partitioning of curvature-inducing proteins in a budding vesicle with a stable neck (with a characteristic negative value of the Gaussian curvature) is investigated.
Collapse
Affiliation(s)
- Jin Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard Tourdot
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vyas Ramanan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neeraj J. Agrawal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi Radhakrishanan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
41
|
Abstract
The role of Ca²⁺ in synaptic vesicle endocytosis remains uncertain due to the diversity in various preparations where several forms of endocytosis may contribute variably in different conditions. Although recent studies have demonstrated that Ca²⁺ is important for clathrin-mediated endocytosis (CME), the mechanistic role of Ca²⁺ in CME remains to be elucidated. By monitoring CME of single vesicles in mouse chromaffin cells with cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate that the dynamics of vesicle fission during CME is Ca²⁺ dependent but becomes Ca²⁺ independent in synaptotagmin 1 (Syt1) knock-out cells. Our results thus suggest that Syt1 is necessary for the Ca²⁺ dependence of CME.
Collapse
|
42
|
von Kleist L, Stahlschmidt W, Bulut H, Gromova K, Puchkov D, Robertson MJ, MacGregor KA, Tomilin N, Tomlin N, Pechstein A, Chau N, Chircop M, Sakoff J, von Kries JP, Saenger W, Kräusslich HG, Shupliakov O, Robinson PJ, McCluskey A, Haucke V. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell 2011; 146:471-84. [PMID: 21816279 DOI: 10.1016/j.cell.2011.06.025] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/06/2011] [Accepted: 06/14/2011] [Indexed: 01/19/2023]
Abstract
Clathrin-mediated endocytosis (CME) regulates many cell physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. Within the endocytic network, clathrin functions as a central organizing platform for coated pit assembly and dissociation via its terminal domain (TD). We report the design and synthesis of two compounds named pitstops that selectively block endocytic ligand association with the clathrin TD as confirmed by X-ray crystallography. Pitstop-induced inhibition of clathrin TD function acutely interferes with receptor-mediated endocytosis, entry of HIV, and synaptic vesicle recycling. Endocytosis inhibition is caused by a dramatic increase in the lifetimes of clathrin coat components, including FCHo, clathrin, and dynamin, suggesting that the clathrin TD regulates coated pit dynamics. Pitstops provide new tools to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry and as modulators of cell signaling.
Collapse
Affiliation(s)
- Lisa von Kleist
- Institute of Chemistry and Biochemistry & Neurocure Cluster of Excellence, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ramanan V, Agrawal NJ, Liu J, Engles S, Toy R, Radhakrishnan R. Systems biology and physical biology of clathrin-mediated endocytosis. Integr Biol (Camb) 2011; 3:803-15. [PMID: 21792431 PMCID: PMC3153420 DOI: 10.1039/c1ib00036e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review, we describe the application of experimental data and modeling of intracellular endocytic trafficking mechanisms with a focus on the process of clathrin-mediated endocytosis. A detailed parts-list for the protein-protein interactions in clathrin-mediated endocytosis has been available for some time. However, recent experimental, theoretical, and computational tools have proved to be critical in establishing a sequence of events, cooperative dynamics, and energetics of the intracellular process. On the experimental front, total internal reflection fluorescence microscopy, photo-activated localization microscopy, and spinning-disk confocal microscopy have focused on assembly and patterning of endocytic proteins at the membrane, while on the theory front, minimal theoretical models for clathrin nucleation, biophysical models for membrane curvature and bending elasticity, as well as methods from computational structural and systems biology, have proved insightful in describing membrane topologies, curvature mechanisms, and energetics.
Collapse
Affiliation(s)
- Vyas Ramanan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Neeraj J. Agrawal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Jin Liu
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Sean Engles
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Randall Toy
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Abstract
Flat clathrin lattices or 'plaques' are commonly believed to be the precursors to clathrin-coated buds and vesicles. The sequence of steps carrying the flat hexagonal lattice into a highly curved polyhedral cage with exactly 12 pentagons remains elusive, however, and the large numbers of disrupted interclathrin connections in previously proposed conversion pathways make these scenarios rather unlikely. The recent notion that clathrin can make controlled small conformational transitions opens new avenues. Simulations with a self-assembling clathrin model suggest that localized conformational changes in a plaque can create sufficiently strong stresses for a dome-like fragment to break apart. The released fragment, which is strongly curved but still hexagonal, may subsequently grow into a cage by recruiting free triskelia from the cytoplasm, thus building all 12 pentagonal faces without recourse to complex topological changes. The critical assembly concentration in a slightly acidic in vitro solution is used to estimate the binding energy of a cage at 25-40 k(B) T/clathrin.
Collapse
Affiliation(s)
- Wouter K den Otter
- Computational BioPhysics, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | | |
Collapse
|
45
|
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12:517-33. [PMID: 21779028 DOI: 10.1038/nrm3151] [Citation(s) in RCA: 1613] [Impact Index Per Article: 115.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Hurley JH, Boura E, Carlson LA, Różycki B. Membrane budding. Cell 2010; 143:875-87. [PMID: 21145455 PMCID: PMC3102176 DOI: 10.1016/j.cell.2010.11.030] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/27/2010] [Accepted: 11/17/2010] [Indexed: 01/06/2023]
Abstract
Membrane budding is a key step in vesicular transport, multivesicular body biogenesis, and enveloped virus release. These events range from those that are primarily protein driven, such as the formation of coated vesicles, to those that are primarily lipid driven, such as microdomain-dependent biogenesis of multivesicular bodies. Other types of budding reside in the middle of this spectrum, including caveolae biogenesis, HIV-1 budding, and ESCRT-catalyzed multivesicular body formation. Some of these latter events involve budding away from cytosol, and this unusual topology involves unique mechanisms. This Review discusses progress toward understanding the structural and energetic bases of these different membrane-budding paradigms.
Collapse
Affiliation(s)
- James H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0580, USA.
| | | | | | | |
Collapse
|
47
|
Agrawal NJ, Nukpezah J, Radhakrishnan R. Minimal mesoscale model for protein-mediated vesiculation in clathrin-dependent endocytosis. PLoS Comput Biol 2010. [PMID: 20838575 DOI: 10.1371/journal.pcbi.1000926.s008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In eukaryotic cells, the internalization of extracellular cargo via the endocytic machinery is an important regulatory process required for many essential cellular functions. The role of cooperative protein-protein and protein-membrane interactions in the ubiquitous endocytic pathway in mammalian cells, namely the clathrin-dependent endocytosis, remains unresolved. We employ the Helfrich membrane Hamiltonian together with surface evolution methodology to address how the shapes and energetics of vesicular-bud formation in a planar membrane are stabilized by presence of the clathrin-coat assembly. Our results identify a unique dual role for the tubulating protein epsin: multiple epsins localized spatially and orientationally collectively play the role of a curvature inducing capsid; in addition, epsin serves the role of an adapter in binding the clathrin coat to the membrane. Our results also suggest an important role for the clathrin lattice, namely in the spatial- and orientational-templating of epsins. We suggest that there exists a critical size of the coat above which a vesicular bud with a constricted neck resembling a mature vesicle is stabilized. Based on the observed strong dependence of the vesicle diameter on the bending rigidity, we suggest that the variability in bending stiffness due to variations in membrane composition with cell type can explain the experimentally observed variability on the size of clathrin-coated vesicles, which typically range 50-100 nm. Our model also provides estimates for the number of epsins involved in stabilizing a coated vesicle, and without any direct fitting reproduces the experimentally observed shapes of vesicular intermediates as well as their probability distributions quantitatively, in wildtype as well as CLAP IgG injected neuronal cell experiments. We have presented a minimal mesoscale model which quantitatively explains several experimental observations on the process of vesicle nucleation induced by the clathrin-coated assembly prior to vesicle scission in clathrin dependent endocytosis.
Collapse
Affiliation(s)
- Neeraj J Agrawal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | |
Collapse
|
48
|
Agrawal NJ, Nukpezah J, Radhakrishnan R. Minimal mesoscale model for protein-mediated vesiculation in clathrin-dependent endocytosis. PLoS Comput Biol 2010; 6:e1000926. [PMID: 20838575 PMCID: PMC2936510 DOI: 10.1371/journal.pcbi.1000926] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 08/09/2010] [Indexed: 11/21/2022] Open
Abstract
In eukaryotic cells, the internalization of extracellular cargo via the endocytic machinery is an important regulatory process required for many essential cellular functions. The role of cooperative protein-protein and protein-membrane interactions in the ubiquitous endocytic pathway in mammalian cells, namely the clathrin-dependent endocytosis, remains unresolved. We employ the Helfrich membrane Hamiltonian together with surface evolution methodology to address how the shapes and energetics of vesicular-bud formation in a planar membrane are stabilized by presence of the clathrin-coat assembly. Our results identify a unique dual role for the tubulating protein epsin: multiple epsins localized spatially and orientationally collectively play the role of a curvature inducing capsid; in addition, epsin serves the role of an adapter in binding the clathrin coat to the membrane. Our results also suggest an important role for the clathrin lattice, namely in the spatial- and orientational-templating of epsins. We suggest that there exists a critical size of the coat above which a vesicular bud with a constricted neck resembling a mature vesicle is stabilized. Based on the observed strong dependence of the vesicle diameter on the bending rigidity, we suggest that the variability in bending stiffness due to variations in membrane composition with cell type can explain the experimentally observed variability on the size of clathrin-coated vesicles, which typically range 50-100 nm. Our model also provides estimates for the number of epsins involved in stabilizing a coated vesicle, and without any direct fitting reproduces the experimentally observed shapes of vesicular intermediates as well as their probability distributions quantitatively, in wildtype as well as CLAP IgG injected neuronal cell experiments. We have presented a minimal mesoscale model which quantitatively explains several experimental observations on the process of vesicle nucleation induced by the clathrin-coated assembly prior to vesicle scission in clathrin dependent endocytosis.
Collapse
Affiliation(s)
- Neeraj J. Agrawal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Nukpezah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
49
|
|
50
|
Moser E, Kargl J, Whistler JL, Waldhoer M, Tschische P. G protein-coupled receptor-associated sorting protein 1 regulates the postendocytic sorting of seven-transmembrane-spanning G protein-coupled receptors. Pharmacology 2010; 86:22-9. [PMID: 20693822 DOI: 10.1159/000314161] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 11/19/2022]
Abstract
The largest superfamily of membrane proteins that translate extracellular signals into intracellular messages are the 7-transmembrane-spanning (7TM) G protein-coupled receptors (GPCR). One of the ways in which their activity is controlled is by the process of desensitization and endocytosis, whereby agonist-activated receptors are rapidly and often reversibly silenced through removal from the cell surface. Indeed, following endocytosis, individual receptors can be sorted differentially between recycling endosomes and lysosomes, which controls the reversibility of the silencing. Thus, endocytosis can either serve as a mechanism for receptor resensitization by delivering receptors back to the plasma membrane or facilitate receptor downregulation by serving as the first step towards targeting the receptors to lysosomes for degradation. The sorting of receptors to the lysosomal pathway can be facilitated by interaction with an array of accessory proteins. One of these proteins is the GPCR-associated sorting protein 1 (GASP-1), which specifically targets several 7TM-GPCR to the lysosomal pathway after endocytosis. Furthermore, GASP-1 was recently found to directly affect the signaling capacity of a 7TM-GPCR. Importantly, the in vivo relevance of GASP-1-dependent receptor sorting has also begun to be verified in animal models. Here, we summarize the recent advances in elucidating GASP-1-dependent receptor sorting functions and their potential implications in vivo.
Collapse
Affiliation(s)
- Elisabeth Moser
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | |
Collapse
|