1
|
Timinskas K, Timinskas A, Venclovas Č. Common themes in architecture and interactions of prokaryotic PolB2 and Pol V mutasomes inferred from in silico studies. Comput Struct Biotechnol J 2025; 27:401-410. [PMID: 39906160 PMCID: PMC11791011 DOI: 10.1016/j.csbj.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Translesion DNA synthesis (TLS) is typically performed by inherently error-prone Y-family DNA polymerases. Extensively studied Escherichia coli Pol V mutasome, composed of UmuC, an UmuD' dimer and RecA is an example of a multimeric Y-family TLS polymerase. Less commonly TLS is performed by DNA polymerases of other families. One of the most intriguing such cases in B-family is represented by archaeal PolB2 and its bacterial homologs. Previously thought to be catalytically inactive, PolB2 was recently shown to be absolutely required for targeted mutagenesis in Sulfolobus islandicus. However, the composition and structure of the PolB2 holoenzyme remain unknown. We used highly accurate AlphaFold structural models, coupled with protein sequence and genome context analysis to comprehensively characterize PolB2 and its associated proteins, PPB2, a small helical protein, and iRadA, a catalytically inactive Rad51 homolog. We showed that these three proteins can form a heteropentameric PolB2 complex featuring high confidence modeling scores. Unexpectedly, we found that PolB2 binds iRadA through a structural motif reminiscent of RadA/Rad51 oligomerization motif. In some mutasomes we identified clamp binding motifs, present in either iRadA or PolB2, but rarely in both. We also used AlphaFold to derive a three-dimensional structure of Pol V, for which the experimental structure remains unsolved thus precluding comprehensive understanding of its molecular mechanism. Our analysis showed that the structural features of Pol V explain many of the puzzling previous experimental results. Even though models of PolB2 and Pol V mutasomes are structurally different, we found striking similarities in their architectural organization and interactions.
Collapse
Affiliation(s)
- Kęstutis Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
2
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
3
|
Cayron J, Dedieu-Berne A, Lesterlin C. Bacterial filaments recover by successive and accelerated asymmetric divisions that allow rapid post-stress cell proliferation. Mol Microbiol 2023; 119:237-251. [PMID: 36527185 DOI: 10.1111/mmi.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.
Collapse
Affiliation(s)
- Julien Cayron
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Annick Dedieu-Berne
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| |
Collapse
|
4
|
Replication stalling activates SSB for recruitment of DNA damage tolerance factors. Proc Natl Acad Sci U S A 2022; 119:e2208875119. [PMID: 36191223 PMCID: PMC9565051 DOI: 10.1073/pnas.2208875119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.
Collapse
|
5
|
Laureti L, Lee L, Philippin G, Kahi M, Pagès V. Single strand gap repair: The presynaptic phase plays a pivotal role in modulating lesion tolerance pathways. PLoS Genet 2022; 18:e1010238. [PMID: 35653392 PMCID: PMC9203016 DOI: 10.1371/journal.pgen.1010238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 06/16/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
During replication, the presence of unrepaired lesions results in the formation of single stranded DNA (ssDNA) gaps that need to be repaired to preserve genome integrity and cell survival. All organisms have evolved two major lesion tolerance pathways to continue replication: Translesion Synthesis (TLS), potentially mutagenic, and Homology Directed Gap Repair (HDGR), that relies on homologous recombination. In Escherichia coli, the RecF pathway repairs such ssDNA gaps by processing them to produce a recombinogenic RecA nucleofilament during the presynaptic phase. In this study, we show that the presynaptic phase is crucial for modulating lesion tolerance pathways since the competition between TLS and HDGR occurs at this stage. Impairing either the extension of the ssDNA gap (mediated by the nuclease RecJ and the helicase RecQ) or the loading of RecA (mediated by RecFOR) leads to a decrease in HDGR and a concomitant increase in TLS. Hence, we conclude that defects in the presynaptic phase delay the formation of the D-loop and increase the time window allowed for TLS. In contrast, we show that a defect in the postsynaptic phase that impairs HDGR does not lead to an increase in TLS. Unexpectedly, we also reveal a strong genetic interaction between recF and recJ genes, that results in a recA deficient-like phenotype in which HDGR is almost completely abolished.
Collapse
Affiliation(s)
- Luisa Laureti
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Lara Lee
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Gaëlle Philippin
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Michel Kahi
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Vincent Pagès
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
6
|
Courcelle J, Worley TK, Courcelle CT. Recombination Mediator Proteins: Misnomers That Are Key to Understanding the Genomic Instabilities in Cancer. Genes (Basel) 2022; 13:genes13030437. [PMID: 35327990 PMCID: PMC8950967 DOI: 10.3390/genes13030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recombination mediator proteins have come into focus as promising targets for cancer therapy, with synthetic lethal approaches now clinically validated by the efficacy of PARP inhibitors in treating BRCA2 cancers and RECQ inhibitors in treating cancers with microsatellite instabilities. Thus, understanding the cellular role of recombination mediators is critically important, both to improve current therapies and develop new ones that target these pathways. Our mechanistic understanding of BRCA2 and RECQ began in Escherichia coli. Here, we review the cellular roles of RecF and RecQ, often considered functional homologs of these proteins in bacteria. Although these proteins were originally isolated as genes that were required during replication in sexual cell cycles that produce recombinant products, we now know that their function is similarly required during replication in asexual or mitotic-like cell cycles, where recombination is detrimental and generally not observed. Cells mutated in these gene products are unable to protect and process replication forks blocked at DNA damage, resulting in high rates of cell lethality and recombination events that compromise genome integrity during replication.
Collapse
|
7
|
Pham P, Shao Y, Cox MM, Goodman MF. Genomic landscape of single-stranded DNA gapped intermediates in Escherichia coli. Nucleic Acids Res 2021; 50:937-951. [PMID: 34951472 PMCID: PMC8789085 DOI: 10.1093/nar/gkab1269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Single-stranded (ss) gapped regions in bacterial genomes (gDNA) are formed on W- and C-strands during replication, repair, and recombination. Using non-denaturing bisulfite treatment to convert C to U on ssDNA, combined with deep sequencing, we have mapped gDNA gap locations, sizes, and distributions in Escherichia coli for cells grown in mid-log phase in the presence and absence of UV irradiation, and in stationary phase cells. The fraction of ssDNA on gDNA is similar for W- and C-strands, ∼1.3% for log phase cells, ∼4.8% for irradiated log phase cells, and ∼8.5% for stationary phase cells. After UV irradiation, gaps increased in numbers and average lengths. A monotonic reduction in ssDNA occurred symmetrically between the DNA replication origin of (OriC) and terminus (Ter) for log phase cells with and without UV, a hallmark feature of DNA replication. Stationary phase cells showed no OriC → Ter ssDNA gradient. We have identified a spatially diverse gapped DNA landscape containing thousands of highly enriched ‘hot’ ssDNA regions along with smaller numbers of ‘cold’ regions. This analysis can be used for a wide variety of conditions to map ssDNA gaps generated when DNA metabolic pathways have been altered, and to identify proteins bound in the gaps.
Collapse
Affiliation(s)
- Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Yijun Shao
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
8
|
Racharaks R, Arnold W, Peccia J. Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. J Microbiol Methods 2021; 189:106315. [PMID: 34454980 DOI: 10.1016/j.mimet.2021.106315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
Synechococcus elongatus UTEX 2973 has one of the fastest measured doubling time of cyanobacteria making it an important candidate for metabolic engineering. Traditional genetic engineering methods, which rely on homologous recombination, however, are inefficient, labor-intensive, and time-consuming due to the oligoploidy or polyploidy nature of cyanobacteria and the reliance on unique antibiotic resistance markers. CRISPR-Cas9 has emerged as an effective and versatile editing platform in a wide variety of organisms, but its application for cyanobacterial engineering is limited by the inherent toxicity of Cas9 resulting in poor transformation efficiencies. Here, we demonstrated that a single-plasmid CRISPR-Cas9 system, pCRISPOmyces-2, can effectively knock-in a truncated thioesterase gene from Escherichia coli to generate free fatty acid (FFA) producing mutants of Syn2973. To do so, three parameters were evaluated on the effect of generating recipient colonies after conjugation with pCRISPOmyces-2-based plasmids: 1) a modified conjugation protocol termed streaked conjugation, 2) the deletion of the gene encoding RecJ exonuclease, and 3) single guide RNA (sgRNA) sequence. With the use of the streaked conjugation protocol and a ΔrecJ mutant strain of Syn2973, the conjugation efficiency for the pCRISPomyces-2 plasmid could be improved by 750-fold over the wildtype (WT) for a conjugation efficiency of 2.0 × 10-6 transconjugants/recipient cell. While deletion of the RecJ exonuclease alone increased the conjugation efficiency by 150-fold over the WT, FFA generation was impaired in FFA-producing mutants with the ΔrecJ background, and the large number of poor FFA-producing isolates indicated the potential increase in spontaneous mutation rates. The sgRNA sequence was found to be critical in achieving the desired CRISPR-Cas9-mediated knock-in mutation as the sgRNA impacts conjugation efficiency, likelihood of homogenous recombinants, and free fatty acid production in engineered strains.
Collapse
Affiliation(s)
- Ratanachat Racharaks
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Wyatt Arnold
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Hoff CA, Schmidt SS, Hackert BJ, Worley TK, Courcelle J, Courcelle CT. Events associated with DNA replication disruption are not observed in hydrogen peroxide-treated Escherichia coli. G3-GENES GENOMES GENETICS 2021; 11:6137848. [PMID: 33591320 PMCID: PMC8759817 DOI: 10.1093/g3journal/jkab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023]
Abstract
UV irradiation induces pyrimidine dimers that block polymerases and disrupt the replisome. Restoring replication depends on the recF pathway proteins which process and maintain the replication fork DNA to allow the lesion to be repaired before replication resumes. Oxidative DNA lesions, such as those induced by hydrogen peroxide (H2O2), are often thought to require similar processing events, yet far less is known about how cells process oxidative damage during replication. Here we show that replication is not disrupted by H2O2-induced DNA damage in vivo. Following an initial inhibition, replication resumes in the absence of either lesion removal or RecF-processing. Restoring DNA synthesis depends on the presence of manganese in the medium, which we show is required for replication, but not repair to occur. The results demonstrate that replication is enzymatically inactivated, rather than physically disrupted by H2O2-induced DNA damage; indicate that inactivation is likely caused by oxidation of an iron-dependent replication or replication-associated protein that requires manganese to restore activity and synthesis; and address a long standing paradox as to why oxidative glycosylase mutants are defective in repair, yet not hypersensitive to H2O2. The oxygen-sensitive pausing may represent an adaptation that prevents replication from occurring under potentially lethal or mutagenic conditions.
Collapse
Affiliation(s)
- Chettar A Hoff
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Sierra S Schmidt
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Brandy J Hackert
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Travis K Worley
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Justin Courcelle
- Department of Biology, Portland State University, Portland, OR97201, USA
| | | |
Collapse
|
10
|
Pol V-Mediated Translesion Synthesis Elicits Localized Untargeted Mutagenesis during Post-replicative Gap Repair. Cell Rep 2019; 24:1290-1300. [PMID: 30067983 DOI: 10.1016/j.celrep.2018.06.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/14/2018] [Accepted: 06/28/2018] [Indexed: 11/23/2022] Open
Abstract
In vivo, replication forks proceed beyond replication-blocking lesions by way of downstream repriming, generating daughter strand gaps that are subsequently processed by post-replicative repair pathways such as homologous recombination and translesion synthesis (TLS). The way these gaps are filled during TLS is presently unknown. The structure of gap repair synthesis was assessed by sequencing large collections of single DNA molecules that underwent specific TLS events in vivo. The higher error frequency of specialized relative to replicative polymerases allowed us to visualize gap-filling events at high resolution. Unexpectedly, the data reveal that a specialized polymerase, Pol V, synthesizes stretches of DNA both upstream and downstream of a site-specific DNA lesion. Pol V-mediated untargeted mutations are thus spread over several hundred nucleotides, strongly eliciting genetic instability on either side of a given lesion. Consequently, post-replicative gap repair may be a source of untargeted mutations critical for gene diversification in adaptation and evolution.
Collapse
|
11
|
Manganese Is Required for the Rapid Recovery of DNA Synthesis following Oxidative Challenge in Escherichia coli. J Bacteriol 2019; 201:JB.00426-19. [PMID: 31570529 DOI: 10.1128/jb.00426-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
Divalent metals such as iron and manganese play an important role in the cellular response to oxidative challenges and are required as cofactors by many enzymes. However, how these metals affect replication after oxidative challenge is not known. Here, we show that replication in Escherichia coli is inhibited following a challenge with hydrogen peroxide and requires manganese for the rapid recovery of DNA synthesis. We show that the manganese-dependent recovery of DNA synthesis occurs independent of lesion repair, modestly improves cell survival, and is associated with elevated rates of mutagenesis. The Mn-dependent mutagenesis involves both replicative and translesion polymerases and requires prior disruption by H2O2 to occur. Taking these findings together, we propose that replication in E. coli is likely to utilize an iron-dependent enzyme(s) that becomes oxidized and inactivated during oxidative challenges. The data suggest that manganese remetallates these or alternative enzymes to allow genomic DNA replication to resume, although with reduced fidelity.IMPORTANCE Iron and manganese play important roles in how cell's cope with oxygen stress. However, how these metals affect the ability of cells to replicate after oxidative challenges is not known. Here, we show that replication in Escherichia coli is inhibited following a challenge with hydrogen peroxide and requires manganese for the rapid recovery of DNA synthesis. The manganese-dependent recovery of DNA synthesis occurs independently of lesion repair and modestly improves survival, but it also increases the mutation rate in cells. The results imply that replication in E. coli is likely to utilize an iron-dependent enzyme(s) that becomes oxidized and inactivated during oxidative challenges. We propose that manganese remetallates these or alternative enzymes to allow genomic DNA replication to resume, although with reduced fidelity.
Collapse
|
12
|
Chrabaszcz É, Laureti L, Pagès V. DNA lesions proximity modulates damage tolerance pathways in Escherichia coli. Nucleic Acids Res 2019. [PMID: 29529312 PMCID: PMC5934622 DOI: 10.1093/nar/gky135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genome of all organisms is constantly threatened by numerous agents that cause DNA damage. When the replication fork encounters an unrepaired DNA lesion, two DNA damage tolerance pathways are possible: error-prone translesion synthesis (TLS) that requires specialized DNA polymerases, and error-free damage avoidance that relies on homologous recombination (HR). The balance between these two mechanisms is essential since it defines the level of mutagenesis during lesion bypass, allowing genetic variability and adaptation to the environment, but also introduces the risk of generating genome instability. Here we report that the mere proximity of replication-blocking lesions that arise in Escherichia coli's genome during a genotoxic stress leads to a strong increase in the use of the error-prone TLS. We show that this increase is caused by the local inhibition of HR due to the overlapping of single-stranded DNA regions generated downstream of the lesions. This increase in TLS is independent of SOS activation, but its mutagenic effect is additive with the one of SOS. Hence, the combination of SOS induction and lesions proximity leads to a strong increase in TLS that becomes the main lesion tolerance pathway used by the cell during a genotoxic stress.
Collapse
Affiliation(s)
- Élodie Chrabaszcz
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille, CRCM, Aix Marseille univ, CNRS, Inserm, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Luisa Laureti
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille, CRCM, Aix Marseille univ, CNRS, Inserm, Institut Paoli-Calmettes, 13009 Marseille, France.,Inovarion, F- 75013 Paris, France
| | - Vincent Pagès
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille, CRCM, Aix Marseille univ, CNRS, Inserm, Institut Paoli-Calmettes, 13009 Marseille, France
| |
Collapse
|
13
|
Replisome activity slowdown after exposure to ultraviolet light in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:11747-11753. [PMID: 31127046 DOI: 10.1073/pnas.1819297116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The replisome is a multiprotein machine that is responsible for replicating DNA. During active DNA synthesis, the replisome tightly associates with DNA. In contrast, after DNA damage, the replisome may disassemble, exposing DNA to breaks and threatening cell survival. Using live cell imaging, we studied the effect of UV light on the replisome of Escherichia coli Surprisingly, our results showed an increase in Pol III holoenzyme (Pol III HE) foci post-UV that do not colocalize with the DnaB helicase. Formation of these foci is independent of active replication forks and dependent on the presence of the χ subunit of the clamp loader, suggesting recruitment of Pol III HE at sites of DNA repair. Our results also showed a decrease of DnaB helicase foci per cell after UV, consistent with the disassembly of a fraction of the replisomes. By labeling newly synthesized DNA, we demonstrated that a drop in the rate of synthesis is not explained by replisome disassembly alone. Instead, we show that most replisomes continue synthesizing DNA at a slower rate after UV. We propose that the slowdown in replisome activity is a strategy to prevent clashes with engaged DNA repair proteins and preserve the integrity of the replication fork.
Collapse
|
14
|
Fujii S, Isogawa A, Fuchs RP. Chronological Switch from Translesion Synthesis to Homology-Dependent Gap Repair In Vivo. Toxicol Res 2018; 34:297-302. [PMID: 30370004 PMCID: PMC6195876 DOI: 10.5487/tr.2018.34.4.297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 11/20/2022] Open
Abstract
Cells are constantly exposed to endogenous and exogenous chemical and physical agents that damage their genome by forming DNA lesions. These lesions interfere with the normal functions of DNA such as transcription and replication, and need to be either repaired or tolerated. DNA lesions are accurately removed via various repair pathways. In contrast, tolerance mechanisms do not remove lesions but only allow replication to proceed despite the presence of unrepaired lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS), which is an error-prone strategy and an accurate strategy based on homologous recombination (homology-dependent gap repair [HDGR]). Thus, the mutation frequency reflects the relative extent to which the two tolerance pathways operate in vivo. In the present paper, we review the present understanding of the mechanisms of TLS and HDGR and propose a novel and comprehensive view of the way both strategies interact and are regulated in vivo.
Collapse
Affiliation(s)
- Shingo Fujii
- DNA Damage Tolerance CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,Inserm, U1068, CRCM, Marseille, France
| | - Asako Isogawa
- DNA Damage Tolerance CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,Inserm, U1068, CRCM, Marseille, France
| | - Robert P Fuchs
- DNA Damage Tolerance CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,Inserm, U1068, CRCM, Marseille, France
| |
Collapse
|
15
|
Influence of uvrA, recJ and recN gene mutations on nucleoid reorganization in UV-treated Escherichia coli cells. FEMS Microbiol Lett 2018; 365:4987205. [DOI: 10.1093/femsle/fny110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/24/2018] [Indexed: 01/02/2023] Open
|
16
|
Replication Rapidly Recovers and Continues in the Presence of Hydroxyurea in Escherichia coli. J Bacteriol 2018; 200:JB.00713-17. [PMID: 29263100 DOI: 10.1128/jb.00713-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
In both prokaryotes and eukaryotes, hydroxyurea is suggested to inhibit DNA replication by inactivating ribonucleotide reductase and depleting deoxyribonucleoside triphosphate pools. In this study, we show that the inhibition of replication in Escherichia coli is transient even at concentrations of 0.1 M hydroxyurea and that replication rapidly recovers and continues in its presence. The recovery of replication does not require the alternative ribonucleotide reductases NrdEF and NrdDG or the translesion DNA polymerases II (Pol II), Pol IV, and Pol V. Ribonucleotides are incorporated at higher frequencies during replication in the presence of hydroxyurea. However, they do not contribute significantly to the observed synthesis or toxicity. Hydroxyurea toxicity was observed only under conditions where the stability of hydroxyurea was compromised and by-products known to damage DNA directly were allowed to accumulate. The results demonstrate that hydroxyurea is not a direct or specific inhibitor of DNA synthesis in vivo and that the transient inhibition observed is most likely due to a general depletion of iron cofactors from enzymes when 0.1 M hydroxyurea is initially applied. Finally, the results support previous studies suggesting that hydroxyurea toxicity is mediated primarily through direct DNA damage induced by the breakdown products of hydroxyurea, rather than by inhibition of replication or depletion of deoxyribonucleotide levels in the cell.IMPORTANCE Hydroxyurea is commonly suggested to function by inhibiting DNA replication through the inactivation of ribonucleotide reductase and depleting deoxyribonucleoside triphosphate pools. Here, we show that hydroxyurea only transiently inhibits replication in Escherichia coli before replication rapidly recovers and continues in the presence of the drug. The recovery of replication does not depend on alternative ribonucleotide reductases, translesion synthesis, or RecA. Further, we show that hydroxyurea toxicity is observed only in the presence of toxic intermediates that accumulate when hydroxyurea breaks down, damage DNA, and induce lethality. The results demonstrate that hydroxyurea toxicity is mediated indirectly by the formation of DNA damage, rather than by inhibition of replication or depletion of deoxyribonucleotide levels in the cell.
Collapse
|
17
|
Murison DA, Timson RC, Koleva BN, Ordazzo M, Beuning PJ. Identification of the Dimer Exchange Interface of the Bacterial DNA Damage Response Protein UmuD. Biochemistry 2017; 56:4773-4785. [DOI: 10.1021/acs.biochem.7b00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David A. Murison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rebecca C. Timson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Bilyana N. Koleva
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Michael Ordazzo
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Processing closely spaced lesions during Nucleotide Excision Repair triggers mutagenesis in E. coli. PLoS Genet 2017; 13:e1006881. [PMID: 28686598 PMCID: PMC5521853 DOI: 10.1371/journal.pgen.1006881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/21/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022] Open
Abstract
It is generally assumed that most point mutations are fixed when damage containing template DNA undergoes replication, either right at the fork or behind the fork during gap filling. Here we provide genetic evidence for a pathway, dependent on Nucleotide Excision Repair, that induces mutations when processing closely spaced lesions. This pathway, referred to as Nucleotide Excision Repair-induced Mutagenesis (NERiM), exhibits several characteristics distinct from mutations that occur within the course of replication: i) following UV irradiation, NER-induced mutations are fixed much more rapidly (t ½ ≈ 30 min) than replication dependent mutations (t ½ ≈ 80–100 min) ii) NERiM specifically requires DNA Pol IV in addition to Pol V iii) NERiM exhibits a two-hit dose-response curve that suggests processing of closely spaced lesions. A mathematical model let us define the geometry (infer the structure) of the toxic intermediate as being formed when NER incises a lesion that resides in close proximity of another lesion in the complementary strand. This critical NER intermediate requires Pol IV / Pol II for repair, it is either lethal if left unrepaired or mutation-prone when repaired. Finally, NERiM is found to operate in stationary phase cells providing an intriguing possibility for ongoing evolution in the absence of replication. In this paper, we report the surprising finding that in addition to the well-known properties of Nucleotide Excision Repair (NER) in efficiently repairing a large number of DNA lesions, NER entails a mutagenic sub-pathway. Our data suggest that closely spaced lesions are processed by NER into a toxic DNA intermediate, i.e. a gap containing a lesion, that leads either to mutagenesis during its repair or to cell death in the absence of repair. The paper describes a new pathway for the generation of mutations in stationary phase bacteria or quiescent cells; it also provides an additional role for Pol IV, the most widely distributed specialized DNA polymerase in all forms of life.
Collapse
|
19
|
Murison DA, Ollivierre JN, Huang Q, Budil DE, Beuning PJ. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions. PLoS One 2017; 12:e0173388. [PMID: 28273172 PMCID: PMC5342242 DOI: 10.1371/journal.pone.0173388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/14/2017] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.
Collapse
Affiliation(s)
- David A. Murison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Jaylene N. Ollivierre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Qiuying Huang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - David E. Budil
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States of America
| |
Collapse
|
20
|
Hülter N, Sørum V, Borch-Pedersen K, Liljegren MM, Utnes ALG, Primicerio R, Harms K, Johnsen PJ. Costs and benefits of natural transformation in Acinetobacter baylyi. BMC Microbiol 2017; 17:34. [PMID: 28202049 PMCID: PMC5312590 DOI: 10.1186/s12866-017-0953-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
Background Natural transformation enables acquisition of adaptive traits and drives genome evolution in prokaryotes. Yet, the selective forces responsible for the evolution and maintenance of natural transformation remain elusive since taken-up DNA has also been hypothesized to provide benefits such as nutrients or templates for DNA repair to individual cells. Results We investigated the immediate effects of DNA uptake and recombination on the naturally competent bacterium Acinetobacter baylyi in both benign and genotoxic conditions. In head-to-head competition experiments between DNA uptake-proficient and -deficient strains, we observed a fitness benefit of DNA uptake independent of UV stress. This benefit was found with both homologous and heterologous DNA and was independent of recombination. Recombination with taken-up DNA reduced survival of transformed cells with increasing levels of UV-stress through interference with nucleotide excision repair, suggesting that DNA strand breaks occur during recombination attempts with taken-up DNA. Consistent with this, we show that absence of RecBCD and RecFOR recombinational DNA repair pathways strongly decrease natural transformation. Conclusions Our data show a physiological benefit of DNA uptake unrelated to recombination. In contrast, recombination during transformation is a strand break inducing process that represents a previously unrecognized cost of natural transformation. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0953-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nils Hülter
- Genomic Microbiology, Institute of Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 11, 24118, Kiel, Germany.,Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway
| | - Vidar Sørum
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway
| | - Kristina Borch-Pedersen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, 0033, Oslo, Norway
| | - Mikkel M Liljegren
- Centre for Ecolgical and Evolutionary Synthesis, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Ane L G Utnes
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway
| | - Raul Primicerio
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway
| | - Klaus Harms
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway. .,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø, Norway.
| |
Collapse
|
21
|
Cho Endonuclease Functions during DNA Interstrand Cross-Link Repair in Escherichia coli. J Bacteriol 2016; 198:3099-3108. [PMID: 27573016 DOI: 10.1128/jb.00509-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023] Open
Abstract
DNA interstrand cross-links are complex lesions that covalently link both strands of the duplex DNA. Lesion removal is proposed to be initiated via the UvrABC nucleotide excision repair complex; however, less is known about the subsequent steps of this complex repair pathway. In this study, we characterized the contribution of nucleotide excision repair mutants to survival in the presence of psoralen-induced damage. Unexpectedly, we observed that the nucleotide excision repair mutants exhibit differential sensitivity to psoralen-induced damage, with uvrC mutants being less sensitive than either uvrA or uvrB We show that Cho, an alternative endonuclease, acts with UvrAB and is responsible for the reduced hypersensitivity of uvrC mutants. We find that Cho's contribution to survival correlates with the presence of DNA interstrand cross-links, rather than monoadducts, and operates at a step after, or independently from, the initial incision during the global repair of psoralen DNA adducts from the genome. IMPORTANCE DNA interstrand cross-links are complex lesions that covalently bind to both strands of the duplex DNA and whose mechanism of repair remains poorly understood. In this study, we show that Cho, an alternative endonuclease, acts with UvrAB and participates in the repair of DNA interstrand cross-links formed in the presence of photoactivated psoralens. Cho's contribution to survival correlates with the presence of DNA interstrand cross-links and operates at a step after, or independently from, the initial incision during the repair process.
Collapse
|
22
|
Syeda AH, Atkinson J, Lloyd RG, McGlynn P. The Balance between Recombination Enzymes and Accessory Replicative Helicases in Facilitating Genome Duplication. Genes (Basel) 2016; 7:genes7080042. [PMID: 27483323 PMCID: PMC4999830 DOI: 10.3390/genes7080042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023] Open
Abstract
Accessory replicative helicases aid the primary replicative helicase in duplicating protein-bound DNA, especially transcribed DNA. Recombination enzymes also aid genome duplication by facilitating the repair of DNA lesions via strand exchange and also processing of blocked fork DNA to generate structures onto which the replisome can be reloaded. There is significant interplay between accessory helicases and recombination enzymes in both bacteria and lower eukaryotes but how these replication repair systems interact to ensure efficient genome duplication remains unclear. Here, we demonstrate that the DNA content defects of Escherichia coli cells lacking the strand exchange protein RecA are driven primarily by conflicts between replication and transcription, as is the case in cells lacking the accessory helicase Rep. However, in contrast to Rep, neither RecA nor RecBCD, the helicase/exonuclease that loads RecA onto dsDNA ends, is important for maintaining rapid chromosome duplication. Furthermore, RecA and RecBCD together can sustain viability in the absence of accessory replicative helicases but only when transcriptional barriers to replication are suppressed by an RNA polymerase mutation. Our data indicate that the minimisation of replisome pausing by accessory helicases has a more significant impact on successful completion of chromosome duplication than recombination-directed fork repair.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| | - John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
23
|
Fuchs RP. Tolerance of lesions in E. coli: Chronological competition between Translesion Synthesis and Damage Avoidance. DNA Repair (Amst) 2016; 44:51-58. [PMID: 27321147 DOI: 10.1016/j.dnarep.2016.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lesion tolerance pathways allow cells to proceed with replication despite the presence of replication-blocking lesions in their genome. Following transient fork stalling, replication resumes downstream leaving daughter strand gaps opposite replication-blocking lesions. The existence and repair of these gaps have been know for decades and are commonly referred to as postreplicative repair [39,38] (Rupp, 2013; Rupp and Howard-Flanders, 1968). This paper analyzes the interaction of the pathways involved in the repair of these gaps. A key repair intermediated is formed when RecA protein binds to these gaps forming ssDNA.RecA filaments establishing the so-called SOS signal. The gaps are either "repaired" by Translesion Synthesis (TLS), a process that involves the transient recruitment of a specialized DNA polymerase that copies the lesion with an intrinsic risk of fixing a mutation opposite the lesion site, or by Damage Avoidance, an error-free pathway that involves homologous recombination with the sister chromatid (Homology Directed Gap Repair: HDGR). We have developed an assay that allows one to study the partition between TLS and HDGR in the context of a single replication-blocking lesion present in the E. coli chromosome. The level of expression of the TLS polymerases controls the extent of TLS. Our data show that TLS is implemented first with great parsimony, followed by abundant recombination-based tolerance events. Indeed, the substrate for TLS, i.e., the ssDNA.RecA filament, persists for only a limited amount of time before it engages in an early recombination intermediates (D-loop) with the sister chromatid. Time-based competition between TLS and HDGR is set by mere sequestration of the TLS substrates into early recombination intermediates. Most gaps are subsequently repaired by Homology Directed Gap Repair (HDGR), a pathway that involves RecA. Surprisingly, however, in the absence of RecA, some cells manage to divide and form colonies at the expense of losing the damage-containing chromatid.
Collapse
Affiliation(s)
- Robert P Fuchs
- Genome Instability and Carcinogenesis, CNRS/UMR7258, Centre de Recherche en Cancérologie de Marseille, Marseille, France.
| |
Collapse
|
24
|
Lloyd RG, Rudolph CJ. 25 years on and no end in sight: a perspective on the role of RecG protein. Curr Genet 2016; 62:827-840. [PMID: 27038615 PMCID: PMC5055574 DOI: 10.1007/s00294-016-0589-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
Abstract
The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched substrates in vitro. Although initially associated with homologous recombination and DNA repair, studies of cells lacking RecG over the past 25 years have led to the suggestion that the protein might be multi-functional and associated with a number of additional cellular processes, including initiation of origin-independent DNA replication, the rescue of stalled or damaged replication forks, replication restart, stationary phase or stress-induced 'adaptive' mutations and most recently, naïve adaptation in CRISPR-Cas immunity. Here we discuss the possibility that many of the phenotypes of recG mutant cells that have led to this conclusion may stem from a single defect, namely the failure to prevent re-replication of the chromosome. We also present data indicating that this failure does indeed contribute substantially to the much-reduced recovery of recombinants in conjugational crosses with strains lacking both RecG and the RuvABC Holliday junction resolvase.
Collapse
Affiliation(s)
- Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
25
|
Prada Medina CA, Aristizabal Tessmer ET, Quintero Ruiz N, Serment-Guerrero J, Fuentes JL. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms. Int J Radiat Biol 2016; 92:321-8. [DOI: 10.3109/09553002.2016.1152412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cesar Augusto Prada Medina
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigaciòn en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Elke Tatjana Aristizabal Tessmer
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigaciòn en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Nathalia Quintero Ruiz
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigaciòn en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jorge Serment-Guerrero
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, Distrito Federal, México
| | - Jorge Luis Fuentes
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigaciòn en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
26
|
Abstract
DNA exonucleases, enzymes that hydrolyze phosphodiester bonds in DNA from a free end, play important cellular roles in DNA repair, genetic recombination and mutation avoidance in all organisms. This article reviews the structure, biochemistry, and biological functions of the 17 exonucleases currently identified in the bacterium Escherichia coli. These include the exonucleases associated with DNA polymerases I (polA), II (polB), and III (dnaQ/mutD); Exonucleases I (xonA/sbcB), III (xthA), IV, VII (xseAB), IX (xni/xgdG), and X (exoX); the RecBCD, RecJ, and RecE exonucleases; SbcCD endo/exonucleases; the DNA exonuclease activities of RNase T (rnt) and Endonuclease IV (nfo); and TatD. These enzymes are diverse in terms of substrate specificity and biochemical properties and have specialized biological roles. Most of these enzymes fall into structural families with characteristic sequence motifs, and members of many of these families can be found in all domains of life.
Collapse
|
27
|
Bochman ML. Roles of DNA helicases in the maintenance of genome integrity. Mol Cell Oncol 2014; 1:e963429. [PMID: 27308340 PMCID: PMC4905024 DOI: 10.4161/23723548.2014.963429] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/25/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022]
Abstract
Genome integrity is achieved and maintained by the sum of all of the processes in the cell that ensure the faithful duplication and repair of DNA, as well as its genetic transmission from one cell division to the next. As central players in virtually all of the DNA transactions that occur in vivo, DNA helicases (molecular motors that unwind double-stranded DNA to produce single-stranded substrates) represent a crucial enzyme family that is necessary for genomic stability. Indeed, mutations in many human helicase genes are linked to a variety of diseases with symptoms that can be generally described as genomic instability, such as predispositions to cancers. This review focuses on the roles of both DNA replication helicases and recombination/repair helicases in maintaining genome integrity and provides a brief overview of the diseases related to defects in these enzymes.
Collapse
Affiliation(s)
- Matthew L Bochman
- Molecular and Cellular Biochemistry Department; Indiana University ; Bloomington, IN USA
| |
Collapse
|
28
|
Abstract
The links between recombination and replication have been appreciated for decades and it is now generally accepted that these two fundamental aspects of DNA metabolism are inseparable: Homologous recombination is essential for completion of DNA replication and vice versa. This review focuses on the roles that recombination enzymes play in underpinning genome duplication, aiding replication fork movement in the face of the many replisome barriers that challenge genome stability. These links have many conserved features across all domains of life, reflecting the conserved nature of the substrate for these reactions, DNA.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| |
Collapse
|
29
|
Abstract
Cell-cycle checkpoints are generally global in nature: one unattached kinetochore prevents the segregation of all chromosomes; stalled replication forks inhibit late origin firing throughout the genome. A potential exception to this rule is the regulation of replication fork progression by the S-phase DNA damage checkpoint. In this case, it is possible that the checkpoint is global, and it slows all replication forks in the genome. However, it is also possible that the checkpoint acts locally at sites of DNA damage, and only slows those forks that encounter DNA damage. Whether the checkpoint regulates forks globally or locally has important mechanistic implications for how replication forks deal with damaged DNA during S-phase.
Collapse
|
30
|
Mangoli S, Rath D, Goswami M, Jawali N. Increased ultraviolet radiation sensitivity of Escherichia coli grown at low temperature. Can J Microbiol 2014; 60:327-31. [PMID: 24802940 DOI: 10.1139/cjm-2013-0874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The repair of DNA damage caused by ultraviolet radiation (UVR) is well understood in both lower and higher organisms. Genetic studies carried out at optimum temperature for growth, 37 °C in Escherichia coli, have revealed the major pathways of DNA repair. We show that E. coli cells grown at 20 °C are more sensitive to UVR than cells grown at 37 °C. The analysis of knockout mutants demonstrates that cells impaired in recombinational DNA repair pathways show increased UV sensitivity at 20 °C. Cells with mutations in the nucleotide excision repair (NER) pathway genes are highly sensitive to UVR when grown at 37 °C and retain that sensitivity when grown at 20 °C, whereas wild-type cells are not sensitive when grown at 37 °C but become more sensitive to UVR when grown at low temperatures. Our results taken along with reports from the literature suggest that the UVR sensitivity of E. coli cells at low temperature could be due to impaired NER function.
Collapse
Affiliation(s)
- Suhas Mangoli
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | | | | | | |
Collapse
|
31
|
Szambowska A, Tessmer I, Kursula P, Usskilat C, Prus P, Pospiech H, Grosse F. DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding. Nucleic Acids Res 2013; 42:2308-19. [PMID: 24293646 PMCID: PMC3936751 DOI: 10.1093/nar/gkt1217] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3′ protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3′–5′ polarity and, thereby acts as a molecular ‘wedge’ to initiate DNA strand displacement.
Collapse
Affiliation(s)
- Anna Szambowska
- Research Group Biochemistry, Leibniz Institute for Age Research -Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany, Laboratory of Molecular Biology IBB PAS, Affiliated with University of Gdansk, Wita Stwosza 59 Gdansk, Poland, Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Josef Schneider Strasse 2, 7080 Wurzburg, Germany, Department of Biochemistry, Oulu, P.O. Box 3000, University of Oulu, Oulu 90014, Finland, Department of Chemistry, University of Hamburg/DESY, Notkestrasse 85, 22607 Hamburg, Germany, Biocenter Oulu, P.O. Box 3000, University of Oulu, Oulu 90014, Finland and Center for Molecular Biomedicine, Friedrich-Schiller University, Biochemistry Department, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Fate of the replisome following arrest by UV-induced DNA damage in Escherichia coli. Proc Natl Acad Sci U S A 2013; 110:11421-6. [PMID: 23801750 DOI: 10.1073/pnas.1300624110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate replication in the presence of DNA damage is essential to genome stability and viability in all cells. In Escherichia coli, DNA replication forks blocked by UV-induced damage undergo a partial resection and RecF-catalyzed regression before synthesis resumes. These processing events generate distinct structural intermediates on the DNA that can be visualized in vivo using 2D agarose gels. However, the fate and behavior of the stalled replisome remains a central uncharacterized question. Here, we use thermosensitive mutants to show that the replisome's polymerases uncouple and transiently dissociate from the DNA in vivo. Inactivation of α, β, or τ subunits within the replisome is sufficient to signal and induce the RecF-mediated processing events observed following UV damage. By contrast, the helicase-primase complex (DnaB and DnaG) remains critically associated with the fork, leading to a loss of fork integrity, degradation, and aberrant intermediates when disrupted. The results reveal a dynamic replisome, capable of partial disassembly to allow access to the obstruction, while retaining subunits that maintain fork licensing and direct reassembly to the appropriate location after processing has occurred.
Collapse
|
33
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
34
|
Indiani C, O'Donnell M. A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 2013; 18:312-23. [PMID: 23276924 DOI: 10.2741/4102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromosome replication is performed by numerous proteins that function together as a "replisome". The replisome machinery duplicates both strands of the parental DNA simultaneously. Upon DNA damage to the cell, replisome action produces single-strand DNA to which RecA binds, enabling its activity in cleaving the LexA repressor and thus inducing the SOS response. How single-strand DNA is produced by a replisome acting on damaged DNA is not clear. For many years it has been assumed the single-strand DNA is generated by the replicative helicase, which continues unwinding DNA even after DNA polymerase stalls at a template lesion. Recent studies indicate another source of the single-strand DNA, resulting from an inherently dynamic replisome that may hop over template lesions on both leading and lagging strands, thereby leaving single-strand gaps in the wake of the replication fork. These single-strand gaps are proposed to be the origin of the single-strand DNA that triggers the SOS response after DNA damage.
Collapse
Affiliation(s)
- Chiara Indiani
- Manhattan College 4513 Manhattan College Pkwy, Riverdale, NY 10471, USA.
| | | |
Collapse
|
35
|
Multiple strategies for translesion synthesis in bacteria. Cells 2012; 1:799-831. [PMID: 24710531 PMCID: PMC3901139 DOI: 10.3390/cells1040799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022] Open
Abstract
Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which is similar in primary structure to the replicative DNA polymerase DnaE, was found to be able to copy damaged DNA and either carry out or suppress mutagenesis. ImuC is often found with proteins ImuA and ImuB, the latter of which is similar to Y‑family polymerases, but seems to lack the catalytic residues necessary for polymerase activity. This imuAimuBimuC mutagenesis cassette represents a widespread alternative strategy for translesion synthesis and mutagenesis in bacteria. Bacterial Y‑family and ImuC DNA polymerases contribute to replication past DNA damage and the acquisition of antibiotic resistance.
Collapse
|
36
|
Cellular characterization of the primosome and rep helicase in processing and restoration of replication following arrest by UV-induced DNA damage in Escherichia coli. J Bacteriol 2012; 194:3977-86. [PMID: 22636770 DOI: 10.1128/jb.00290-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Following arrest by UV-induced DNA damage, replication is restored through a sequence of steps that involve partial resection of the nascent DNA by RecJ and RecQ, branch migration and processing of the fork DNA surrounding the lesion by RecA and RecF-O-R, and resumption of DNA synthesis once the blocking lesion has been repaired or bypassed. In vitro, the primosomal proteins (PriA, PriB, and PriC) and Rep are capable of initiating replication from synthetic DNA fork structures, and they have been proposed to catalyze these events when replication is disrupted by certain impediments in vivo. Here, we characterized the role that PriA, PriB, PriC, and Rep have in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that the partial degradation and processing of the arrested replication fork occurs normally in both rep and primosome mutants. In each mutant, the nascent degradation ceases and DNA synthesis initially resumes in a timely manner, but the recovery then stalls in the absence of PriA, PriB, or Rep. The results demonstrate a role for the primosome and Rep helicase in overcoming replication forks arrested by UV-induced damage in vivo and suggest that these proteins are required for the stability and efficiency of the replisome when DNA synthesis resumes but not to initiate de novo replication downstream of the lesion.
Collapse
|
37
|
Jeiranian HA, Courcelle CT, Courcelle J. Inefficient replication reduces RecA-mediated repair of UV-damaged plasmids introduced into competent Escherichia coli. Plasmid 2012; 68:113-24. [PMID: 22542622 DOI: 10.1016/j.plasmid.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/02/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Transformation of Escherichia coli with purified plasmids containing DNA damage is frequently used as a tool to characterize repair pathways that operate on chromosomes. In this study, we used an assay that allowed us to quantify plasmid survival and to compare how efficiently various repair pathways operate on plasmid DNA introduced into cells relative to their efficiency on chromosomal DNA. We observed distinct differences between the mechanisms operating on the transforming plasmid DNA and the chromosome. An average of one UV-induced lesion was sufficient to inactivate ColE1-based plasmids introduced into nucleotide excision repair mutants, suggesting an essential role for repair on newly introduced plasmid DNA. By contrast, the absence of RecA, RecF, RecBC, RecG, or RuvAB had a minimal effect on the survival of the transforming plasmid DNA containing UV-induced damage. Neither the presence of an endogenous homologous plasmid nor the induction of the SOS response enhanced the survival of transforming plasmids. Using two-dimensional agarose-gel analysis, both replication- and RecA-dependent structures that were observed on established, endogenous plasmids following UV-irradiation, failed to form on UV-irradiated plasmids introduced into E. coli. We interpret these observations to suggest that the lack of RecA-mediated survival is likely to be due to inefficient replication that occurs when plasmids are initially introduced into cells, rather than to the plasmid's size, the absence of homologous sequences, or levels of recA expression.
Collapse
Affiliation(s)
- H A Jeiranian
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97201, USA.
| | | | | |
Collapse
|
38
|
Buljubašić M, Repar J, Zahradka K, Dermić D, Zahradka D. RecF recombination pathway in Escherichia coli cells lacking RecQ, UvrD and HelD helicases. DNA Repair (Amst) 2012; 11:419-30. [PMID: 22342069 DOI: 10.1016/j.dnarep.2012.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/23/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
In recBCD sbcB sbcC(D) mutants of Escherichia coli homologous recombination proceeds via RecF pathway, which is thought to require RecQ, UvrD and HelD helicases at its initial stage. It was previously suggested that depletion of all three helicases totally abolishes the RecF pathway. The present study (re)examines the roles of these helicases in transductional recombination, and in recombinational repair of UV-induced DNA damage in the RecF pathway. The study has employed the ΔrecBCD ΔsbcB sbcC201 and ΔrecBCD sbcB15 sbcC201 strains, carrying combinations of mutations in recQ, uvrD, and helD genes. We show that in ΔrecBCD ΔsbcB sbcC201 strains, recombination requires exclusively the RecQ helicase. In ΔrecBCD sbcB15 sbcC201 strains, RecQ may be partially substituted by UvrD helicase. The HelD helicase is dispensable for recombination in both backgrounds. Our results also suggest that significant portion of recombination events in the RecF pathway is independent of RecQ, UvrD and HelD. These events are initiated either by RecJ nuclease alone or by RecJ nuclease associated with an unknown helicase. Inactivation of exonuclease VII by a xseA mutation further decreases the requirement for helicase activity in the RecF pathway. We suggest that elimination of nucleases acting on 3' single-strand DNA ends reduces the necessity for helicases in initiation of recombination.
Collapse
Affiliation(s)
- Maja Buljubašić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
39
|
Rath D, Mangoli SH, Pagedar AR, Jawali N. Involvement of pnp in survival of UV radiation in Escherichia coli K-12. MICROBIOLOGY-SGM 2012; 158:1196-1205. [PMID: 22322961 DOI: 10.1099/mic.0.056309-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polynucleotide phosphorylase (PNPase), a multifunctional protein, is a 3'→5' exoribonuclease or exoDNase in the presence of inorganic phosphate (P(i)), and extends a 3'-OH of RNA or ssDNA in the presence of ADP or dADP. In Escherichia coli, PNPase is known to protect against H(2)O(2)- and mitomycin C-induced damage. Recent reports show that Bacillus subtilis PNPase is required for repair of H(2)O(2)-induced double-strand breaks. Here we show that absence of PNPase makes E. coli cells sensitive to UV, indicating that PNPase has a role in survival of UV radiation damage. Analyses of various DNA repair pathways show that in the absence of nucleotide excision repair, survival of UV radiation depends critically on PNPase function. Consequently, uvrA pnp, uvrB pnp and uvrC pnp strains show hypersensitivity to UV radiation. Whereas the pnp mutation is non-epistatic to recJ, recQ and recG mutations with respect to the UV-sensitivity phenotype, it is epistatic to uvrD, recB and ruvA mutations, implicating it in the recombinational repair process.
Collapse
Affiliation(s)
- Devashish Rath
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Suhas H Mangoli
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Amruta R Pagedar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Narendra Jawali
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
40
|
Characterization of Escherichia coli UmuC active-site loops identifies variants that confer UV hypersensitivity. J Bacteriol 2011; 193:5400-11. [PMID: 21784925 DOI: 10.1128/jb.05301-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA is constantly exposed to chemical and environmental mutagens, causing lesions that can stall replication. In order to deal with DNA damage and other stresses, Escherichia coli utilizes the SOS response, which regulates the expression of at least 57 genes, including umuDC. The gene products of umuDC, UmuC and the cleaved form of UmuD, UmuD', form the specialized E. coli Y-family DNA polymerase UmuD'2C, or polymerase V (Pol V). Y-family DNA polymerases are characterized by their specialized ability to copy damaged DNA in a process known as translesion synthesis (TLS) and by their low fidelity on undamaged DNA templates. Y-family polymerases exhibit various specificities for different types of DNA damage. Pol V carries out TLS to bypass abasic sites and thymine-thymine dimers resulting from UV radiation. Using alanine-scanning mutagenesis, we probed the roles of two active-site loops composed of residues 31 to 38 and 50 to 54 in Pol V activity by assaying the function of single-alanine variants in UV-induced mutagenesis and for their ability to confer resistance to UV radiation. We find that mutations of the N-terminal residues of loop 1, N32, N33, and D34, confer hypersensitivity to UV radiation and to 4-nitroquinoline-N-oxide and significantly reduce Pol V-dependent UV-induced mutagenesis. Furthermore, mutating residues 32, 33, or 34 diminishes Pol V-dependent inhibition of recombination, suggesting that these mutations may disrupt an interaction of UmuC with RecA, which could also contribute to the UV hypersensitivity of cells expressing these variants.
Collapse
|
41
|
Schalow BJ, Courcelle CT, Courcelle J. Escherichia coli Fpg glycosylase is nonrendundant and required for the rapid global repair of oxidized purine and pyrimidine damage in vivo. J Mol Biol 2011; 410:183-93. [PMID: 21601577 PMCID: PMC3156590 DOI: 10.1016/j.jmb.2011.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 01/13/2023]
Abstract
Endonuclease (Endo) III and formamidopyrimidine-N-glycosylase (Fpg) are two of the predominant DNA glycosylases in Escherichia coli that remove oxidative base damage. In cell extracts and purified form, Endo III is generally more active toward oxidized pyrimidines, while Fpg is more active towards oxidized purines. However, the substrate specificities of these enzymes partially overlap in vitro. Less is known about the relative contribution of these enzymes in restoring the genomic template following oxidative damage. In this study, we examined how efficiently Endo III and Fpg repair their oxidative substrates in vivo following treatment with hydrogen peroxide. We found that Fpg was nonredundant and required to rapidly remove its substrate lesions on the chromosome. In addition, Fpg also repaired a significant portion of the lesions recognized by Endo III, suggesting that it plays a prominent role in the global repair of both purine damage and pyrimidine damage in vivo. By comparison, Endo III did not affect the repair rate of Fpg substrates and was only responsible for repairing a subset of its own substrate lesions in vivo. The absence of Endo VIII or nucleotide excision repair did not significantly affect the global repair of either Fpg or Endo III substrates in vivo. Surprisingly, replication recovered after oxidative DNA damage in all mutants examined, even when lesions persisted in the DNA, suggesting the presence of an efficient mechanism to process or overcome oxidative damage encountered during replication.
Collapse
Affiliation(s)
- Brandy J Schalow
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA.
| | | | | |
Collapse
|
42
|
Ollivierre JN, Sikora JL, Beuning PJ. The dimeric SOS mutagenesis protein UmuD is active as a monomer. J Biol Chem 2010; 286:3607-17. [PMID: 21118802 DOI: 10.1074/jbc.m110.167254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homodimeric umuD gene products play key roles in regulating the cellular response to DNA damage in Escherichia coli. UmuD(2) is composed of 139-amino acid subunits and is up-regulated as part of the SOS response. Subsequently, damage-induced RecA·ssDNA nucleoprotein filaments mediate the slow self-cleavage of the N-terminal 24-amino acid arms yielding UmuD'(2). UmuD(2) and UmuD'(2) make a number of distinct protein-protein contacts that both prevent and facilitate mutagenic translesion synthesis. Wild-type UmuD(2) and UmuD'(2) form exceptionally tight dimers in solution; however, we show that the single amino acid change N41D generates stable, active UmuD and UmuD' monomers that functionally mimic the dimeric wild-type proteins. The UmuD N41D monomer is proficient for cleavage and interacts physically with DNA polymerase IV (DinB) and the β clamp. Furthermore, the N41D variants facilitate UV-induced mutagenesis and promote overall cell viability. Taken together, these observations show that a monomeric form of UmuD retains substantial function in vivo and in vitro.
Collapse
Affiliation(s)
- Jaylene N Ollivierre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
43
|
Capes MD, Coker JA, Gessler R, Grinblat-Huse V, DasSarma SL, Jacob CG, Kim JM, DasSarma P, DasSarma S. The information transfer system of halophilic archaea. Plasmid 2010; 65:77-101. [PMID: 21094181 DOI: 10.1016/j.plasmid.2010.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Information transfer is fundamental to all life forms. In the third domain of life, the archaea, many of the genes functioning in these processes are similar to their eukaryotic counterparts, including DNA replication and repair, basal transcription, and translation genes, while many transcriptional regulators and the overall genome structure are more bacterial-like. Among halophilic (salt-loving) archaea, the genomes commonly include extrachromosomal elements, many of which are large megaplasmids or minichromosomes. With the sequencing of genomes representing ten different genera of halophilic archaea and the availability of genetic systems in two diverse models, Halobacterium sp. NRC-1 and Haloferax volcanii, a large number of genes have now been annotated, classified, and studied. Here, we review the comparative genomic, genetic, and biochemical work primarily aimed at the information transfer system of halophilic archaea, highlighting gene conservation and differences in the chromosomes and the large extrachromosomal elements among these organisms.
Collapse
Affiliation(s)
- Melinda D Capes
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Michel-Marks E, Courcelle CT, Korolev S, Courcelle J. ATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage. J Mol Biol 2010; 401:579-89. [PMID: 20558179 DOI: 10.1016/j.jmb.2010.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.
Collapse
|
45
|
Sangurdekar DP, Hamann BL, Smirnov D, Srienc F, Hanawalt PC, Khodursky AB. Thymineless death is associated with loss of essential genetic information from the replication origin. Mol Microbiol 2010; 75:1455-67. [PMID: 20132444 DOI: 10.1111/j.1365-2958.2010.07072.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thymine starvation results in a terminal cellular condition known as thymineless death (TLD), which is the basis of action for several common antibiotics and anticancer drugs. We characterized the onset and progression of TLD in Escherichia coli and found that DNA damage is the only salient property that distinguishes cells irreversibly senesced under thymine starvation from cells reversibly arrested by the nucleotide limitation. The damage is manifested as the relative loss of genetic material spreading outward from the replication origin: the extent of TLD correlates with the progression of damage. The reduced lethality in mutants deficient in the RecFOR/JQ repair pathway also correlates with the extent of damage, which explains most of the observed variance in cell killing. We propose that such spatially localized and persistent DNA damage is the consequence of transcription-dependent initiation of replication in the thymine-starved cells and may be the underlying cause of TLD.
Collapse
Affiliation(s)
- Dipen P Sangurdekar
- Department of Chemical Engineering and Materials Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rudolph CJ, Upton AL, Briggs GS, Lloyd RG. Is RecG a general guardian of the bacterial genome? DNA Repair (Amst) 2010; 9:210-23. [PMID: 20093100 DOI: 10.1016/j.dnarep.2009.12.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched DNAs in vitro, including Holliday junctions, replication forks, D-loops and R-loops. Coupled with the reported pleiotropy of recG mutations, this broad range of potential targets has made it hard to pin down what the protein does in vivo, though roles in recombination and replication fork repair have been suggested. However, recent studies suggest that RecG provides a more general defence against pathological DNA replication. We have postulated that this is achieved through the ability of RecG to eliminate substrates that the replication restart protein, PriA, could otherwise exploit to re-replicate the chromosome. Without RecG, PriA triggers a cascade of events that interfere with the duplication and segregation of chromosomes. Here we review the studies that led us to this idea and to conclude that RecG may be both a specialist activity and a general guardian of the genome.
Collapse
Affiliation(s)
- Christian J Rudolph
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
47
|
Bentchikou E, Servant P, Coste G, Sommer S. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLoS Genet 2010; 6:e1000774. [PMID: 20090937 PMCID: PMC2806897 DOI: 10.1371/journal.pgen.1000774] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/16/2009] [Indexed: 11/19/2022] Open
Abstract
In Deinococcus radiodurans, the extreme resistance to DNA-shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a DeltarecA mutant: DeltarecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to gamma-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, DeltauvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of DeltauvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA.
Collapse
Affiliation(s)
- Esma Bentchikou
- Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Orsay, France
| | - Pascale Servant
- Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Orsay, France
| | - Geneviève Coste
- Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Orsay, France
| | - Suzanne Sommer
- Université Paris-Sud 11, CNRS UMR 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Orsay, France
- * E-mail:
| |
Collapse
|
48
|
Cao Z, Mueller CW, Julin DA. Analysis of the recJ gene and protein from Deinococcus radiodurans. DNA Repair (Amst) 2010; 9:66-75. [DOI: 10.1016/j.dnarep.2009.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 02/01/2023]
|
49
|
Xie P. Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:375108. [PMID: 21832339 DOI: 10.1088/0953-8984/21/37/375108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A general model is presented for the processive movement of molecular motors such as λ-exonuclease, RecJ and exonuclease I that use digestion of a DNA track to rectify Brownian motion along this track. Using this model, the translocation dynamics of these molecular motors is studied. The sequence-dependent pausing of λ-exonuclease, which results from a site-specific high affinity DNA interaction, is also studied. The theoretical results are consistent with available experimental data. Moreover, the model is used to predict the lifetime distribution and force dependence of these paused states.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
50
|
DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 2009; 75:5501-6. [PMID: 19648381 DOI: 10.1128/aem.00121-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable isotope probing with [(13)C]biphenyl was used to explore the genetic properties of indigenous bacteria able to grow on biphenyl in PCB-contaminated River Raisin sediment. A bacterial 16S rRNA gene clone library generated from [(13)C]DNA after a 14-day incubation with [(13)C]biphenyl revealed the dominant organisms to be members of the genera Achromobacter and Pseudomonas. A library built from PCR amplification of genes for aromatic-ring-hydroxylating dioxygenases from the [(13)C]DNA fraction revealed two sequence groups similar to bphA (encoding biphenyl dioxygenase) of Comamonas testosteroni strain B-356 and of Rhodococcus sp. RHA1. A library of 1,568 cosmid clones was produced from the [(13)C]DNA fraction. A 31.8-kb cosmid clone, detected by aromatic dioxygenase primers, contained genes of biphenyl dioxygenase subunits bphAE, while the rest of the clone's sequence was similar to that of an unknown member of the Gammaproteobacteria. A discrepancy in G+C content near the bphAE genes implies their recent acquisition, possibly by horizontal transfer. The biphenyl dioxygenase from the cosmid clone oxidized biphenyl and unsubstituted and para-only-substituted rings of polychlorinated biphenyl (PCB) congeners. A DNA-stable isotope probing-based cosmid library enabled the retrieval of functional genes from an uncultivated organism capable of PCB metabolism and suggest dispersed dioxygenase gene organization in nature.
Collapse
|