1
|
Nardi AN, De Marco J, D'Abramo M. Modulating Charge Transfer Kinetics along Poly Adenine: Chemical Modifications, Temperature, and Conformational Effects. J Chem Theory Comput 2025; 21:530-538. [PMID: 39753378 DOI: 10.1021/acs.jctc.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The charge transfer (CT) reactions in nucleic acids are crucial for genome damage and repair and nanoelectronics using DNA as a molecular conductor. Previous experimental and theoretical works underlined the significance of nucleic acid structural dynamics on CT kinetics, requiring models that incorporate the dynamics of the nucleic acid, solvents, and counterions. Here, we investigated hole transfer kinetics in poly adenine single and double strands at various temperatures and the rate enhancement due to adenine-to-7-deazaadenine mutation by means of a QM/MM approach. We found that the hole transfer rate in poly adenine double strands increases with temperature while the helix conformation is retained, whereas single strands exhibit the opposite thermal response. Additionally, the positive charge migrates more efficiently in poly-7-deazaadenine double strands. Our results, consistent with experimental data, suggest that a thermally induced hopping model can accurately describe CT kinetics in these sequences. The approach is transferable for studying CT reactions in other nucleic acid strands.
Collapse
Affiliation(s)
| | - Jacopo De Marco
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Nardi AN, D’Abramo M, Amadei A. Modeling Charge Transfer Reactions by Hopping between Electronic Ground State Minima: Application to Hole Transfer between DNA Bases. Molecules 2022; 27:7408. [PMID: 36364237 PMCID: PMC9654243 DOI: 10.3390/molecules27217408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2024] Open
Abstract
In this paper, we extend the previously described general model for charge transfer reactions, introducing specific changes to treat the hopping between energy minima of the electronic ground state (i.e., transitions between the corresponding vibrational ground states). We applied the theoretical-computational model to the charge transfer reactions in DNA molecules which still represent a challenge for a rational full understanding of their mechanism. Results show that the presented model can provide a valid, relatively simple, approach to quantitatively study such reactions shedding light on several important aspects of the reaction mechanism.
Collapse
Affiliation(s)
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University, 00185 Rome, Italy
| | - Andrea Amadei
- Department of Chemical and Technological Sciences, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
3
|
Electron-transfer kinetics through nucleic acids untangled by single-molecular fluorescence blinking. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Kawai K, Maruyama A. Kinetics of Photoinduced Reactions at the Single‐Molecule Level: The KACB Method. Chemistry 2020; 26:7740-7746. [DOI: 10.1002/chem.202000439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Atsushi Maruyama
- Department of Life Science and TechnologyTokyo Institute of Technology 4259 B-57 Nagatsuta Midori-ku, Yokohama, Kanagawa 226-8501 Japan
| |
Collapse
|
5
|
Emamy H, Gang O, Starr FW. The Stability of a Nanoparticle Diamond Lattice Linked by DNA. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E661. [PMID: 31035462 PMCID: PMC6567282 DOI: 10.3390/nano9050661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 11/30/2022]
Abstract
The functionalization of nanoparticles (NPs) with DNA has proven to be an effective strategy for self-assembly of NPs into superlattices with a broad range of lattice symmetries. By combining this strategy with the DNA origami approach, the possible lattice structures have been expanded to include the cubic diamond lattice. This symmetry is of particular interest, both due to the inherent synthesis challenges, as well as the potential valuable optical properties, including a complete band-gap. Using these lattices in functional devices requires a robust and stable lattice. Here, we use molecular simulations to investigate how NP size and DNA stiffness affect the structure, stability, and crystallite shape of NP superlattices with diamond symmetry. We use the Wulff construction method to predict the equilibrium crystallite shape of the cubic diamond lattice. We find that, due to reorientation of surface particles, it is possible to create bonds at the surface with dangling DNA links on the interior, thereby reducing surface energy. Consequently, the crystallite shape depends on the degree to which such surface reorientation is possible, which is sensitive to DNA stiffness. Further, we determine dependence of the lattice stability on NP size and DNA stiffness by evaluating relative Gibbs free energy. We find that the free energy is dominated by the entropic component. Increasing NP size or DNA stiffness increases free energy, and thus decreases the relative stability of lattices. On the other hand, increasing DNA stiffness results in a more precisely defined lattice structure. Thus, there is a trade off between structure and stability of the lattice. Our findings should assist experimental design for controlling lattice stability and crystallite shape.
Collapse
Affiliation(s)
- Hamed Emamy
- Department of Physics, Wesleyan University, Middletown, CT 06459, USA.
- Department of Chemical Engineering, and Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.
| | - Oleg Gang
- Department of Chemical Engineering, and Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Francis W Starr
- Department of Physics, Wesleyan University, Middletown, CT 06459, USA.
- Department of Molecular Biology & Biochemistry, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
6
|
Jie J, Liu K, Wu L, Zhao H, Song D, Su H. Capturing the radical ion-pair intermediate in DNA guanine oxidation. SCIENCE ADVANCES 2017; 3:e1700171. [PMID: 28630924 PMCID: PMC5457143 DOI: 10.1126/sciadv.1700171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/06/2017] [Indexed: 05/28/2023]
Abstract
Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl- in the chlorine radical-initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl- is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA.
Collapse
Affiliation(s)
- Jialong Jie
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunhui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lidan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongmei Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Di Song
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongmei Su
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Fujitsuka M, Majima T. Charge transfer dynamics in DNA revealed by time-resolved spectroscopy. Chem Sci 2017; 8:1752-1762. [PMID: 28451299 PMCID: PMC5396511 DOI: 10.1039/c6sc03428d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023] Open
Abstract
In the past few decades, charge transfer in DNA has attracted considerable attention from researchers in a wide variety of fields, including bioscience, physical chemistry, and nanotechnology. Charge transfer in DNA has been investigated using various techniques. Among them, time-resolved spectroscopic methods have yielded valuable information on charge transfer dynamics in DNA, providing an important basis for numerical practical applications such as development of new therapy applications and nanomaterials. In DNA, holes and excess electrons act as positive and negative charge carriers, respectively. Although hole transfer dynamics have been investigated in detail, the dynamics of excess electron transfer have only become clearer relatively recently. In the present paper, we summarize studies on the dynamics of hole and excess electron transfer conducted by several groups including our own.
Collapse
Affiliation(s)
- Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN) , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan . ;
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN) , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan . ;
| |
Collapse
|
8
|
Rawtani D, Kuntmal B, Agrawal Y. Charge transfer in DNA and its diverse modelling approaches. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1207570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Deepak Rawtani
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhi Nagar, Gujarat, India
| | - Binal Kuntmal
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhi Nagar, Gujarat, India
| | - Y. Agrawal
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhi Nagar, Gujarat, India
| |
Collapse
|
9
|
Lin SH, Fujitsuka M, Majima T. Excess-Electron Transfer in DNA by a Fluctuation-Assisted Hopping Mechanism. J Phys Chem B 2016; 120:660-6. [DOI: 10.1021/acs.jpcb.5b10857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shih-Hsun Lin
- The Institute of Scientific
and Industrial Research (SANKEN), Osaka University, Mihogaoka
8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific
and Industrial Research (SANKEN), Osaka University, Mihogaoka
8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuro Majima
- The Institute of Scientific
and Industrial Research (SANKEN), Osaka University, Mihogaoka
8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
10
|
Wu L, Liu K, Jie J, Song D, Su H. Direct observation of guanine radical cation deprotonation in G-quadruplex DNA. J Am Chem Soc 2014; 137:259-66. [PMID: 25506785 DOI: 10.1021/ja510285t] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although numerous studies have been devoted to the charge transfer through double-stranded DNA (dsDNA), one of the major problems that hinder their potential applications in molecular electronics is the fast deprotonation of guanine cation (G(+•)) to form a neutral radical that can cause the termination of hole transfer. It is thus of critical importance to explore other DNA structures, among which G-quadruplexes are an emerging topic. By nanosecond laser flash photolysis, we report here the direct observation and findings of the unusual deprotonation behavior (loss of amino proton N2-H instead of imino proton N1-H) and slower (1-2 orders of magnitude) deprotonation rate of G(+•) within G-quadruplexes, compared to the case in the free base dG or dsDNA. Four G-quadruplexes AG3(T2AG3)3, (G4T4G4)2, (TG4T)4, and G2T2G2TGTG2T2G2 (TBA) are measured systematically to examine the relationship of deprotonation with the hydrogen-bonding surroundings. Combined with in depth kinetic isotope experiments and pKa analysis, mechanistic insights have been further achieved, showing that it should be the non-hydrogen-bonded free proton to be released during deprotonation in G-quadruplexes, which is the N2-H exposed to solvent for G bases in G-quartets or the free N1-H for G base in the loop. The slower N2-H deprotonation rate can thus ensure less interruption of the hole transfer. The unique deprotonation features observed here for G-quadruplexes open possibilities for their interesting applications as molecular electronic devices, while the elucidated mechanisms can provide illuminations for the rational design of G-quadruplex structures toward such applications and enrich the fundamental understandings of DNA radical chemistry.
Collapse
Affiliation(s)
- Lidan Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | |
Collapse
|
11
|
Campbell NP, Rokita SE. Electron transport in DNA initiated by diaminonaphthalene donors alternatively bound by non-covalent and covalent association. Org Biomol Chem 2014; 12:1143-8. [DOI: 10.1039/c3ob42433b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-covalent association can identify active donors for study of charge transfer in DNA but may not establish detailed correlations between donor structure and transfer efficiency.
Collapse
Affiliation(s)
- Neil P. Campbell
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park, USA
| | - Steven E. Rokita
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park, USA
- Department of Chemistry
- Johns Hopkins University
| |
Collapse
|
12
|
Photoinduced Charge-Separation in DNA. PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II 2014; 356:165-82. [DOI: 10.1007/128_2013_525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Abstract
Not long after the discovery of the double-helical structure of DNA in 1952, researchers proposed that charge transfer along a one-dimensional π-array of nucleobases might be possible. At the end of the 1990s researchers discovered that a positive charge (a hole) generated in DNA migrates more than 200 Å along the structure, a discovery that ignited interest in the charge-transfer process in DNA. As a result, DNA became an interesting potential bottom-up material for constructing nanoelectronic sensors and devices because DNA can form various complex two-dimensional and three-dimensional structures, such as smiley faces and cubes. From the fundamental aspects of the hole transfer process, DNA is one of the most well-studied organic molecules with many reports on the synthesis of artificial nucleobase analogues. Thus, DNA offers a unique system to study how factors such as the HOMO energy and molecular flexibility affect hole transfer kinetics. Understanding the hole transfer mechanism requires a discussion of the hole transfer rate constants (kHT). This Account reviews the kHT values determined by our group and by Lewis and Wasielewski's group, obtained by a combination of the synthesis of modified DNA and time-resolved spectroscopy. DNA consists of G/C and A/T base pairs; the HOMO localizes on the purine bases G and A, and G has a lower oxidation potential and a higher energy HOMO. Typically, long-range hole transfer proceeded via sequential hole transfer between G/C's. The kinetics of this process in DNA sequences, including those with mismatches, is reproducible via kinetic modeling using the determined kHT for each hole transfer step between G/C's. We also determined the distance dependence parameter (β), which describes the steepness of the exponential decrease of kHT. Because of this value, >0.6 Å(-1) for hole transfer in DNA, DNA itself does not serve as a molecular wire. Interestingly, hole transfer proceeded exceptionally fast for some sequences in which G/C's are located close to each other, an observation that we cannot explain by a simple sequential hole transfer between G/C's but rather through hole delocalization over the nucleobases. To further investigate and refine the factors that affect kHT, we examined various artificial nucleobases. We clearly demonstrated that kHT depends strongly on the HOMO energy gap between the bases (ΔHOMO), and that kHT can be increased with decreasing ΔHOMO. We reduced ΔHOMO between the two type of base pairs by replacing adenines (A's) with deazaadenines ((z)A's) or diaminopurines (D's) and showed that the hole transfer rate through the G/C and A/T mix sequence increased by more than 3 orders of magnitude. We also investigated how DNA flexibility affects kHT. Locked nucleic acid (LNA) modification, which makes DNA more rigid, lowered kHT by more than 2 orders of magnitude. On the other hand, 5-Me-2'-deoxyzebularine (B) modification, which increases DNA flexibility, increased kHT by more than 1 order of magnitude. These new insights in hole transfer kinetics obtained from modified DNAs may aid in the design of new molecular-scale conducting materials.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
14
|
Choi J, Tanaka A, Cho DW, Fujitsuka M, Majima T. Efficient Electron Transfer in i-Motif DNA with a Tetraplex Structure. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Choi J, Tanaka A, Cho DW, Fujitsuka M, Majima T. Efficient Electron Transfer in i-Motif DNA with a Tetraplex Structure. Angew Chem Int Ed Engl 2013; 52:12937-41. [DOI: 10.1002/anie.201306017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/11/2013] [Indexed: 11/08/2022]
|
16
|
Abstract
In the past few decades, charge transfer in DNA has attracted considerable
attention from researchers in a wide variety of fields ranging from bioscience
and physical chemistry to nanotechnology. Charge transfer in DNA has been
investigated using various techniques. Among them, time-resolved spectroscopic
methods have provided information on charge-transfer dynamics in DNA, an
important basis for therapy applications, nanomaterials, and so on. In charge
transfer in DNA, holes and excess electrons act as positive and negative charge
carriers, respectively. Hole-transfer (HT) dynamics have been investigated in
detail, while the dynamics of excess electron transfer (EET) have only become
clear rather recently. In the present paper, we summarize studies on the
dynamics of HT and EET by several groups including ourselves.
Collapse
Affiliation(s)
- Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
17
|
Lewis FD. Distance-Dependent Electronic Interactions Across DNA Base Pairs: Charge Transport, Exciton Coupling, and Energy Transfer. Isr J Chem 2013. [DOI: 10.1002/ijch.201300035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Haruna KI, Iida H, Nishimoto SI, Tanabe K. Stepwise regulation of hole transport in DNA by control of triplex formation. Bioorg Med Chem 2013; 21:2682-6. [PMID: 23587656 DOI: 10.1016/j.bmc.2013.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
A functionality for regulating hole transport efficiency is a prerequisite for the utilization of DNA duplexes as nanodevices. Herein, we report the regulation of hole transport in anthraquinone-tethered DNA with dual triplex forming sites. Long-range photooxidation experiments showed that hole transport was effectively suppressed by the formation of triplex at low temperature, while it was recovered by dissociation to the duplex at higher temperature. Variation of temperature induced the formation and dissociation of the third strand at each triplex region individually, leading to the stepwise regulation of hole transport in DNA.
Collapse
Affiliation(s)
- Ken-ichi Haruna
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Kyoto 615-8510, Japan
| | | | | | | |
Collapse
|
19
|
Hsu SCN, Wang TP, Kao CL, Chen HF, Yang PY, Chen HY. Theoretical Study of the Protonation of the One-Electron-Reduced Guanine–Cytosine Base Pair by Water. J Phys Chem B 2013; 117:2096-105. [DOI: 10.1021/jp400299v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sodio C. N. Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Fen Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Yu Yang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
20
|
Choi J, Park J, Tanaka A, Park MJ, Jang YJ, Fujitsuka M, Kim SK, Majima T. Hole Trapping of G-Quartets in a G-Quadruplex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201208149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Choi J, Park J, Tanaka A, Park MJ, Jang YJ, Fujitsuka M, Kim SK, Majima T. Hole Trapping of G-Quartets in a G-Quadruplex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/anie.201208149] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Davis WB, Bjorklund CC, Deline M. Probing the effects of DNA-protein interactions on DNA hole transport: the N-terminal histone tails modulate the distribution of oxidative damage and chemical lesions in the nucleosome core particle. Biochemistry 2012; 51:3129-42. [PMID: 22409399 DOI: 10.1021/bi201734c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability of DNA to transport positive charges, or holes, over long distances is well-established, but the mechanistic details of how this process is influenced by packaging into DNA-protein complexes have not been fully delineated. In eukaryotes, genomic DNA is packaged into chromatin through its association with the core histone octamer to form the nucleosome core particle (NCP), a complex whose structure can be modulated through changes in the local environment and the histone proteins. Because (i) varying the salt concentration and removing the histone tails influence the structure of the NCP in known ways and (ii) previous studies have shown that DNA hole transport (HT) occurs in the nucleosome, we have used our previously described 601 sequence NCPs to test the hypothesis that DNA HT dynamics can be modulated by structural changes in a DNA-protein complex. We show that at low salt concentrations there is a sharp increase in long-range DNA HT efficiency in the NCP as compared to naked DNA. This enhancement of HT can be negated by either removal of the histone tails at low salt concentrations or disruption of the interaction of the packaged DNA and the histone tails by increasing the buffer's ionic strength. Association of the histone tails with 601 DNA at low salt concentrations shifts the guanine damage spectrum to favor lesions like 8-oxoguanine in the NCP, most likely through modulation of the rate of the reaction of the guanine radical cation with oxygen. These experimental results indicate that for most genomic DNA, the influence of DNA-protein interactions on DNA HT will depend strongly on the level of protection of the DNA nucleobases from oxygen. Further, these results suggest that the oxidative damage arising from DNA HT may vary in different genomic regions depending on the presence of either euchromatin or heterochromatin.
Collapse
Affiliation(s)
- William B Davis
- School of Molecular Biosciences, Biotechnology/Life Sciences 135, Washington State University, Pullman, Washington 99164-7520, USA.
| | | | | |
Collapse
|
23
|
Fujitsuka M, Majima T. Photoinduced Electron Transfer Processes in Biological and Artificial Supramolecules. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Kawai K, Hayashi M, Majima T. HOMO energy gap dependence of hole-transfer kinetics in DNA. J Am Chem Soc 2012; 134:4806-11. [PMID: 22335550 DOI: 10.1021/ja2109213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA consists of two type of base-pairs, G-C and A-T, in which the highest occupied molecular orbital (HOMO) localizes on the purine bases G and A. While the hole transfer through consecutive Gs or As occurs faster than 10(9) s(-1), a significant drop in the hole transfer rate was observed for G-C and A-T mixed random sequences. In this study, by using various natural and artificial nucleobases having different HOMO levels, the effect of the HOMO-energy gap between bases (Δ(HOMO)) on the hole-transfer kinetics in DNA was investigated. The results demonstrated that the hole transfer rate can be increased by decreasing the Δ(HOMO) and can be finely tuned over 3 orders of magnitude by varying the Δ(HOMO).
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
25
|
Park MJ, Fujitsuka M, Kawai K, Majima T. Excess-Electron Injection and Transfer in Terthiophene-Modified DNA: Terthiophene as a Photosensitizing Electron Donor for Thymine, Cytosine, and Adenine. Chemistry 2012; 18:2056-62. [DOI: 10.1002/chem.201103663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Indexed: 01/14/2023]
|
26
|
Park MJ, Fujitsuka M, Nishitera H, Kawai K, Majima T. Excess electron transfer dynamics in DNA hairpins conjugated with N,N-dimethylaminopyrene as a photosensitizing electron donor. Chem Commun (Camb) 2012; 48:11008-10. [DOI: 10.1039/c2cc36054c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Lande ADL, Babcock NS, Řezáč J, Lévy B, Sanders BC, Salahub DR. Quantum effects in biological electron transfer. Phys Chem Chem Phys 2012; 14:5902-18. [DOI: 10.1039/c2cp21823b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Biskup T, Hitomi K, Getzoff ED, Krapf S, Koslowski T, Schleicher E, Weber S. Identifikation unerwarteter Elektronentransferpfade im Cryptochrom durch zeitaufgelöste Elektronenspinresonanz-Spektroskopie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Biskup T, Hitomi K, Getzoff ED, Krapf S, Koslowski T, Schleicher E, Weber S. Unexpected electron transfer in cryptochrome identified by time-resolved EPR spectroscopy. Angew Chem Int Ed Engl 2011; 50:12647-51. [PMID: 22086606 DOI: 10.1002/anie.201104321] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 11/05/2022]
Abstract
Subtle differences in the local sequence and conformation of amino acids can result in diversity and specificity in electron transfer (ET) in proteins, despite structural conservation of the redox partners. For individual ET steps, distance is not necessarily the decisive parameter; orientation and solvent accessibility of the ET partners, and thus the stabilization of the charge-separated states, contribute substantially.
Collapse
Affiliation(s)
- Till Biskup
- Fachberich Physik, Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang X, Zhao Z, Mei H, Qiao Y, Liu Q, Luo W, Xia T, Fang X. A fluorescence aptasensor based on DNA charge transport for sensitive protein detection in serum. Analyst 2011; 136:4764-9. [PMID: 21949940 DOI: 10.1039/c1an15265c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescence aptasensor based on DNA charge transport for sensitive protein detection has been developed. A 15nt DNA aptamer against thrombin was used as a model system. The aptamer was integrated into a double strand DNA (dsDNA) that was labeled with a hole injector, naphthalimide (NI), and a fluorophore, Alexa532, at its two ends. After irradiation by UV light, the fluorescence of Alexa532 was bleached due to the oxidization of Alexa532 by the positive charge transported from naphthalimide through the dsDNA. In the presence of thrombin, the binding of thrombin to the aptamer resulted in the unwinding of the dsDNA into ssDNA, which led to the blocking of charge transfer and the strong fluorescence emission of Alexa532. By monitoring the fluorescence signal change, we were able to detect thrombin in homogeneous solutions with high selectivity and high sensitivity down to 1.2 pM. Moreover, as DNA charge transfer is resistant to interferences from biological contexts, the aptasensor can be used directly in undiluted serum with similar sensitivity as that in buffer. This new sensing strategy is expected to promote the exploitation of aptamer-based biosensors for protein assays in complex biological matrixes.
Collapse
Affiliation(s)
- Xinyue Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Park MJ, Fujitsuka M, Kawai K, Majima T. Direct measurement of the dynamics of excess electron transfer through consecutive thymine sequence in DNA. J Am Chem Soc 2011; 133:15320-3. [PMID: 21888400 DOI: 10.1021/ja2068017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge transfer in DNA is an essential process in biological systems because of its close relation to DNA damage and repair. DNA is also an important material used in nanotechnology for wiring and constructing various nanomaterials. Although hole transfer in DNA has been investigated by various researchers and the dynamic properties of this process have been well established, the dynamics of a negative charge, that is, excess electron, in DNA have not been revealed until now. In the present paper, we directly measured the rate of excess electron transfer (EET) through a consecutive thymine (T) sequence in nicked-dumbbell DNAs conjugated with a tetrathiophene derivative (4T) as an electron donor and diphenylacetylene (DPA) as an electron acceptor at both ends. The selective excitation of 4T by a femtosecond laser pulse caused the excess electron injection into DNA, and led to EET in DNA by a consecutive T-hopping mechanism, which eventually formed the DPA radical anion (DPA(•-)). The rate constant for the process of EET through consecutive T was determined to be (4.4 ± 0.3) × 10(10) s(-1) from an analysis of the kinetic traces of the ΔO.D. during the laser flash photolysis. It should be emphasized that the EET rate constant for T-hopping is faster than the rate constants for oxidative hole transfers in DNA (10(4) to 10(10) s(-1) for A- and G-hopping).
Collapse
Affiliation(s)
- Man Jae Park
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | | | |
Collapse
|
32
|
Kawai K, Kodera H, Majima T. Photocatalytic formation of I-I bonds using DNA which enables detection of single nucleotide polymorphisms. J Am Chem Soc 2011; 132:14216-20. [PMID: 20860356 DOI: 10.1021/ja105850d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
By decreasing the HOMO energy gap between the base-pairs to increase the charge conductivity of DNA, the positive charge photochemically generated in DNA can be made to migrate along the π-way of DNA over long distances to form a long-lived charge-separated state. By fine-tuning the kinetics of the charge-transfer reactions, we designed a functionalized DNA system in which absorbed photon energy is converted into chemical energy to form I-I covalent bonds, where more than 100 I(2) molecules were produced per functionalized DNA. Utilizing the fact that charge-transfer kinetics through DNA is sensitive to the presence of a single mismatch that causes the perturbation of the π-stacks, single nucleotide polymorphisms (SNPs) in genomic sequences were detected by measuring the photon energy conversion efficiency in DNA by a conventional starch iodine method.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | |
Collapse
|
33
|
Kummer K, Vyalikh DV, Gavrila G, Preobrajenski AB, Kick A, Bönsch M, Mertig M, Molodtsov SL. Electronic structure of genomic DNA: a photoemission and X-ray absorption study. J Phys Chem B 2010; 114:9645-52. [PMID: 20608694 DOI: 10.1021/jp1013237] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structure of genomic DNA has been comprehensively characterized by synchrotron-based X-ray absorption and X-ray photoelectron spectroscopy. Both unoccupied and occupied states close to the Fermi level have been unveiled and attributed to particular sites within the DNA structure. A semiconductor-like electronic structure with a band gap of approximately 2.6 eV has been found at which the pi and pi* orbitals of the nucleobase stack make major contributions to the highest occupied and lowest unoccupied molecular orbitals, respectively, in agreement with previous theoretical predictions.
Collapse
Affiliation(s)
- Kurt Kummer
- Institut für Festkörperphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kawai K, Osakada Y, Matsutani E, Majima T. Charge Separation and Photosensitized Damage in DNA Mediated by Naphthalimide, Naphthaldiimide, and Anthraquinone. J Phys Chem B 2010; 114:10195-9. [DOI: 10.1021/jp102483k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Yasuko Osakada
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Eri Matsutani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
35
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 2010; 49:9-21. [PMID: 20363317 DOI: 10.1016/j.freeradbiomed.2010.03.025] [Citation(s) in RCA: 395] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/16/2010] [Accepted: 03/26/2010] [Indexed: 12/17/2022]
Abstract
Search for the formation of oxidatively base damage in cellular DNA has been a matter of debate for more than 40 years due to the lack of accurate methods for the measurement of the lesions. HPLC associated with either tandem mass spectrometry (MS/MS) or electrochemical detector (ECD) together with optimized DNA extraction conditions constitutes a relevant analytical approach. This has allowed the accurate measurement of oxidatively generated single and clustered base damage in cellular DNA following exposure to acute oxidative stress conditions mediated by ionizing radiation, UVA light and one-electron oxidants. In this review the formation of 11 single base lesions that is accounted for by reactions of singlet oxygen, hydroxyl radical or high intensity UVC laser pulses with nucleobases is discussed on the basis of the mechanisms available from model studies. In addition several clustered lesions were found to be generated in cellular DNA as the result of one initial radical hit on either a vicinal base or the 2-deoxyribose. Information on nucleobase modifications that are formed upon addition of reactive aldehydes arising from the breakdown of lipid hydroperoxides is also provided.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
36
|
Affiliation(s)
- Joseph C. Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
37
|
Dai W, Hsu CW, Sciortino F, Starr FW. Valency dependence of polymorphism and polyamorphism in DNA-functionalized nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3601-3608. [PMID: 19852477 DOI: 10.1021/la903031p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanoparticles (NP) functionalized with single-stranded DNA (ssDNA) offer a route to custom-designed, self-assembled nanomaterials with potentially unusual properties. The bonding selectivity of DNA guarantees one-to-one binding to form double-stranded DNA (dsDNA), and an appropriate base sequence results in head-to-tail binding linking NP into networks. We explore the phase behavior and structure of a model for NP functionalized with between 3 and 6 short ssDNA through simulations of a coarse-grained molecular model, allowing us to examine both the role of the number of attached strands (valency) and their relative orientations. The NP assemble into networks where the number of NP links is controlled by the number of attached strands. The large length scale of the DNA links relative to the core NP size opens the possibility for the formation of interpenetrating networks that give rise to multiple thermodynamically distinct states. We find that the 3-functionalized NP have only a single phase transition between a dilute solution of NPs and an assembled network state. 4-Functionalized NP (with tetrahedral symmetry) exhibit four amorphous phases, or polyamorphism, each higher density phase consisting of an additional interpenetrating network. The two investigated geometries of 5-functionalized NP both exhibit two phase transitions and three amorphous phases. Like the 4-functionalized NP, the highest density phase consists of interpenetrating networks, demonstrating that regular symmetry is not a prerequisite for interpenetration to produce thermodynamically distinct phases. The width of the coexistence regions for all phase transitions increases with increasing functionality. Finally, for 6-functionalized NP with octahedral symmetry, the possibility of observing disordered phases with significantly bonded particles is preempted by the formation of ordered crystal phases. Interestingly, the extreme softness of the potential combined with the directional interaction allows for the formation of (at least) six distinct crystalline structures (i.e., polymorphism) consisting of up to six interpenetrating simple cubic lattices.
Collapse
Affiliation(s)
- Wei Dai
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | |
Collapse
|
38
|
Genereux JC, Boal AK, Barton JK. DNA-mediated charge transport in redox sensing and signaling. J Am Chem Soc 2010; 132:891-905. [PMID: 20047321 PMCID: PMC2902267 DOI: 10.1021/ja907669c] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transport of charge through the DNA base-pair stack offers a route to carry out redox chemistry at a distance. Here we describe characteristics of this chemistry that have been elucidated and how this chemistry may be utilized within the cell. The shallow distance dependence associated with these redox reactions permits DNA-mediated signaling over long molecular distances in the genome and facilitates the activation of redox-sensitive transcription factors globally in response to oxidative stress. The long-range funneling of oxidative damage to sites of low oxidation potential in the genome also may provide a means of protection within the cell. Furthermore, the sensitivity of DNA charge transport to perturbations in base-pair stacking, as may arise with base lesions and mismatches, may be used as a route to scan the genome for damage as a first step in DNA repair. Thus, the ability of double-helical DNA in mediating redox chemistry at a distance provides a natural mechanism for redox sensing and signaling in the genome.
Collapse
Affiliation(s)
- Joseph C. Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Amie K. Boal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
39
|
G-C Content Independent Long-Range Charge Transfer Through DNA. ELECTRONIC AND MAGNETIC PROPERTIES OF CHIRAL MOLECULES AND SUPRAMOLECULAR ARCHITECTURES 2010; 298:129-42. [DOI: 10.1007/128_2010_90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Kawai K, Kodera H, Majima T. Long-Range Charge Transfer through DNA by Replacing Adenine with Diaminopurine. J Am Chem Soc 2009; 132:627-30. [DOI: 10.1021/ja907409z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Haruka Kodera
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
41
|
Kawai K, Osakada Y, Majima T. Importance of protonation state of guanine radical cation during hole transfer in DNA. Chemphyschem 2009; 10:1766-9. [PMID: 19437477 DOI: 10.1002/cphc.200900148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kiyohiko Kawai
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | |
Collapse
|
42
|
Migliore A, Corni S, Varsano D, Klein ML, Di Felice R. First principles effective electronic couplings for hole transfer in natural and size-expanded DNA. J Phys Chem B 2009; 113:9402-15. [PMID: 19537767 PMCID: PMC2737706 DOI: 10.1021/jp904295q] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hole transfer processes between base pairs in natural DNA and size-expanded DNA (xDNA) are studied and compared, by means of an accurate first principles evaluation of the effective electronic couplings (also known as transfer integrals), in order to assess the effect of the base augmentation on the efficiency of charge transport through double-stranded DNA. According to our results, the size expansion increases the average electronic coupling, and thus the CT rate, with potential implications in molecular biology and in the implementation of molecular nanoelectronics. Our analysis shows that the effect of the nucleobase expansion on the charge-transfer (CT) rate is sensitive to the sequence of base pairs. Furthermore, we find that conformational variability is an important factor for the modulation of the CT rate. From a theoretical point of view, this work offers a contribution to the CT chemistry in pi-stacked arrays. Indeed, we compare our methodology against other standard computational frameworks that have been adopted to tackle the problem of CT in DNA, and unravel basic principles that should be accounted for in selecting an appropriate theoretical level.
Collapse
Affiliation(s)
- Agostino Migliore
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 South 34Street, Philadelphia, Pennsylvania 19104-6323, USA
| | - Stefano Corni
- National Center on nanoStructures and bioSystems at Surfaces (S3) of INFM-CNR, c/o Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Daniele Varsano
- National Center on nanoStructures and bioSystems at Surfaces (S3) of INFM-CNR, c/o Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Michael L. Klein
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 South 34Street, Philadelphia, Pennsylvania 19104-6323, USA
| | - Rosa Di Felice
- National Center on nanoStructures and bioSystems at Surfaces (S3) of INFM-CNR, c/o Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
43
|
Kawai K, Kodera H, Osakada Y, Majima T. Sequence-independent and rapid long-range charge transfer through DNA. Nat Chem 2009; 1:156-9. [DOI: 10.1038/nchem.171] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/26/2009] [Indexed: 12/11/2022]
|
44
|
Osakada Y, Kawai K, Fujitsuka M, Majima T. Kinetics of charge transfer in DNA containing a mismatch. Nucleic Acids Res 2008; 36:5562-70. [PMID: 18757889 PMCID: PMC2553589 DOI: 10.1093/nar/gkn505] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Charge transfer (CT) in DNA offers a unique approach for the detection of a single-base mismatch in a DNA molecule. While the single-base mismatch would significantly affect the CT in DNA, the kinetic basis for the drastic decrease in the CT efficiency through DNA containing mismatches still remains unclear. Recently, we determined the rate constants of the CT through the fully matched DNA, and we can now estimate the CT rate constant for a certain fully matched sequence. We assumed that further elucidating of the kinetics in mismatched sequences can lead to the discrimination of the DNA single-base mismatch based on the kinetics. In this study, we investigated the detailed kinetics of the CT through DNA containing mismatches and tried to discriminate a mismatch sequence based on the kinetics of the CT in DNA containing a mismatch.
Collapse
Affiliation(s)
- Yasuko Osakada
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki Osaka 567-0047, Japan
| | | | | | | |
Collapse
|
45
|
Kobayashi K, Yamagami R, Tagawa S. Effect of base sequence and deprotonation of Guanine cation radical in DNA. J Phys Chem B 2008; 112:10752-7. [PMID: 18680360 DOI: 10.1021/jp804005t] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The deprotonation of guanine cation radical (G+*) in oligonucleotides (ODNs) was measured spectroscopically by nanosecond pulse radiolysis. The G+* in ODN, produced by oxidation with SO4-*, deprotonates to form the neutral G radical (G(-H)*). In experiments using 5-substituted cytosine-modified ODN, substitution of the cytosine C5 hydrogen by a methyl group increased the rate constant of deprotonation, whereas replacement by bromine decreased the rate constant. Kinetic solvent isotope effects on the kinetics of deoxyguanosine (dG) and ODN duplexes were examined in H2O and D2O. The rate constant of formation of G(-H)* in dG was 1.7-fold larger in H2O than D2O, whereas the rate constant in the ODN duplex was 3.8-fold larger in H2O than D2O. These results suggest that the formation of G(-H)* from G+* in the ODN corresponds to the deprotonation of the oxidized hydrogen-bridged (G+*-C) base pair by a water molecule. The characteristic absorption maxima of G+* around 400 nm were shifted to a longer wavelength in the order of G<GG<GGG-containing ODNs. In contrast, the spectra of G(-H)* were not affected by the sequence and were essentially similar to that of free dG. These results suggest that the positive charge in G+* in ODN is delocalized over the extended pi orbitals of DNA base. The rate constant of the deprotonation was altered by the sequence of ODNs, where bases adjacent to guanine are important factors for deprotonation.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
| | | | | |
Collapse
|
46
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res 2008; 41:1075-83. [PMID: 18666785 DOI: 10.1021/ar700245e] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear DNA and other molecules in living systems are continuously exposed to endogenously generated oxygen species. Such species range from the unreactive superoxide radical (O2*-)the precursor of hydrogen peroxide (H2O2)to the highly reactive hydroxyl radical (*OH). Exogenous chemical and physical agents, such as ionizing radiation and the UVA component of solar light, can also oxidatively damage both the bases and the 2-deoxyribose moieties of cellular DNA. Over the last two decades, researchers have made major progress in understanding the oxidation degradation pathways of DNA that are most likely to occur from either oxidative metabolism or exposure to various exogenous agents. In the first part of this Account, we describe the mechanistic features of one-electron oxidation reactions of the guanine base in isolated DNA and related model compounds. These reactions illustrate the complexity of the various degradation pathways involved. Then, we briefly survey the analytical methods that can detect low amounts of oxidized bases and nucleosides in cells as they are formed. Recent data on the formation of oxidized guanine residues in cellular DNA following exposure to UVA light, ionizing radiation, and high-intensity UV pulses are also provided. We discuss these chemical reactions in the context of *OH radical, singlet oxygen, and two-quantum photoionization processes.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
- Department of Nuclear Medicine and Health Science, University of Sherbrooke, Quebec J1H 5N4, Canada
| | - Thierry Douki
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| | - Jean-Luc Ravanat
- Laboratoire “Lésions des Acides Nucléiques”, SCIB-UMR-E n3 (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| |
Collapse
|
47
|
Osakada Y, Kawai K, Fujitsuka M, Majima T. Charge transfer in DNA assemblies: effects of sticky ends. Chem Commun (Camb) 2008:2656-8. [PMID: 18535698 DOI: 10.1039/b801876f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transient absorption measurements of charge transfer (CT) demonstrated that the CT in the DNA assembly constructed by simply mixing DNAs with sticky ends occurs over 200 angstroms selectively to the complementary sticky end sequences.
Collapse
Affiliation(s)
- Yasuko Osakada
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | | | |
Collapse
|
48
|
Kawai K, Osakada Y, Fujitsuka M, Majima T. Mechanism of Charge Separation in DNA by Hole Transfer through Consecutive Adenines. Chemistry 2008; 14:3721-6. [DOI: 10.1002/chem.200701835] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Ghosh A, Joy A, Schuster GB, Douki T, Cadet J. Selective one-electron oxidation of duplex DNA oligomers: reaction at thymines. Org Biomol Chem 2008; 6:916-28. [PMID: 18292885 DOI: 10.1039/b717437c] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The one-electron oxidation of duplex DNA generates a nucleobase radical cation (electron "hole") that migrates long distances by a hopping mechanism. The radical cation reacts irreversibly with H2O or O2 to form oxidation products (damaged bases). In normal DNA (containing the four common DNA bases), reaction occurs most frequently at guanine. However, in DNA duplexes that do not contain guanine (i.e., those comprised exclusively of A/T base pairs), we discovered that reaction occurs primarily at thymine and gives products resulting from oxidation of the T-C5 methyl group and from addition to its C5-C6 double bond. This surprising result shows that it is the relative reactivity, not the stability, of a nucleobase radical cation that determines the nature of the products formed from oxidation of DNA. A mechanism for reaction is proposed whereby a thymine radical cation may either lose a proton from its methyl group or H2O/O2 may add across its double bond. In the latter case, addition may initiate a tandem reaction that converts both thymines of a TT step to oxidation products.
Collapse
Affiliation(s)
- Avik Ghosh
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
50
|
Kawai K, Osakada Y, Fujitsuka M, Majima T. Charge separation in acridine- and phenothiazine-modified DNA. J Phys Chem B 2008; 112:2144-9. [PMID: 18225880 DOI: 10.1021/jp075326+] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of the long-lived, charge-separated state in DNA upon visible light irradiation is of particular interest in molecular-scale optoelectronics, sensor design, and other areas of nanotechnology. However, the efficient generation of the charge-separated state is hampered by fast charge recombination within a contact ion pair, which limits the application of DNA for photoelectrochemical sensors and devices. In this study, a series of protonated 9-alkylamino-6-chloro-2-methoxyacridine (Acr+)- and phenothiazine (Ptz)-modified DNAs were synthesized for the further understanding of the mechanism of charge separation in DNA to generate a long-lived, charge-separated state with a high quantum yield (Phi). The Acr+ serves as a photosensitizer to produce a hole on guanine (G), and the G-C base pairs were used as a hole-transporting pathway to separate a hole from Acr* (the one-electron-reduced form of Acr+) to be trapped at Ptz. Since Acr+ oxides only G upon photoexcitation, the A-T base pair can be used as a spacer between Acr+ and the G-C base pair to avoid the formation of a contact ion pair. The charge injection dynamics was investigated by steady-state fluorescence spectra and fluorescence lifetime measurements, and the Phi and the lifetime of the charge-separated state produced upon photoirradiation were assessed by nanosecond laser flash photolysis of the Acr+- and Ptz-modified DNA. A long-lived, charge-separated state was successfully formed upon visible-light irradiation, and the Phi was the highest for the DNA having a single intervening A-T base pair between Acr+ and the G-C base pair. These results clearly demonstrated that the charge separation process in DNA can be refined by putting a redox-inactive intervening base pair as a spacer between a photosensitizer and the nucleobase to be oxidized to slow down the charge recombination rate.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | |
Collapse
|