1
|
Watanabe Y, Nobe Y, Taoka M, Okamoto T. The Feeder Effects of Cultured Rice Cells on the Early Development of Rice Zygotes. Int J Mol Sci 2023; 24:16541. [PMID: 38003730 PMCID: PMC10672051 DOI: 10.3390/ijms242216541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Feeder cells and the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) in a culture medium promote mitosis and cell division in cultured cells. These are also added to nutrient medium for the cultivation of highly active in mitosis and dividing zygotes, produced in vitro or isolated from pollinated ovaries. In the study, an in vitro fertilization (IVF) system was used to study the precise effects of feeder cells and 2,4-D on the growth and development of rice (Oryza sativa L.) zygote. The elimination of 2,4-D from the culture medium did not affect the early developmental profiles of the zygotes, but decreased the division rates of multicellular embryos. The omission of feeder cells resulted in defective karyogamy, fusion between male and female nuclei, and the subsequent first division of the cultured zygotes. The culture of zygotes in a conditioned medium corrected developmental disorders. Proteome analyses of the conditioned medium revealed the presence of abundant hydrolases possibly released from the feeder cells. Exogenously applied α-amylase ameliorated karyogamy and promoted zygote development. It is suggested that hydrolytic enzymes, including α-amylase, released from feeder cells may be involved in the progression of zygotic development.
Collapse
Affiliation(s)
- Yoriko Watanabe
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji 192-0397, Tokyo, Japan;
| | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji 192-0397, Tokyo, Japan; (Y.N.); (M.T.)
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji 192-0397, Tokyo, Japan; (Y.N.); (M.T.)
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji 192-0397, Tokyo, Japan;
| |
Collapse
|
2
|
McCalpin SD, Widanage MCD, Fu R, Ramamoorthy A. On-Pathway Oligomer of Human Islet Amyloid Polypeptide Induced and Stabilized by Mechanical Rotation during Magic Angle Spinning Nuclear Magnetic Resonance. J Phys Chem Lett 2023; 14:7644-7649. [PMID: 37602799 PMCID: PMC11559835 DOI: 10.1021/acs.jpclett.3c02009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Intermediates along the fibrillation pathway are generally considered to be the toxic species responsible for the pathologies of amyloid diseases. However, structural studies of these species have been hampered by heterogeneity and poor stability under standard aqueous conditions. Here, we report a novel methodology for producing stable, on-pathway oligomers of the human type-2 diabetes-associated islet amyloid polypeptide (hIAPP or amylin) using the mechanical forces associated with magic angle spinning (MAS). The species were a heterogeneous mixture of globular and short rod-like species with significant β-sheet content and the capability of seeding hIAPP fibrillation. We used MAS nuclear magnetic resonance to demonstrate that the nature of the species was sensitive to sample conditions, including peptide concentration, ionic strength, and buffer. The methodology should be suitable for studies of other aggregating systems.
Collapse
Affiliation(s)
- Samuel D. McCalpin
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA
| | - Malitha C. Dickwella Widanage
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA
| |
Collapse
|
3
|
Kim Y, Kim EK, Chey Y, Song MJ, Jang HH. Targeted Protein Degradation: Principles and Applications of the Proteasome. Cells 2023; 12:1846. [PMID: 37508510 PMCID: PMC10378610 DOI: 10.3390/cells12141846] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The proteasome is a multi-catalytic protease complex that is involved in protein quality control via three proteolytic activities (i.e., caspase-, trypsin-, and chymotrypsin-like activities). Most cellular proteins are selectively degraded by the proteasome via ubiquitination. Moreover, the ubiquitin-proteasome system is a critical process for maintaining protein homeostasis. Here, we briefly summarize the structure of the proteasome, its regulatory mechanisms, proteins that regulate proteasome activity, and alterations to proteasome activity found in diverse diseases, chemoresistant cells, and cancer stem cells. Finally, we describe potential therapeutic modalities that use the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yosup Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Eun-Kyung Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yoona Chey
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Min-Jeong Song
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Krempl C, Wurm JP, Beck Erlach M, Kremer W, Sprangers R. Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR. J Mol Biol 2023; 435:167922. [PMID: 37330282 DOI: 10.1016/j.jmb.2022.167922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/19/2023]
Abstract
Most proteins are highly flexible and can adopt conformations that deviate from the energetically most favorable ground state. Structural information on these lowly populated, alternative conformations is often lacking, despite the functional importance of these states. Here, we study the pathway by which the Dcp1:Dcp2 mRNA decapping complex exchanges between an autoinhibited closed and an open conformation. We make use of methyl Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion (RD) experiments that report on the population of the sparsely populated open conformation as well as on the exchange rate between the two conformations. To obtain volumetric information on the open conformation as well as on the transition state structure we made use of RD measurements at elevated pressures. We found that the open Dcp1:Dcp2 conformation has a lower molecular volume than the closed conformation and that the transition state is close in volume to the closed state. In the presence of ATP the volume change upon opening of the complex increases and the volume of the transition state lies in-between the volumes of the closed and open state. These findings show that ATP has an effect on the volume changes that are associated with the opening-closing pathway of the complex. Our results highlight the strength of pressure dependent NMR methods to obtain insights into structural features of protein conformations that are not directly observable. As our work makes use of methyl groups as NMR probes we conclude that the applied methodology is also applicable to high molecular weight complexes.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Beck Erlach
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
5
|
Oliva R, Winter R. Harnessing Pressure-Axis Experiments to Explore Volume Fluctuations, Conformational Substates, and Solvation of Biomolecular Systems. J Phys Chem Lett 2022; 13:12099-12115. [PMID: 36546666 DOI: 10.1021/acs.jpclett.2c03186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intrinsic thermodynamic fluctuations within biomolecules are crucial for their function, and flexibility is one of the strategies that evolution has developed to adapt to extreme environments. In this regard, pressure perturbation is an important tool for mechanistically exploring the causes and effects of volume fluctuations in biomolecules and biomolecular assemblies, their role in biomolecular interactions and reactions, and how they are affected by the solvent properties. High hydrostatic pressure is also a key parameter in the context of deep-sea and subsurface biology and the study of the origin and physical limits of life. We discuss the role of pressure-axis experiments in revealing intrinsic structural fluctuations as well as high-energy conformational substates of proteins and other biomolecular systems that are important for their function and provide some illustrative examples. We show that the structural and dynamic information obtained from such pressure-axis studies improves our understanding of biomolecular function, disease, biological evolution, and adaptation.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
| |
Collapse
|
6
|
Ujma J, Jhingree J, Norgate E, Upton R, Wang X, Benoit F, Bellina B, Barran P. Protein Unfolding in Freeze Frames: Intermediate States are Revealed by Variable-Temperature Ion Mobility-Mass Spectrometry. Anal Chem 2022; 94:12248-12255. [PMID: 36001095 PMCID: PMC9453741 DOI: 10.1021/acs.analchem.2c03066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas phase is an idealized laboratory for the study of protein structure, from which it is possible to examine stable and transient forms of mass-selected ions in the absence of bulk solvent. With ion mobility-mass spectrometry (IM-MS) apparatus built to operate at both cryogenic and elevated temperatures, we have examined conformational transitions that occur to the monomeric proteins: ubiquitin, lysozyme, and α-synuclein as a function of temperature and in source activation. We rationalize the experimental observations with a temperature-dependent framework model and comparison to known conformers. Data from ubiquitin show unfolding transitions that proceed through diverse and highly elongated intermediate states, which converge to more compact structures. These findings contrast with data obtained from lysozyme─a protein where (un)-folding plasticity is restricted by four disulfide linkages, although this is alleviated in its reduced form. For structured proteins, collision activation of the protein ions in-source enables subsequent "freezing" or thermal annealing of unfolding intermediates, whereas disordered proteins restructure substantially at 250 K even without activation, indicating that cold denaturation can occur without solvent. These data are presented in the context of a toy model framework that describes the relative occupancy of the available conformational space.
Collapse
Affiliation(s)
- Jakub Ujma
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jacquelyn Jhingree
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Emma Norgate
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rosie Upton
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Xudong Wang
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Florian Benoit
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Bruno Bellina
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
7
|
Kuwajima K, Yagi-Utsumi M, Yanaka S, Kato K. DMSO-Quenched H/D-Exchange 2D NMR Spectroscopy and Its Applications in Protein Science. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123748. [PMID: 35744871 PMCID: PMC9230524 DOI: 10.3390/molecules27123748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Hydrogen/deuterium (H/D) exchange combined with two-dimensional (2D) NMR spectroscopy has been widely used for studying the structure, stability, and dynamics of proteins. When we apply the H/D-exchange method to investigate non-native states of proteins such as equilibrium and kinetic folding intermediates, H/D-exchange quenching techniques are indispensable, because the exchange reaction is usually too fast to follow by 2D NMR. In this article, we will describe the dimethylsulfoxide (DMSO)-quenched H/D-exchange method and its applications in protein science. In this method, the H/D-exchange buffer is replaced by an aprotic DMSO solution, which quenches the exchange reaction. We have improved the DMSO-quenched method by using spin desalting columns, which are used for medium exchange from the H/D-exchange buffer to the DMSO solution. This improvement has allowed us to monitor the H/D exchange of proteins at a high concentration of salts or denaturants. We describe methodological details of the improved DMSO-quenched method and present a case study using the improved method on the H/D-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride.
Collapse
Affiliation(s)
- Kunihiro Kuwajima
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence: (K.K.); (K.K.)
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan; (M.Y.-U.); (S.Y.)
- Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan
- Correspondence: (K.K.); (K.K.)
| |
Collapse
|
8
|
Dubois C, Lahfa M, Pissarra J, de Guillen K, Barthe P, Kroj T, Roumestand C, Padilla A. Combining High-Pressure NMR and Geometrical Sampling to Obtain a Full Topological Description of Protein Folding Landscapes: Application to the Folding of Two MAX Effectors from Magnaporthe oryzae. Int J Mol Sci 2022; 23:ijms23105461. [PMID: 35628267 PMCID: PMC9141691 DOI: 10.3390/ijms23105461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in experimental and computational methods, the mechanisms by which an unstructured polypeptide chain regains its unique three-dimensional structure remains one of the main puzzling questions in biology. Single-molecule techniques, ultra-fast perturbation and detection approaches and improvement in all-atom and coarse-grained simulation methods have greatly deepened our understanding of protein folding and the effects of environmental factors on folding landscape. However, a major challenge remains the detailed characterization of the protein folding landscape. Here, we used high hydrostatic pressure 2D NMR spectroscopy to obtain high-resolution experimental structural information in a site-specific manner across the polypeptide sequence and along the folding reaction coordinate. We used this residue-specific information to constrain Cyana3 calculations, in order to obtain a topological description of the entire folding landscape. This approach was used to describe the conformers populating the folding landscape of two small globular proteins, AVR-Pia and AVR-Pib, that belong to the structurally conserved but sequence-unrelated MAX effectors superfamily. Comparing the two folding landscapes, we found that, in spite of their divergent sequences, the folding pathway of these two proteins involves a similar, inescapable, folding intermediate, even if, statistically, the routes used are different.
Collapse
Affiliation(s)
- Cécile Dubois
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Mounia Lahfa
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Joana Pissarra
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Karine de Guillen
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Philippe Barthe
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Christian Roumestand
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| | - André Padilla
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34000 Montpellier, France
| |
Collapse
|
9
|
Yamaguchi T, Akao K, Koutsioubas A, Frielinghaus H, Kohzuma T. Open-Bundle Structure as the Unfolding Intermediate of Cytochrome c' Revealed by Small Angle Neutron Scattering. Biomolecules 2022; 12:95. [PMID: 35053243 PMCID: PMC8774185 DOI: 10.3390/biom12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
The dynamic structure changes, including the unfolding, dimerization, and transition from the compact to the open-bundle unfolding intermediate structure of Cyt c', were detected by a small-angle neutron scattering experiment (SANS). The structure of Cyt c' was changed into an unstructured random coil at pD = 1.7 (Rg = 25 Å for the Cyt c' monomer). The four-α-helix bundle structure of Cyt c' at neutral pH was transitioned to an open-bundle structure (at pD ~13), which is given by a numerical partial scattering function analysis as a joint-clubs model consisting of four clubs (α-helices) connected by short loops. The compactly folded structure of Cyt c' (radius of gyration, Rg = 18 Å for the Cyt c' dimer) at neutral or mildly alkaline pD transited to a remarkably larger open-bundle structure at pD ~13 (Rg = 25 Å for the Cyt c' monomer). The open-bundle structure was also supported by ab initio modeling.
Collapse
Affiliation(s)
- Takahide Yamaguchi
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
- Frontier Research Center of Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| | - Kouhei Akao
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science JCNS-4 at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85747 Garching, Germany; (A.K.); (H.F.)
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science JCNS-4 at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85747 Garching, Germany; (A.K.); (H.F.)
| | - Takamitsu Kohzuma
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
- Frontier Research Center of Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| |
Collapse
|
10
|
Gomes DC, Teixeira SCM, Leão JB, Razinkov VI, Qi W, Rodrigues MA, Roberts CJ. In Situ Monitoring of Protein Unfolding/Structural States under Cold High-Pressure Stress. Mol Pharm 2021; 18:4415-4427. [PMID: 34699230 DOI: 10.1021/acs.molpharmaceut.1c00604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biopharmaceutical formulations may be compromised by freezing, which has been attributed to protein conformational changes at a low temperature, and adsorption to ice-liquid interfaces. However, direct measurements of unfolding/conformational changes in sub-0 °C environments are limited because at ambient pressure, freezing of water can occur, which limits the applicability of otherwise commonly used analytical techniques without specifically tailored instrumentation. In this report, small-angle neutron scattering (SANS) and intrinsic fluorescence (FL) were used to provide in situ analysis of protein tertiary structure/folding at temperatures as low as -15 °C utilizing a high-pressure (HP) environment (up to 3 kbar) that prevents water from freezing. The results show that the α-chymotrypsinogen A (aCgn) structure is reasonably maintained under acidic pH (and corresponding pD) for all conditions of pressure and temperature tested. On the other hand, reversible structural changes and formation of oligomeric species were detected near -10 °C via HP-SANS for ovalbumin under neutral pD conditions. This was found to be related to the proximity of the temperature of cold denaturation of ovalbumin (TCD ∼ -17 °C; calculated via isothermal chemical denaturation and Gibbs-Helmholtz extrapolation) rather than a pressure effect. Significant structural changes were also observed for a monoclonal antibody, anti-streptavidin IgG1 (AS-IgG1), under acidic conditions near -5 °C and a pressure of ∼2 kbar. The conformational perturbation detected for AS-IgG1 is proposed to be consistent with the formation of unfolding intermediates such as molten globule states. Overall, the in situ approaches described here offer a means to characterize the conformational stability of biopharmaceuticals and proteins more generally under cold-temperature stress by the assessment of structural alteration, self-association, and reversibility of each process. This offers an alternative to current ex situ methods that are based on higher temperatures and subsequent extrapolation of the data and interpretations to the cold-temperature regime.
Collapse
Affiliation(s)
- Diana C Gomes
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware 19713, United States
| | - Susana C M Teixeira
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware 19713, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Juscelino B Leão
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vladimir I Razinkov
- Drug Product Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Wei Qi
- Drug Product Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Miguel A Rodrigues
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware 19713, United States
| |
Collapse
|
11
|
Ishido Y, Kanbayashi N, Okamura TA, Onitsuka K. Conformational Switch of Arylopeptide: Helix-Helix Transition Based on Side Chain Solvation. Macromol Rapid Commun 2021; 42:e2100250. [PMID: 34121257 DOI: 10.1002/marc.202100250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Indexed: 11/11/2022]
Abstract
Controlling the structural transition between well-defined architectures found in living system is essential in polymer chemistry as well as material science. Herein, the reversible conformational switch of a non-natural polypeptide with an aromatic ring (2,6-naphthalene spacer) on its peptide backbone, referred to as an arylopeptide, between two distinct well-defined helical structures (extended 31 -helix and contracted 41 -helix) using side chain solvation is demonstrated. The folding selectivity of the arylopeptide and found that the affinity between the solvent and side chains is an essential factor for determining the global structure is investigated. A thermoresponsive arylopeptide bearing oligoether groups (─(CH2 CH2 O)9 CH3 )) on the side chain is designed, which exhibited unique lower critical solution temperature behavior and converted from the 31 to the 41 -helix depending on the temperature. Furthermore, the solvent affinity of the entire polymer by combining substituents (─(CH2 CH2 O)3 CH3 and ─C12 H25 ) with different properties on the side chains to achieve a spring-like expansion-contraction system that allows interconversion between 31 - and 41 -helices is adjusted.
Collapse
Affiliation(s)
- Yuki Ishido
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Taka-Aki Okamura
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
12
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
13
|
Kopu̅stas A, Ivanovaitė Š, Rakickas T, Pocevičiu̅tė E, Paksaitė J, Karvelis T, Zaremba M, Manakova E, Tutkus M. Oriented Soft DNA Curtains for Single-Molecule Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3428-3437. [PMID: 33689355 PMCID: PMC8280724 DOI: 10.1021/acs.langmuir.1c00066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Over the past 20 years, single-molecule methods have become extremely important for biophysical studies. These methods, in combination with new nanotechnological platforms, can significantly facilitate experimental design and enable faster data acquisition. A nanotechnological platform, which utilizes a flow-stretch of immobilized DNA molecules, called DNA Curtains, is one of the best examples of such combinations. Here, we employed new strategies to fabricate a flow-stretch assay of stably immobilized and oriented DNA molecules using a protein template-directed assembly. In our assay, a protein template patterned on a glass coverslip served for directional assembly of biotinylated DNA molecules. In these arrays, DNA molecules were oriented to one another and maintained extended by either single- or both-end immobilization to the protein templates. For oriented both-end DNA immobilization, we employed heterologous DNA labeling and protein template coverage with the antidigoxigenin antibody. In contrast to single-end immobilization, both-end immobilization does not require constant buffer flow for keeping DNAs in an extended configuration, allowing us to study protein-DNA interactions at more controllable reaction conditions. Additionally, we increased the immobilization stability of the biotinylated DNA molecules using protein templates fabricated from traptavidin. Finally, we demonstrated that double-tethered Soft DNA Curtains can be used in nucleic acid-interacting protein (e.g., CRISPR-Cas9) binding assay that monitors the binding location and position of individual fluorescently labeled proteins on DNA.
Collapse
Affiliation(s)
- Aurimas Kopu̅stas
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Šaru̅nė Ivanovaitė
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
| | - Tomas Rakickas
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
| | - Ernesta Pocevičiu̅tė
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Justė Paksaitė
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Tautvydas Karvelis
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Mindaugas Zaremba
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Elena Manakova
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
14
|
Wakamoto T, Ikeya T, Kitazawa S, Baxter NJ, Williamson MP, Kitahara R. Paramagnetic relaxation enhancement-assisted structural characterization of a partially disordered conformation of ubiquitin. Protein Sci 2020; 28:1993-2003. [PMID: 31587403 DOI: 10.1002/pro.3734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/11/2022]
Abstract
Nuclear magnetic resonance (NMR) is a powerful tool to study three-dimensional structures as well as protein conformational fluctuations in solution, but it is compromised by increases in peak widths and missing signals. We previously reported that ubiquitin has two folded conformations, N1 and N2 and plus another folded conformation, I, in which some amide group signals of residues 33-41 almost disappeared above 3 kbar at pH 4.5 and 273 K. Thus, well-converged structural models could not be obtained for this region owing to the absence of distance restraints. Here, we reexamine the problem using the ubiquitin Q41N variant as a model for this locally disordered conformation, I. We demonstrate that the variant shows pressure-induced loss of backbone amide group signals at residues 28, 33, 36, and 39-41 like the wild-type, with a similar but smaller effect on CαH and CβH signals. In order to characterize this I structure, we measured paramagnetic relaxation enhancement (PRE) under high pressure to obtain distance restraints, and calculated the structure assisted by Bayesian inference. We conclude that the more disordered I conformation observed at pH 4.0, 278 K, and 2.5 kbar largely retained the N2 conformation, although the amide groups at residues 33-41 have more heterogeneous conformations and more contact with water, which differ from the N1 and N2 states. The PRE-assisted strategy has the potential to improve structural characterization of proteins that lack NMR signals, especially for relatively more open and hydrated protein conformations.
Collapse
Affiliation(s)
- Takuro Wakamoto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Teppei Ikeya
- Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Nicola J Baxter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Ryo Kitahara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.,College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
15
|
Plamitzer L, Bouř P. Pressure dependence of vibrational optical activity of model biomolecules. A computational study. Chirality 2020; 32:710-721. [PMID: 32150771 DOI: 10.1002/chir.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/07/2022]
Abstract
Change of molecular properties with pressure is an attracting means to regulate molecular reactivity or biological activity. However, the effect is usually small and so far explored rather scarcely. To obtain a deeper insight and estimate the sensitivity of vibrational optical activity spectra to pressure-induced conformational changes, we investigate small model molecules. The Ala-Ala dipeptide, isomaltose disaccharide and adenine-uracil dinucleotide were chosen to represent three different biomolecular classes. The pressure effects were modeled by molecular dynamics and density functional theory simulations. The dinucleotide was found to be the most sensitive to the pressure, whereas for the disaccharide the smallest changes are predicted. Pressure-induced relative intensity changes in vibrational circular dichroism and Raman optical activity spectra are predicted to be 2-3-times larger than for non-polarized IR and Raman techniques.
Collapse
Affiliation(s)
- Luboš Plamitzer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 166 10, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 2027/3, Prague 2, 121 16, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 166 10, Czech Republic
| |
Collapse
|
16
|
Abstract
Although many proteins possess a distinct folded structure lying at a minimum in a funneled free energy landscape, thermal energy causes any protein to continuously access lowly populated excited states. The existence of excited states is an integral part of biological function. Although transitions into the excited states may lead to protein misfolding and aggregation, little structural information is currently available for them. Here, we show how NMR spectroscopy, coupled with pressure perturbation, brings these elusive species to light. As pressure acts to favor states with lower partial molar volume, NMR follows the ensuing change in the equilibrium spectroscopically, with residue-specific resolution. For T4 lysozyme L99A, relaxation dispersion NMR was used to follow the increase in population of a previously identified "invisible" folded state with pressure, as this is driven by the reduction in cavity volume by the flipping-in of a surface aromatic group. Furthermore, multiple partly disordered excited states were detected at equilibrium using pressure-dependent H/D exchange NMR spectroscopy. Here, unfolding reduced partial molar volume by the removal of empty internal cavities and packing imperfections through subglobal and global unfolding. A close correspondence was found for the distinct pressure sensitivities of various parts of the protein and the amount of internal cavity volume that was lost in each unfolding event. The free energies and populations of excited states allowed us to determine the energetic penalty of empty internal protein cavities to be 36 cal⋅Å-3.
Collapse
|
17
|
Yamauchi M, Mori Y, Okumura H. Molecular simulations by generalized-ensemble algorithms in isothermal-isobaric ensemble. Biophys Rev 2019; 11:457-469. [PMID: 31115865 DOI: 10.1007/s12551-019-00537-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
Abstract
Generalized-ensemble algorithms are powerful techniques for investigating biomolecules such as protein, DNA, lipid membrane, and glycan. The generalized-ensemble algorithms were originally developed in the canonical ensemble. On the other hand, not only temperature but also pressure is controlled in experiments. Additionally, pressure is used as perturbation to study relationship between function and structure of biomolecules. For this reason, it is important to perform efficient conformation sampling based on the isothermal-isobaric ensemble. In this article, we review a series of the generalized-ensemble algorithms in the isothermal-isobaric ensemble: multibaric-multithermal, pressure- and temperature-simulated tempering, replica-exchange, and replica-permutation methods. These methods achieve more efficient simulation than the conventional isothermal-isobaric simulation. Furthermore, the isothermal-isobaric generalized-ensemble simulation samples conformations of biomolecules from wider range of temperature and pressure. Thus, we can estimate physical quantities more accurately at any temperature and pressure values. The applications to the biomolecular system are also presented.
Collapse
Affiliation(s)
- Masataka Yamauchi
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yoshiharu Mori
- School of Pharmacy, Kitasato University, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan. .,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
18
|
Winter R. Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation. Annu Rev Biophys 2019; 48:441-463. [DOI: 10.1146/annurev-biophys-052118-115601] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.
Collapse
Affiliation(s)
- Roland Winter
- Faculty of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44227 Dortmund, Germany
| |
Collapse
|
19
|
Abstract
The discovery of microbial communities in extreme conditions that would seem hostile to life leads to the question of how the molecules making up these microbes can maintain their structure and function. While microbes that live under extremes of temperature have been heavily studied, those that live under extremes of pressure, or "piezophiles", are now increasingly being studied because of advances in sample collection and high-pressure cells for biochemical and biophysical measurements. Here, adaptations of enzymes in piezophiles against the effects of pressure are discussed in light of recent experimental and computational studies. However, while concepts from studies of enzymes from temperature extremophiles can provide frameworks for understanding adaptations by piezophile enzymes, the effects of temperature and pressure on proteins differ in significant ways. Thus, the state of the knowledge of adaptation in piezophile enzymes is still in its infancy and many more experiments and computational studies on different enzymes from a variety of piezophiles are needed.
Collapse
Affiliation(s)
- Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, DC, 20057, United States
| |
Collapse
|
20
|
Characterization of low-lying excited states of proteins by high-pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:350-358. [PMID: 30366154 DOI: 10.1016/j.bbapap.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
Hydrostatic pressure alters the free energy of proteins by a few kJ mol-1, with the amount depending on their partial molar volumes. Because the folded ground state of a protein contains cavities, it is always a state of large partial molar volume. Therefore pressure always destabilises the ground state and increases the population of partially and completely unfolded states. This is a mild and reversible conformational change, which allows the study of excited states under thermodynamic equilibrium conditions. Many of the excited states studied in this way are functionally relevant; they also seem to be very similar to kinetic folding intermediates, thus suggesting that evolution has made use of the 'natural' dynamic energy landscape of the protein fold and sculpted it to optimise function. This includes features such as ligand binding, structural change during the catalytic cycle, and dynamic allostery.
Collapse
|
21
|
Kitazawa S, Aoshima Y, Wakamoto T, Kitahara R. Water-Protein Interactions Coupled with Protein Conformational Transition. Biophys J 2018; 115:981-987. [PMID: 30146267 PMCID: PMC6139601 DOI: 10.1016/j.bpj.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022] Open
Abstract
Conformational fluctuations of proteins are crucially important for their functions. However, changes in the location and dynamics of hydrated water in many proteins accompanied by the conformational transition have not been fully understood. Here, we used phase-modulated clean chemical exchange NMR approach to investigate pressure-induced changes in water-to-amide proton exchange occurring at sub-second time scale. With the transition of ubiquitin from its native conformation (N1) to an alternative conformation (N2) at 250 MPa, proton exchange rates of residues 32-35, 40-41, and 71, which are located at the C-terminal side of the protein, were significantly increased. These observations can be explained by the destabilization of the hydrogen bonds in the backbone and partial exposure of those amide groups to solvent in N2. We conclude that phase-modulated clean chemical exchange NMR approach coupled with pressure perturbation will be a useful tool for investigations of more open and hydrated protein structures.
Collapse
Affiliation(s)
| | - Yu Aoshima
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takuro Wakamoto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | |
Collapse
|
22
|
Meier T. Journey to the centre of the Earth: Jules Vernes' dream in the laboratory from an NMR perspective. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:26-36. [PMID: 31047600 DOI: 10.1016/j.pnmrs.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 06/09/2023]
Abstract
High pressure nuclear magnetic resonance is among the most challenging fields of research for NMR spectroscopists due to inherently low signal intensities, ultra-small samples that are barely accessible, and overall extremely harsh conditions in the sample cavity of modern high pressure vessels. This review aims to provide a comprehensive overview of the topic of high pressure research and its fairly young and brief relationship with NMR.
Collapse
Affiliation(s)
- Thomas Meier
- Bayerisches Geoinstitut, Universitt Bayreuth, Universittsstrae 30, D-95447 Bayreuth, Germany.
| |
Collapse
|
23
|
Roche J, Royer CA, Roumestand C. Monitoring protein folding through high pressure NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:15-31. [PMID: 29157491 DOI: 10.1016/j.pnmrs.2017.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures uniformly, pressure exerts local effects on regions or domains of a protein containing internal cavities. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility to monitor at a residue level the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. High-pressure NMR experiments can now be routinely performed, owing to the recent development of commercially available high-pressure sample cells. This review summarizes recent advances and some future directions of high-pressure NMR techniques for the characterization at atomic resolution of the energy landscape of protein folding.
Collapse
Affiliation(s)
- Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Christian Roumestand
- Centre de Biochimie Structural INSERM U1054, CNRS UMMR 5058, Université de Montpellier, Montpellier 34090, France.
| |
Collapse
|
24
|
Palyanov AY, Chekmarev SF. Hydrodynamic description of protein folding: the decrease of the probability fluxes as an indicator of transition states in two-state folders. J Biomol Struct Dyn 2017; 35:3152-3160. [DOI: 10.1080/07391102.2016.1248490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Andrey Yu. Palyanov
- Ershov Institute of Informatics Systems, SB RAS, Novosibirsk, 630090Russia
- Department of Natural Sciences, Novosibirsk State University, 630090Russia
| | - Sergei F. Chekmarev
- Institute of Thermophysics, SB RAS, 630090Russia
- Department of Physics, Novosibirsk State University, 630090Russia
| |
Collapse
|
25
|
Interactions Controlling the Slow Dynamic Conformational Motions of Ubiquitin. Molecules 2017; 22:molecules22091414. [PMID: 28846639 PMCID: PMC6151440 DOI: 10.3390/molecules22091414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 11/16/2022] Open
Abstract
Rational mutation of proteins based on their structural and dynamic characteristics is a useful strategy for amplifying specific fluctuations in proteins. Here, we show the effects of mutation on the conformational fluctuations and thermodynamic stability of ubiquitin. In particular, we focus on the salt bridge between K11 and E34 and the hydrogen bond between I36 and Q41, which are predicted to control the fluctuation between the basic folded state, N1, and the alternatively folded state, N2, of the protein, using high-pressure NMR spectroscopy. The E34A mutation, which disrupts the salt bridge, did not alter picosecond–to–nanosecond, microsecond–to–millisecond dynamic motions, and stability of the protein, while the Q41N mutation, which destabilizes the hydrogen bond, specifically amplified the N1–N2 conformational fluctuation and decreased stability. Based on the observed thermodynamic stabilities of the various conformational states, we showed that in the Q41N mutant, the N1 state is more significantly destabilized than the N2 state, resulting in an increase in the relative population of N2. Identifying the interactions controlling specific motions of a protein will facilitate molecular design to achieve functional dynamics beyond native state dynamics.
Collapse
|
26
|
Mori Y, Okamoto Y. Conformational changes of ubiquitin under high pressure conditions: A pressure simulated tempering molecular dynamics study. J Comput Chem 2017; 38:1167-1173. [DOI: 10.1002/jcc.24767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshiharu Mori
- Department of Physics, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
- JST-CREST; Nagoya Aichi 464-8602 Japan
- Structural Biology Research Center, Graduate School of Science, Nagoya University; Nagoya Aichi 464-8602 Japan
- Center for Computational Science, Graduate School of Engineering, Nagoya University; Nagoya Aichi 464-8603 Japan
- Information Technology Center, Nagoya University; Nagoya Aichi 464-8601 Japan
| |
Collapse
|
27
|
Nguyen LM, Roche J. High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:179-185. [PMID: 28363306 DOI: 10.1016/j.jmr.2017.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 06/07/2023]
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins and dissociate protein complexes or aggregates. The heterogeneity of the response to pressure offers a unique opportunity to dissect the thermodynamic contributions to protein stability. In addition, pressure perturbation is generally reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility of monitoring at an atomic resolution the structural transitions occurring upon unfolding and determining the kinetic properties of the process. The recent development of commercially available high-pressure sample cells greatly increased the potential applications for high-pressure NMR experiments that can now be routinely performed. This review summarizes the recent applications and future directions of high-pressure NMR techniques for the characterization of protein conformational fluctuations, protein folding and the stability of protein complexes and aggregates.
Collapse
Affiliation(s)
- Luan M Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
28
|
Reddy G, Thirumalai D. Collapse Precedes Folding in Denaturant-Dependent Assembly of Ubiquitin. J Phys Chem B 2017; 121:995-1009. [DOI: 10.1021/acs.jpcb.6b13100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Govardhan Reddy
- Solid
State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - D. Thirumalai
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
29
|
La Penna G, Mori Y, Kitahara R, Akasaka K, Okamoto Y. Modeling 15N NMR chemical shift changes in protein backbone with pressure. J Chem Phys 2016; 145:085104. [DOI: 10.1063/1.4961507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Giovanni La Penna
- Institute for Chemistry of Organo–Metallic Compounds (ICCOM), National Research Council of Italy (Cnr), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Yoshiharu Mori
- Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Japan
| | - Kazuyuki Akasaka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Yuko Okamoto
- Department of Physics, School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
30
|
Hu S, Cattin‐Ortolá J, Munos JW, Klinman JP. Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C−H Activation by Soybean Lipoxygenase‐1. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shenshen Hu
- Department of ChemistryUniversity of California, California Institute for Quantitative Biosciences, University of California Berkeley CA 94720 USA
| | - Jérôme Cattin‐Ortolá
- Department of ChemistryUniversity of California, California Institute for Quantitative Biosciences, University of California Berkeley CA 94720 USA
- Department of Biochemistry, UW Box 357350 1705 NE Pacific St. Seattle WA 98195-7350 USA
| | - Jeffrey W. Munos
- Department of ChemistryUniversity of California, California Institute for Quantitative Biosciences, University of California Berkeley CA 94720 USA
- DuPont Industrial Biosciences 925 Page Mill Rd Palo Alto CA 94304 USA
| | - Judith P. Klinman
- Department of ChemistryUniversity of California, California Institute for Quantitative Biosciences, University of California Berkeley CA 94720 USA
- Department of Molecular and Cell BiologyUniversity of California Berkeley CA 94720 USA
| |
Collapse
|
31
|
Hu S, Cattin-Ortolá J, Munos JW, Klinman JP. Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C-H Activation by Soybean Lipoxygenase-1. Angew Chem Int Ed Engl 2016; 55:9361-4. [PMID: 27348724 PMCID: PMC5040518 DOI: 10.1002/anie.201603592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 01/28/2023]
Abstract
The proposed contributions of distinct classes of local versus global protein motions during enzymatic bond making/breaking processes has been difficult to verify. We employed soybean lipoxygenase-1 as a model system to investigate the impact of high pressure at variable temperatures on the hydrogen-tunneling properties of the wild-type protein and three single-site mutants. For all variants, pressure dramatically elevates the enthalpies of activation for the C-H activation. In contrast, the primary kinetic isotope effects (KIEs) for C-H activation and their corresponding temperature dependencies remain unchanged up to ca. 700 bar. The differential impact of elevated hydrostatic pressure on the temperature dependencies of rate constants versus substrate KIEs provides direct evidence for two distinct classes of protein motions: local, isotope-dependent donor-acceptor distance-sampling modes, and a more global, isotope-independent search for productive protein conformational sub-states.
Collapse
Affiliation(s)
- Shenshen Hu
- Department of Chemistry, University of California, California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Jérôme Cattin-Ortolá
- Department of Chemistry, University of California, California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Biochemistry, UW Box 357350, 1705 NE Pacific St., Seattle, WA, 98195-7350, USA
| | - Jeffrey W Munos
- Department of Chemistry, University of California, California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- DuPont Industrial Biosciences, 925 Page Mill Rd, Palo Alto, CA, 94304, USA
| | - Judith P Klinman
- Department of Chemistry, University of California, California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
32
|
Abstract
Protein cavities or voids are observed as defects in atomic packing. Cavities have long been suggested to play important roles in protein dynamics and function, but the underlying origin and mechanism remains elusive. Here, recent studies about the cavities characterized by high-pressure NMR spectroscopy have been reviewed. Analysis of the pressure-dependent chemical shifts showed both linear and nonlinear response of proteins to pressure. The linear response corresponded to compression within the native ensemble, while the nonlinear response indicated the involvement of low-lying excited states that were different from the native state. The finding of non-linear pressure shifts in various proteins suggested that the existence of the low-lying excited states was common for globular proteins. However, the absolute nonlinear coefficient values varied significantly from protein to protein, and showed a good correlation with the density of cavities. Extensive studies on hen lysozyme as a model system showed that the cavity hydration and water penetration into the interior of proteins was an origin of the conformational transition to the excited states. The importance of cavities for protein function and evolution has also been explained. In addition to these "equilibrium" cavities, there are also "transient" cavities formed in the interior of the protein structure, as manifested by the ring flip motions of aromatic rings. The significance of transient cavities, reflecting an intrinsic dynamic nature within the native state, has also been discussed.
Collapse
|
33
|
Luong TQ, Kapoor S, Winter R. Pressure-A Gateway to Fundamental Insights into Protein Solvation, Dynamics, and Function. Chemphyschem 2015; 16:3555-71. [DOI: 10.1002/cphc.201500669] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Trung Quan Luong
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| | - Shobhna Kapoor
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| |
Collapse
|
34
|
Maeno A, Sindhikara D, Hirata F, Otten R, Dahlquist FW, Yokoyama S, Akasaka K, Mulder FAA, Kitahara R. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme. Biophys J 2015; 108:133-45. [PMID: 25564860 DOI: 10.1016/j.bpj.2014.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/02/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022] Open
Abstract
Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the (1)H/(13)C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. (13)C and (1)H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state.
Collapse
Affiliation(s)
- Akihiro Maeno
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Kinokawa, Wakayama, Japan; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Daniel Sindhikara
- College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Fumio Hirata
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Renee Otten
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara California
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan; Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Akasaka
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, Kinokawa, Wakayama, Japan; RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Frans A A Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center iNANO, University of Aarhus, Aarhus C, Denmark
| | - Ryo Kitahara
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan; College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
35
|
Reddy G, Thirumalai D. Dissecting Ubiquitin Folding Using the Self-Organized Polymer Model. J Phys Chem B 2015; 119:11358-70. [DOI: 10.1021/acs.jpcb.5b03471] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Govardhan Reddy
- Solid
State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - D. Thirumalai
- Biophysics
Program, Institute for Physical Science and Technology, and Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
36
|
Kitahara R. High-Pressure NMR Spectroscopy Reveals Functional Sub-states of Ubiquitin and Ubiquitin-Like Proteins. Subcell Biochem 2015; 72:199-214. [PMID: 26174383 DOI: 10.1007/978-94-017-9918-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-pressure nuclear magnetic resonance (NMR) spectroscopy has revealed that ubiquitin has at least two high-energy states--an alternatively folded state N2 and a locally disordered state I--between the basic folded state N1 and totally unfolded U state. The high-energy states are conserved among ubiquitin-like post-translational modifiers, ubiquitin, NEDD8, and SUMO-2, showing the E1-E2-E3 cascade reaction. It is quite intriguing that structurally similar high-energy states are evolutionally conserved in the ubiquitin-like modifiers, and the thermodynamic stabilities vary among the proteins. To investigate atomic details of the high-energy states, a Q41N mutant of ubiquitin was created as a structural model of N2, which is 71% populated even at atmospheric pressure. The convergent structure of the "pure" N2 state was obtained by nuclear Overhauser effect (NOE)-based structural analysis of the Q41N mutant at 2.5 kbar, where the N2 state is 97% populated. The N2 state of ubiquitin is closely similar to the conformation of the protein bound to the ubiquitin-activating enzyme E1. The recognition of E1 by ubiquitin is best explained by conformational selection rather than by induced-fit motion.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan,
| |
Collapse
|
37
|
Abstract
Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.
Collapse
Affiliation(s)
- László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary,
| |
Collapse
|
38
|
Lemke LS, Chura-Chambi RM, Rodrigues D, Cussiol JRR, Malavasi NV, Alegria TGP, Netto LES, Morganti L. Investigation on solubilization protocols in the refolding of the thioredoxin TsnC from Xylella fastidiosa by high hydrostatic pressure approach. Protein Expr Purif 2014; 106:72-7. [PMID: 25448595 DOI: 10.1016/j.pep.2014.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 01/27/2023]
Abstract
The lack of efficient refolding methodologies must be overcome to take full advantage of the fact that bacteria express high levels of aggregated recombinant proteins. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, dissociating aggregates, which makes HHP a useful tool to solubilize proteins for subsequent refolding. A process of refolding was set up by using as a model TsnC, a thioredoxin that catalyzes the disulfide reduction to a dithiol, a useful indication of biological activity. The inclusion bodies (IB) were dissociated at 2.4 kbar. The effect of incubation of IB suspensions at 1-800 bar, the guanidine hydrochloride concentration, the oxidized/reduced glutathione (GSH/GSSG) ratios, and the additives in the refolding buffer were analyzed. To assess the yields of fully biologically active protein obtained for each tested condition, it was crucial to analyze both the TsnC solubilization yield and its enzymatic activity. Application of 2.4 kbar to the IB suspension in the presence of 9 mM GSH, 1mM GSSG, 0.75 M guanidine hydrochloride, and 0.5M arginine with subsequent incubation at 1 bar furnished high refolding yield (81%). The experience gained in this study shall help to establish efficient HHP-based protein refolding processes for other proteins.
Collapse
Affiliation(s)
- Laura Simoni Lemke
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - Rosa Maria Chura-Chambi
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - Daniella Rodrigues
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - Jose Renato Rosa Cussiol
- Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Natalia Vallejo Malavasi
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - Thiago Geronimo Pires Alegria
- Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Eduardo Soares Netto
- Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil.
| |
Collapse
|
39
|
Mori Y, Okumura H. Molecular dynamics simulation study on the high-pressure behaviour of an AK16 peptide. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.938071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Mori Y, Okumura H. Molecular dynamics of the structural changes of helical peptides induced by pressure. Proteins 2014; 82:2970-81. [DOI: 10.1002/prot.24654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Yoshiharu Mori
- Department of Theoretical and Computational Molecular Science; Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
| | - Hisashi Okumura
- Department of Theoretical and Computational Molecular Science; Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
- Research Center for Computational Science; Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
- Department of Structural Molecular Science; The Graduate University for Advanced Studies; Okazaki Aichi 444-8585 Japan
| |
Collapse
|
41
|
Kitazawa S, Kameda T, Kumo A, Yagi-Utsumi M, Baxter NJ, Kato K, Williamson MP, Kitahara R. Close identity between alternatively folded state N2 of ubiquitin and the conformation of the protein bound to the ubiquitin-activating enzyme. Biochemistry 2014; 53:447-9. [PMID: 24401037 DOI: 10.1021/bi401617n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present the nuclear Overhauser effect-based structure determination of the Q41N variant of ubiquitin at 2500 bar, where the alternatively folded N2 state is 97% populated. This allows us to characterize the structure of the "pure" N2 state of ubiquitin. The N2 state shows a substantial change in the orientation of strand β5 compared to that of the normal folded N1 state, which matches the changes seen upon binding of ubiquitin to ubiquitin-activating enzyme E1. The recognition of E1 by ubiquitin is therefore best explained by conformational selection rather than induced-fit motion.
Collapse
Affiliation(s)
- Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University , Noji-higashi 1-1-1, Kusatsu 525-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mandal M, Mukhopadhyay C. Microsecond molecular dynamics simulation of guanidinium chloride induced unfolding of ubiquitin. Phys Chem Chem Phys 2014; 16:21706-16. [DOI: 10.1039/c4cp01657b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All atom molecular dynamics simulations have been used to explore the atomic detail mechanism of guanidinium induced unfolding of the protein ubiquitin.
Collapse
Affiliation(s)
- Manoj Mandal
- Department of Chemistry
- University of Calcutta
- Kolkata – 700 009, India
| | | |
Collapse
|
43
|
Roche J, Ying J, Maltsev AS, Bax A. Impact of hydrostatic pressure on an intrinsically disordered protein: a high-pressure NMR study of α-synuclein. Chembiochem 2013; 14:1754-61. [PMID: 23813793 PMCID: PMC3874805 DOI: 10.1002/cbic.201300244] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Indexed: 11/06/2022]
Abstract
The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated α-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close to random coil values, as expected for an intrinsically disordered protein, substantial deviations in the pressure dependence of the chemical shifts are seen relative to those in short model peptides. In particular, the nonlinear pressure response of the (1) H(N) chemical shifts, which commonly is associated with the presence of low-lying "excited states", is much larger in α-synuclein than in model peptides. The linear pressure response of (1) H(N) chemical shift, commonly linked to H-bond length change, correlates well with those in short model peptides, and is found to be anticorrelated with its temperature dependence. The pressure dependence of (13) C chemical shifts shows remarkably large variations, even when accounting for residue type, and do not point to a clear shift in population between different regions of the Ramachandran map. However, a nearly universal decrease in (3) JHN-Hα by 0.22 ± 0.05 Hz suggests a slight increase in population of the polyproline II region at 2500 bar. The first six residues of N-terminally acetylated synuclein show a transient of approximately 15% population of α-helix, which slightly diminishes at 2500 bar. The backbone dynamics of the protein is not visibly affected beyond the effect of slight increase in water viscosity at 2500 bar.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (USA)
| | | | | | | |
Collapse
|
44
|
Mori Y, Okumura H. Pressure-Induced Helical Structure of a Peptide Studied by Simulated Tempering Molecular Dynamics Simulations. J Phys Chem Lett 2013; 4:2079-2083. [PMID: 26283256 DOI: 10.1021/jz400769w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is known experimentally that an AK16 peptide forms more α-helix structures with increasing pressure while proteins unfold in general. In order to understand this abnormality, molecular dynamics (MD) simulations with the simulated tempering method for the isobaric-isothermal ensemble were performed in a wide pressure range from 1.0 × 10(-4) GPa to 1.4 GPa. From the results of the simulations, it is found that the fraction of the folded state decreases once and increases after that with increasing pressure. The partial molar volume change from the folded state to unfolded state increases monotonically from a negative value to a positive value with pressure. The behavior under high pressure conditions is consistent with the experimental results. The radius of gyration of highly helical structures decreases with increasing pressure, which indicates that the helix structure shrinks with pressure. This is the reason why the fraction of the folded state increases as pressure increases.
Collapse
Affiliation(s)
- Yoshiharu Mori
- †Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Hisashi Okumura
- ‡Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- §Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
45
|
Kitahara R, Hata K, Li H, Williamson MP, Akasaka K. Pressure-induced chemical shifts as probes for conformational fluctuations in proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:35-58. [PMID: 23611314 DOI: 10.1016/j.pnmrs.2012.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/18/2012] [Indexed: 06/02/2023]
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
Equilibrium molecular dynamics simulations, in which proteins spontaneously and repeatedly fold and unfold, have recently been used to help elucidate the mechanistic principles that underlie the folding of fast-folding proteins. The extent to which the conclusions drawn from the analysis of such proteins, which fold on the microsecond timescale, apply to the millisecond or slower folding of naturally occurring proteins is, however, unclear. As a first attempt to address this outstanding issue, we examine here the folding of ubiquitin, a 76-residue-long protein found in all eukaryotes that is known experimentally to fold on a millisecond timescale. Ubiquitin folding has been the subject of many experimental studies, but its slow folding rate has made it difficult to observe and characterize the folding process through all-atom molecular dynamics simulations. Here we determine the mechanism, thermodynamics, and kinetics of ubiquitin folding through equilibrium atomistic simulations. The picture emerging from the simulations is in agreement with a view of ubiquitin folding suggested from previous experiments. Our findings related to the folding of ubiquitin are also consistent, for the most part, with the folding principles derived from the simulation of fast-folding proteins, suggesting that these principles may be applicable to a wider range of proteins.
Collapse
Affiliation(s)
| | | | - David E. Shaw
- D. E. Shaw Research, New York, NY 10036; and
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032
| |
Collapse
|
47
|
Kitazawa S, Kameda T, Yagi-Utsumi M, Sugase K, Baxter NJ, Kato K, Williamson MP, Kitahara R. Solution Structure of the Q41N Variant of Ubiquitin as a Model for the Alternatively Folded N2 State of Ubiquitin. Biochemistry 2013; 52:1874-85. [DOI: 10.1021/bi301420m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tomoshi Kameda
- Computational Biology Research
Center (CBRC), Advanced Industrial Science and Technology (AIST), 2-43 Aomi, Koto, Tokyo 135-0064, Japan
| | - Maho Yagi-Utsumi
- Okazaki Institute for Integrative
Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, Nagoya
467-8603, Japan
| | - Kenji Sugase
- Structure
and Function Group,
Division of Structural Biomolecular Science, Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503,
Japan
| | - Nicola J. Baxter
- Department of Molecular
Biology and
Biotechnology, University of Sheffield,
Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Koichi Kato
- Okazaki Institute for Integrative
Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, Nagoya
467-8603, Japan
| | - Michael P. Williamson
- Department of Molecular
Biology and
Biotechnology, University of Sheffield,
Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
48
|
Akasaka K, Kitahara R, Kamatari YO. Exploring the folding energy landscape with pressure. Arch Biochem Biophys 2013; 531:110-5. [DOI: 10.1016/j.abb.2012.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022]
|
49
|
Chen HC, Tsong Y, Chen JJ. Data Mining for Signal Detection of Adverse Event Safety Data. J Biopharm Stat 2013; 23:146-60. [DOI: 10.1080/10543406.2013.735780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hung-Chia Chen
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
- b Graduate Institute of Biostatistics and Biostatistics Center , China Medical University , Taichung , Taiwan
| | - Yi Tsong
- c Office of Biostatistics, DB6 , Center for Drug Evaluation Research, U.S. Food and Drug Administration , Silver Spring , Maryland , USA
| | - James J. Chen
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| |
Collapse
|
50
|
High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc Natl Acad Sci U S A 2013; 110:E368-76. [PMID: 23284170 DOI: 10.1073/pnas.1212222110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins denature not only at high, but also at low temperature as well as high pressure. These denatured states are not easily accessible for experiment, because usually heat denaturation causes aggregation, whereas cold or pressure denaturation occurs at temperatures well below the freezing point of water or pressures above 5 kbar, respectively. Here we have obtained atomic details of the pressure-assisted, cold-denatured state of ubiquitin at 2,500 bar and 258 K by high-resolution NMR techniques. Under these conditions, a folded, native-like and a disordered state exist in slow exchange. Secondary chemical shifts show that the disordered state has structural propensities for a native-like N-terminal β-hairpin and α-helix and a nonnative C-terminal α-helix. These propensities are very similar to the previously described alcohol-denatured (A-)state. Similar to the A-state, (15)N relaxation data indicate that the secondary structure elements move as independent segments. The close similarity of pressure-assisted, cold-denatured, and alcohol-denatured states with native and nonnative secondary elements supports a hierarchical mechanism of folding and supports the notion that similar to alcohol, pressure and cold reduce the hydrophobic effect. Indeed, at nondenaturing concentrations of methanol, a complete transition from the native to the A-state can be achieved at ambient temperature by varying the pressure from 1 to 2,500 bar. The methanol-assisted pressure transition is completely reversible and can also be induced in protein G. This method should allow highly detailed studies of protein-folding transitions in a continuous and reversible manner.
Collapse
|