1
|
Cutting antiparallel DNA strands in a single active site. Nat Struct Mol Biol 2020; 27:119-126. [PMID: 32015552 PMCID: PMC7015813 DOI: 10.1038/s41594-019-0363-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/13/2019] [Indexed: 01/17/2023]
Abstract
A single enzyme active site that catalyzes multiple reactions is a well-established biochemical theme, but how one nuclease site cleaves both DNA strands of a double helix has not been well understood. In analyzing site-specific DNA cleavage by the mammalian RAG1-RAG2 recombinase, which initiates V(D)J recombination, we find that the active site is reconfigured for the two consecutive reactions and the DNA double helix adopts drastically different structures. For initial nicking of the DNA, a locally unwound and unpaired DNA duplex forms a zipper via alternating interstrand base stacking, rather than melting as generally thought. The second strand cleavage and formation of a hairpin-DNA product requires a global scissor-like movement of protein and DNA, delivering the scissile phosphate into the rearranged active site.
Collapse
|
2
|
Rodgers KK. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures. Trends Biochem Sci 2016; 42:72-84. [PMID: 27825771 DOI: 10.1016/j.tibs.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Development of the adaptive immune system is dependent on V(D)J recombination, which forms functional antigen receptor genes through rearrangement of component gene segments. The V(D)J recombinase, comprising recombination-activating proteins RAG1 and RAG2, guides the initial DNA cleavage events to the recombination signal sequence (RSS), which flanks each gene segment. Although the enzymatic steps for RAG-mediated endonucleolytic activity were established over two decades ago, only recently have high-resolution structural studies of the catalytically active core regions of the RAG proteins shed light on conformational requirements for the reaction. While outstanding questions remain, we have a clearer picture of how RAG proteins function in generating the diverse repertoires of antigen receptors, the underlying foundation of the adaptive immune system.
Collapse
Affiliation(s)
- Karla K Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| |
Collapse
|
3
|
Crystal structure of the V(D)J recombinase RAG1-RAG2. Nature 2015; 518:507-11. [PMID: 25707801 DOI: 10.1038/nature14174] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/22/2014] [Indexed: 01/30/2023]
Abstract
V(D)J recombination in the vertebrate immune system generates a highly diverse population of immunoglobulins and T-cell receptors by combinatorial joining of segments of coding DNA. The RAG1-RAG2 protein complex initiates this site-specific recombination by cutting DNA at specific sites flanking the coding segments. Here we report the crystal structure of the mouse RAG1-RAG2 complex at 3.2 Å resolution. The 230-kilodalton RAG1-RAG2 heterotetramer is 'Y-shaped', with the amino-terminal domains of the two RAG1 chains forming an intertwined stalk. Each RAG1-RAG2 heterodimer composes one arm of the 'Y', with the active site in the middle and RAG2 at its tip. The RAG1-RAG2 structure rationalizes more than 60 mutations identified in immunodeficient patients, as well as a large body of genetic and biochemical data. The architectural similarity between RAG1 and the hairpin-forming transposases Hermes and Tn5 suggests the evolutionary conservation of these DNA rearrangements.
Collapse
|
4
|
Synapsis alters RAG-mediated nicking at Tcrb recombination signal sequences: implications for the “beyond 12/23” rule. Mol Cell Biol 2014; 34:2566-80. [PMID: 24797073 DOI: 10.1128/mcb.00411-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
At the Tcrb locus, Vβ-to-Jβ rearrangement is permitted by the 12/23 rule but is not observed in vivo, a restriction termed the “beyond 12/23” rule (B12/23 rule). Previous work showed that Vβ recombination signal sequences (RSSs) do not recombine with Jβ RSSs because Jβ RSSs are crippled for either nicking or synapsis. This result raised the following question: how can crippled Jβ RSSs recombine with Dβ RSSs? We report here that the nicking of some Jβ RSSs can be substantially stimulated by synapsis with a 3′Dβ1 partner RSS. This result helps to reconcile disagreement in the field regarding the impact of synapsis on nicking. Furthermore, our data allow for the classification of Tcrb RSSs into two major categories: those that nick quickly and those that nick slowly in the absence of a partner. Slow-nicking RSSs can be stimulated to nick more efficiently upon synapsis with an appropriate B12/23 partner, and our data unexpectedly suggest that fast-nicking RSSs can be inhibited for nicking upon synapsis with an inappropriate partner. These observations indicate that the RAG proteins exert fine control over every step of V(D)J cleavage and support the hypothesis that initial RAG binding can occur on RSSs with either 12- or 23-bp spacers (12- or 23-RSSs, respectively).
Collapse
|
5
|
Ciubotaru M, Surleac M, Musat MG, Rusu AM, Ionita E, Albu PCC. DNA bending in the synaptic complex in V(D)J recombination: turning an ancestral transpososome upside down. Discoveries (Craiova) 2014; 2:e13. [PMID: 32309545 PMCID: PMC6941560 DOI: 10.15190/d.2014.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In all jawed vertebrates RAG (recombination activating gene) recombinase orchestrates V(D)J recombination in B and T lymphocyte precursors, assembling the V, D and J germline gene segments into continuous functional entities which encode the variable regions of their immune receptors. V(D)J recombination is the process by which most of the diversity of our specific immune receptors is acquired and is thought to have originated by domestication of a transposon in the genome of a vertebrate. RAG acts similarly to the cut and paste transposases, by first binding two recombination signal DNA sequences (RSSs), which flank the two coding genes to be adjoined, in a process called synaptic or paired complex (PC) formation. At these RSS-coding borders, RAG first nicks one DNA strand, then creates hairpins, thus cleaving the duplex DNA at both RSSs. Although RAG reaction mechanism resembles that of insect mobile element transposases and RAG itself can inefficiently perform intramolecular and intermolecular integration into the target DNA, inside the nuclei of the developing lymphocytes transposition is extremely rare and is kept under proper surveillance. Our review may help understand how RAG synaptic complex organization prevents deleterious transposition. The phosphoryl transfer reaction mechanism of RNAseH-like fold DDE motif enzymes, including RAG, is discussed accentuating the peculiarities described for various transposases from the light of their available high resolution structures (Tn5, Mu, Mos1 and Hermes). Contrasting the structural 3D organization of DNA in these transpososomes with that of the RSSs-DNA in RAG PC allows us to propose several clues for how evolutionarily RAG may have become “specialized” in recombination versus transposition.
Collapse
Affiliation(s)
- Mihai Ciubotaru
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar St., TAC S620, New Haven, CT 06511, USA.,National Institute for Physics and Nuclear Engineering Horia Hulubei, Department of Life and Environmental Physics, Atomistilor Str., 077125, Bucharest-Magurele, Romania
| | - Marius Surleac
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031, Bucharest, Romania
| | - Mihaela G Musat
- National Institute for Physics and Nuclear Engineering Horia Hulubei, Department of Life and Environmental Physics, Atomistilor Str., 077125, Bucharest-Magurele, Romania
| | - Andreea M Rusu
- National Institute for Physics and Nuclear Engineering Horia Hulubei, Department of Life and Environmental Physics, Atomistilor Str., 077125, Bucharest-Magurele, Romania
| | - Elena Ionita
- National Institute for Physics and Nuclear Engineering Horia Hulubei, Department of Life and Environmental Physics, Atomistilor Str., 077125, Bucharest-Magurele, Romania
| | - Paul C C Albu
- National Institute for Physics and Nuclear Engineering Horia Hulubei, Department of Life and Environmental Physics, Atomistilor Str., 077125, Bucharest-Magurele, Romania
| |
Collapse
|
6
|
Metabolic sensor AMPK directly phosphorylates RAG1 protein and regulates V(D)J recombination. Proc Natl Acad Sci U S A 2013; 110:9873-8. [PMID: 23716691 DOI: 10.1073/pnas.1307928110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to sense metabolic stress is critical for successful cellular adaptation. In eukaryotes, the AMP-activated protein kinase (AMPK), a highly conserved serine/threonine kinase, functions as a critical metabolic sensor. AMPK is activated by the rising ADP/ATP and AMP/ATP ratios during conditions of energy depletion and also by increasing intracellular Ca(2+). In response to metabolic stress, AMPK maintains energy homeostasis by phosphorylating and regulating proteins that are involved in many physiological processes including glucose and fatty acid metabolism, transcription, cell growth, mitochondrial biogenesis, and autophagy. Evidence is mounting that AMPK also plays a role in a number of pathways unrelated to energy metabolism. Here, we identify the recombination-activating gene 1 protein (RAG1) as a substrate of AMPK. The RAG1/RAG2 complex is a lymphoid-specific endonuclease that catalyzes specific DNA cleavage during V(D)J recombination, which is required for the assembly of the Ig and T-cell receptor genes of the immune system. AMPK directly phosphorylates RAG1 at serine 528, and the phosphorylation enhances the catalytic activity of the RAG complex, resulting in increased cleavage of oligonucleotide substrates in vitro, or increased recombination of an extrachromosomal substrate in a cellular assay. Our results suggest that V(D)J recombination can be regulated by AMPK activation, providing a potential new link between metabolic stress and development of B and T lymphocytes.
Collapse
|
7
|
Shi K, Huang WM, Aihara H. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation. PLoS Biol 2013; 11:e1001472. [PMID: 23382649 PMCID: PMC3558466 DOI: 10.1371/journal.pbio.1001472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/12/2012] [Indexed: 12/19/2022] Open
Abstract
Crystal structures reveal catalysis of DNA refolding in the molecular mechanism underlying generation of bacterial hairpin telomeres. Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting–rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions. Linear chromosomes capped by hairpin telomeres are widespread in prokaryotes and are found in important bacterial pathogens. However, three-dimensional structure of the hairpin telomere, as well as the molecular mechanisms underlying its generation, has remained poorly understood. In this work, we investigated how the enzyme responsible for generating the bacterial hairpin telomeres (protelomerase, also known as telomere resolvase) transforms a linear double-stranded DNA molecule into sharp hairpin turns. Our X-ray crystallographic and biochemical data collectively suggest that protelomerase employs a multistep DNA strand-refolding mechanism as described below. Protelomerase first cleaves both strands of a double-helical DNA substrate and reshapes the DNA strands into a transition state conformation (refolding intermediate) stabilized by specific protein–DNA and DNA–DNA interactions including noncanonical (non-Watson–Crick) base-pairs. The DNA strands are then refolded into extremely compact hairpin products, stabilized by a set of interactions distinct from those stabilizing the refolding intermediate. We believe that an enzyme “catalyzing” not only the chemical reactions of DNA strand cutting/rejoining but also the ordered transition between different DNA conformations to guide refolding of the DNA strand is a novel concept, and we suspect that similar mechanisms may be employed by other enzymes involved in conformational changes/refolding of biological macromolecules.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wai Mun Huang
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
V(D)J recombination assembles immunoglobulin and T cell receptor genes during lymphocyte development through a series of carefully orchestrated DNA breakage and rejoining events. DNA cleavage requires a series of protein-DNA complexes containing the RAG1 and RAG2 proteins and recombination signals that flank the recombining gene segments. In this review, we discuss recent advances in our understanding of the function and domain organization of the RAG proteins, the composition and structure of RAG-DNA complexes, and the pathways that lead to the formation of these complexes. We also consider the functional significance of RAG-mediated histone recognition and ubiquitin ligase activities, and the role played by RAG in ensuring proper repair of DNA breaks made during V(D)J recombination. Finally, we propose a model for the formation of RAG-DNA complexes that involves anchoring of RAG1 at the recombination signal nonamer and RAG2-dependent surveillance of adjoining DNA for suitable spacer and heptamer sequences.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
9
|
Hickman AB, Chandler M, Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 2010; 45:50-69. [PMID: 20067338 DOI: 10.3109/10409230903505596] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA rearrangements are important in genome function and evolution. Genetic material can be rearranged inadvertently during processes such as DNA repair, or can be moved in a controlled manner by enzymes specifically dedicated to the task. DNA transposases comprise one class of such enzymes. These move DNA segments known as transposons to new locations, without the need for sequence homology between transposon and target site. Several biochemically distinct pathways have evolved for DNA transposition, and genetic and biochemical studies have provided valuable insights into many of these. However, structural information on transposases - particularly with DNA substrates - has proven elusive in most cases. On the other hand, large-scale genome sequencing projects have led to an explosion in the number of annotated prokaryotic and eukaryotic mobile elements. Here, we briefly review biochemical and mechanistic aspects of DNA transposition, and propose that integrating sequence information with structural information using bioinformatics tools such as secondary structure prediction and protein threading can lead not only to an additional level of understanding but possibly also to testable hypotheses regarding transposition mechanisms. Detailed understanding of transposition pathways is a prerequisite for the long-term goal of exploiting DNA transposons as genetic tools and as a basis for genetic medical applications.
Collapse
Affiliation(s)
- Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
10
|
Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 2009; 138:1096-108. [PMID: 19766564 PMCID: PMC3977044 DOI: 10.1016/j.cell.2009.07.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/24/2009] [Accepted: 07/02/2009] [Indexed: 11/26/2022]
Abstract
A key step in cut-and-paste DNA transposition is the pairing of transposon ends before the element is excised and inserted at a new site in its host genome. Crystallographic analyses of the paired-end complex (PEC) formed from precleaved transposon ends and the transposase of the eukaryotic element Mos1 reveals two parallel ends bound to a dimeric enzyme. The complex has a trans arrangement, with each transposon end recognized by the DNA binding region of one transposase monomer and by the active site of the other monomer. Two additional DNA duplexes in the crystal indicate likely binding sites for flanking DNA. Biochemical data provide support for a model of the target capture complex and identify Arg186 to be critical for target binding. Mixing experiments indicate that a transposase dimer initiates first-strand cleavage and suggest a pathway for PEC formation.
Collapse
Affiliation(s)
- Julia M Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.
| | | | | | | |
Collapse
|
11
|
Base flipping in V(D)J recombination: insights into the mechanism of hairpin formation, the 12/23 rule, and the coordination of double-strand breaks. Mol Cell Biol 2009; 29:5889-99. [PMID: 19720743 DOI: 10.1128/mcb.00187-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tn5 transposase cleaves the transposon end using a hairpin intermediate on the transposon end. This involves a flipped base that is stacked against a tryptophan residue in the protein. However, many other members of the cut-and-paste transposase family, including the RAG1 protein, produce a hairpin on the flanking DNA. We have investigated the reversed polarity of the reaction for RAG recombination. Although the RAG proteins appear to employ a base-flipping mechanism using aromatic residues, the putatively flipped base is not at the expected location and does not appear to stack against any of the said aromatic residues. We propose an alternative model in which a flipped base is accommodated in a nonspecific pocket or cleft within the recombinase. This is consistent with the location of the flipped base at position -1 in the coding flank, which can be occupied by purine or pyrimidine bases that would be difficult to stabilize using a single, highly specific, interaction. Finally, during this work we noticed that the putative base-flipping events on either side of the 12/23 recombination signal sequence paired complex are coupled to the nicking steps and serve to coordinate the double-strand breaks on either side of the complex.
Collapse
|
12
|
Bischerour J, Chalmers R. Base flipping in tn10 transposition: an active flip and capture mechanism. PLoS One 2009; 4:e6201. [PMID: 19593448 PMCID: PMC2705183 DOI: 10.1371/journal.pone.0006201] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/25/2009] [Indexed: 11/19/2022] Open
Abstract
The bacterial Tn5 and Tn10 transposases have a single active site that cuts both strands of DNA at their respective transposon ends. This is achieved using a hairpin intermediate that requires the DNA to change conformation during the reaction. In Tn5 these changes are controlled in part by a flipped nucleoside that is stacked on a tryptophan residue in a hydrophobic pocket of the transposase. Here we have investigated the base flipping mechanism in Tn10 transposition. As in Tn5 transposition, we find that base flipping takes place after the first nick and is required for efficient hairpin formation and resolution. Experiments with an abasic substrate show that the role of base flipping in hairpin formation is to remove the base from the DNA helix. Specific interactions between the flipped base and the stacking tryptophan residue are required for hairpin resolution later in the reaction. We show that base flipping in Tn10 transposition is not a passive reaction in which a spontaneously flipped base is captured and retained by the protein. Rather, it is driven in part by a methionine probe residue that helps to force the flipped base from the base stack. Overall, it appears that base flipping in Tn10 transposition is similar to that in Tn5 transposition.
Collapse
Affiliation(s)
- Julien Bischerour
- University of Nottingham, School of Biomedical Sciences, The Medical School, Queens Medical Centre (QMC), Nottingham, United Kingdom
| | - Ronald Chalmers
- University of Nottingham, School of Biomedical Sciences, The Medical School, Queens Medical Centre (QMC), Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Yin FF, Bailey S, Innis CA, Ciubotaru M, Kamtekar S, Steitz TA, Schatz DG. Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis. Nat Struct Mol Biol 2009; 16:499-508. [PMID: 19396172 PMCID: PMC2715281 DOI: 10.1038/nsmb.1593] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 03/20/2009] [Indexed: 12/23/2022]
Abstract
The products of recombination-activating genes RAG1 and RAG2 mediate the assembly of antigen receptor genes during lymphocyte development in a process known as V(D)J recombination. Lack of structural information for the RAG proteins has hindered mechanistic studies of this reaction. We report here the crystal structure of an essential DNA binding domain of the RAG1 catalytic core bound to its nonamer DNA recognition motif. The RAG1 nonamer binding domain (NBD) forms a tightly interwoven dimer that binds and synapses two nonamer elements, with each NBD making contact with both DNA molecules. Biochemical and biophysical experiments confirm that the two nonamers are in close proximity in the RAG1/2-DNA synaptic complex and demonstrate the functional importance of the protein-DNA contacts revealed in the structure. These findings reveal a previously unsuspected function for the NBD in DNA synapsis and have implications for the regulation of DNA binding and cleavage by RAG1 and RAG2.
Collapse
Affiliation(s)
- Fang Fang Yin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhao S, Gwyn LM, De P, Rodgers KK. A non-sequence-specific DNA binding mode of RAG1 is inhibited by RAG2. J Mol Biol 2009; 387:744-58. [PMID: 19232525 DOI: 10.1016/j.jmb.2009.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/03/2009] [Accepted: 02/06/2009] [Indexed: 11/29/2022]
Abstract
RAG1 and RAG2 proteins catalyze site-specific DNA cleavage reactions in V(D)J recombination, a process that assembles antigen receptor genes from component gene segments during lymphocyte development. The first step towards the DNA cleavage reaction is the sequence-specific association of the RAG proteins with the conserved recombination signal sequence (RSS), which flanks each gene segment in the antigen receptor loci. Questions remain as to the contribution of each RAG protein to recognition of the RSS. For example, while RAG1 alone is capable of recognizing the conserved elements of the RSS, it is not clear if or how RAG2 may enhance sequence-specific associations with the RSS. To shed light on this issue, we examined the association of RAG1, with and without RAG2, with consensus RSS versus non-RSS substrates using fluorescence anisotropy and gel mobility shift assays. The results indicate that while RAG1 can recognize the RSS, the sequence-specific interaction under physiological conditions is masked by a high-affinity non-sequence-specific DNA binding mode. Significantly, addition of RAG2 effectively suppressed the association of RAG1 with non-sequence-specific DNA, resulting in a large differential in binding affinity for the RSS versus the non-RSS sites. We conclude that this represents a major means by which RAG2 contributes to the initial recognition of the RSS and that, therefore, association of RAG1 with RAG2 is required for effective interactions with the RSS in developing lymphocytes.
Collapse
Affiliation(s)
- Shuying Zhao
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | | | |
Collapse
|
15
|
Swanson PC, Kumar S, Raval P. Early steps of V(D)J rearrangement: insights from biochemical studies of RAG-RSS complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:1-15. [PMID: 19731797 DOI: 10.1007/978-1-4419-0296-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
V(D)J recombination is initiated by the synapsis and cleavage of a complementary (12/23) pair of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins. Our understanding of these processes has been greatly aided by the development of in vitro biochemical assays of RAG binding and cleavage activity. Accumulating evidence suggests that synaptic complex assembly occurs in a step-wise manner and that the RAG proteins catalyze RSS cleavage by mechanisms similar to those used by bacterial transposases. In this chapter we will review the molecular mechanisms of RAG synaptic complex assembly and 12/23-regulated RSS cleavage, focusing on recent advances that shed new light on these processes.
Collapse
Affiliation(s)
- Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, Nebraska 68178, USA.
| | | | | |
Collapse
|
16
|
Longo NS, Grundy GJ, Lee J, Gellert M, Lipsky PE. An activation-induced cytidine deaminase-independent mechanism of secondary VH gene rearrangement in preimmune human B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7825-34. [PMID: 19017972 DOI: 10.4049/jimmunol.181.11.7825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
V(H) replacement is a form of IgH chain receptor editing that is believed to be mediated by recombinase cleavage at cryptic recombination signal sequences (cRSS) embedded in V(H) genes. Whereas there are several reports of V(H) replacement in primary and transformed human B cells and murine models, it remains unclear whether V(H) replacement contributes to the normal human B cell repertoire. We identified V(H)-->V(H)(D)J(H) compound rearrangements from fetal liver, fetal bone marrow, and naive peripheral blood, all of which involved invading and recipient V(H)4 genes that contain a cryptic heptamer, a 13-bp spacer, and nonamer in the 5' portion of framework region 3. Surprisingly, all pseudohybrid joins lacked the molecular processing associated with typical V(H)(D)J(H) recombination or nonhomologous end joining. Although inefficient compared with a canonical recombination signal sequences, the V(H)4 cRSS was a significantly better substrate for in vitro RAG-mediated cleavage than the V(H)3 cRSS. It has been suggested that activation-induced cytidine deamination (AICDA) may contribute to V(H) replacement. However, we found similar secondary rearrangements using V(H)4 genes in AICDA-deficient human B cells. The data suggest that V(H)4 replacement in preimmune human B cells is mediated by an AICDA-independent mechanism resulting from inefficient but selective RAG activity.
Collapse
Affiliation(s)
- Nancy S Longo
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Diabetes andDigestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1560, USA
| | | | | | | | | |
Collapse
|
17
|
Pavlicek JW, Lyubchenko YL, Chang Y. Quantitative analyses of RAG-RSS interactions and conformations revealed by atomic force microscopy. Biochemistry 2008; 47:11204-11. [PMID: 18831563 PMCID: PMC2648828 DOI: 10.1021/bi801426x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During V(D)J recombination, site specific DNA excision is dictated by the binding of RAG1/2 proteins to the conserved recombination signal sequence (RSS) within the genome. The interaction between RAG1/2 and RSS is thought to involve a large DNA distortion that is permissive for DNA cleavage. In this study, using atomic force microscopy imaging (AFM), we analyzed individual RAG-RSS complexes, in which the bending angle of RAG-associated RSS substrates could be visualized and quantified. We provided the quantitative measurement on the conformations of specific RAG-12RSS complexes. Previous data indicating the necessity of RAG2 for recombination implies a structural role in the RAG-RSS complex. Surprisingly, however, no significant difference was observed in conformational bending with AFM between RAG1-12RSS and RAG1/2-12RSS. RAG1 was found sufficient to induce DNA bending, and the addition of RAG2 did not change the bending profile. In addition, a prenicked 12RSS bound by RAG1/2 proteins displayed a conformation similar to the one observed with the intact 12RSS, implying that no greater DNA bending occurs after the nicking step in the signal complex. Taken together, the quantitative AFM results on the components of the recombinase emphasize a tightly held complex with a bend angle value near 60 degrees , which may be a prerequisite step for the site-specific nicking by the V(D)J recombinase.
Collapse
Affiliation(s)
- Jeffrey W. Pavlicek
- School of Life Sciences, Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5501 USA
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center. Omaha, NE 68198-6025, USA
| | - Yung Chang
- School of Life Sciences, Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5501 USA
| |
Collapse
|
18
|
Lu CP, Posey JE, Roth DB. Understanding how the V(D)J recombinase catalyzes transesterification: distinctions between DNA cleavage and transposition. Nucleic Acids Res 2008; 36:2864-73. [PMID: 18375979 PMCID: PMC2396405 DOI: 10.1093/nar/gkn128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Rag1 and Rag2 proteins initiate V(D)J recombination by introducing site-specific DNA double-strand breaks. Cleavage occurs by nicking one DNA strand, followed by a one-step transesterification reaction that forms a DNA hairpin structure. A similar reaction allows Rag transposition, in which the 3'-OH groups produced by Rag cleavage are joined to target DNA. The Rag1 active site DDE triad clearly plays a catalytic role in both cleavage and transposition, but no other residues in Rag1 responsible for transesterification have been identified. Furthermore, although Rag2 is essential for both cleavage and transposition, the nature of its involvement is unknown. Here, we identify basic amino acids in the catalytic core of Rag1 specifically important for transesterification. We also show that some Rag1 mutants with severe defects in hairpin formation nonetheless catalyze substantial levels of transposition. Lastly, we show that a catalytically defective Rag2 mutant is impaired in target capture and displays a novel form of coding flank sensitivity. These findings provide the first identification of components of Rag1 that are specifically required for transesterification and suggest an unexpected role for Rag2 in DNA cleavage and transposition.
Collapse
Affiliation(s)
- Catherine P Lu
- Program in Molecular Pathogenesis, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
19
|
Nishihara T, Nagawa F, Imai T, Sakano H. RAG-heptamer interaction in the synaptic complex is a crucial biochemical checkpoint for the 12/23 recombination rule. J Biol Chem 2007; 283:4877-85. [PMID: 18089566 DOI: 10.1074/jbc.m709890200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In V(D)J recombination, the RAG1 and RAG2 protein complex cleaves the recombination signal sequences (RSSs), generating a hairpin structure at the coding end. The cleavage occurs only between two RSSs with different spacer lengths of 12 and 23 bp. Here we report that in the synaptic complex, recombination-activating gene (RAG) proteins interact with the 7-mer and unstack the adjacent base in the coding region. We generated a RAG1 mutant that exhibits reduced RAG-7-mer interaction, unstacking of the coding base, and hairpin formation. Mutation of the 23-RSS at the first position of the 7-mer, which has been reported to impair the cleavage of the partner 12-RSS, demonstrated phenotypes similar to those of the RAG1 mutant; the RAG interaction and base unstacking in the partner 12-RSS are reduced. We propose that the RAG-7-mer interaction is a critical step for coding DNA distortion and hairpin formation in the context of the 12/23 rule.
Collapse
Affiliation(s)
- Tadashi Nishihara
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|