1
|
Nucleosome positioning and spacing: from genome-wide maps to single arrays. Essays Biochem 2019; 63:5-14. [PMID: 31015380 DOI: 10.1042/ebc20180058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/07/2023]
Abstract
The positioning of nucleosomes relative to DNA and their neighboring nucleosomes represents a fundamental layer of chromatin organization. Changes in nucleosome positioning and spacing affect the accessibility of DNA to regulatory factors and the formation of higher order chromatin structures. Sequencing of mononucleosomal fragments allowed mapping nucleosome positions on a genome-wide level in many organisms. This revealed that successions of evenly spaced and well-positioned nucleosomes-so called phased nucleosome arrays-occur at the 5' end of many active genes and in the vicinity of transcription factor and other protein binding sites. Phased arrays arise from the interplay of barrier elements on the DNA, which position adjacent nucleosomes, and the nucleosome spacing activity of ATP-dependent chromatin remodelers. A shortcoming of classic mononucleosomal mapping experiments is that they only reveal nucleosome spacing and array regularity at select sites in the genome with well-positioned nucleosomes. However, new technological approaches elucidate nucleosome array structure throughout the genome and with single-cell resolution. In the future, it will be interesting to see whether changes in nucleosome array regularity and spacing contribute to the formation of higher order chromatin structures and the spatial organization of the genome in vivo.
Collapse
|
2
|
Kasahara K, Takahata S, Kokubo T. Transcriptional activation is weakened when Taf1p N-terminal domain 1 is substituted with its Drosophila counterpart in yeast TFIID. Genes Genet Syst 2019; 94:51-59. [PMID: 30905891 DOI: 10.1266/ggs.19-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Transcription factor II D (TFIID), a multiprotein complex consisting of TATA-binding protein (TBP) and 13-14 TBP-associated factors (Tafs), plays a central role in transcription and regulates nearly all class II genes. The N-terminal domain of Taf1p (TAND) can be divided into two subdomains, TAND1 and TAND2, which bind to the concave and convex surfaces of TBP, respectively. The interaction between TAND and TBP is thought to be regulated by TFIIA, activators and/or DNA during transcriptional activation, as the TAND1-bound form of TBP cannot bind to the TATA box. We previously demonstrated that Drosophila TAND1 binds to TBP with a much stronger affinity than yeast TAND1 and that the expression levels of full-length chimeric Taf1p, whose TAND1 is replaced with the Drosophila counterpart, can be varied in vivo by substituting several methionine residues downstream of TAND2 with alanine residues in various combinations. In this study, we examined the transcriptional activation of the GAL1-lacZ reporter or endogenous genes such as RNR3 or GAL1 in yeast cells expressing various levels of full-length chimeric Taf1p. The results showed that the substitution of TAND1 with the Drosophila counterpart in yeast TFIID weakened the transcriptional activation of GAL1-lacZ and RNR3 but not that of GAL1. These findings strongly support a model in which TBP must be released efficiently from TAND1 within TFIID upon transcriptional activation.
Collapse
Affiliation(s)
- Koji Kasahara
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture
| | - Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University
| | - Tetsuro Kokubo
- Graduate School of Medical Life Science, Yokohama City University
| |
Collapse
|
3
|
Rawal Y, Chereji RV, Qiu H, Ananthakrishnan S, Govind CK, Clark DJ, Hinnebusch AG. SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev 2018; 32:695-710. [PMID: 29785963 PMCID: PMC6004078 DOI: 10.1101/gad.312850.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/12/2018] [Indexed: 12/30/2022]
Abstract
The nucleosome remodeling complex RSC functions throughout the yeast genome to set the positions of -1 and +1 nucleosomes and thereby determines the widths of nucleosome-depleted regions (NDRs). The related complex SWI/SNF participates in nucleosome remodeling/eviction and promoter activation at certain yeast genes, including those activated by transcription factor Gcn4, but did not appear to function broadly in establishing NDRs. By analyzing the large cohort of Gcn4-induced genes in mutants lacking the catalytic subunits of SWI/SNF or RSC, we uncovered cooperation between these remodelers in evicting nucleosomes from different locations in the promoter and repositioning the +1 nucleosome downstream to produce wider NDRs-highly depleted of nucleosomes-during transcriptional activation. SWI/SNF also functions on a par with RSC at the most highly transcribed constitutively expressed genes, suggesting general cooperation by these remodelers for maximal transcription. SWI/SNF and RSC occupancies are greatest at the most highly expressed genes, consistent with their cooperative functions in nucleosome remodeling and transcriptional activation. Thus, SWI/SNF acts comparably with RSC in forming wide nucleosome-free NDRs to achieve high-level transcription but only at the most highly expressed genes exhibiting the greatest SWI/SNF occupancies.
Collapse
Affiliation(s)
- Yashpal Rawal
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hongfang Qiu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sudha Ananthakrishnan
- Department of Biological Science, Oakland University, Rochester, Michigan 48309, USA
| | - Chhabi K Govind
- Department of Biological Science, Oakland University, Rochester, Michigan 48309, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
4
|
Liao GY, Zhao S, Zhang T, Li CX, Liao LS, Zhang FF, Luo XM, Feng JX. The transcription factor TpRfx1 is an essential regulator of amylase and cellulase gene expression in Talaromyces pinophilus. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:276. [PMID: 30337955 PMCID: PMC6174557 DOI: 10.1186/s13068-018-1276-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/26/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Perfect and low cost of fungal amylolytic and cellulolytic enzymes are prerequisite for the industrialization of plant biomass biorefinergy to biofuels. Genetic engineering of fungal strains based on regulatory network of transcriptional factors (TFs) and their targets is an efficient strategy to achieve the above described aim. Talaromyces pinophilus produces integrative amylolytic and cellulolytic enzymes; however, the regulatory mechanism associated with the expression of amylase and cellulase genes in T. pinophilus remains unclear. In this study, we screened for and identified novel TFs regulating amylase and/or cellulase gene expression in T. pinophilus 1-95 through comparative transcriptomic and genetic analyses. RESULTS Comparative analysis of the transcriptomes from T. pinophilus 1-95 grown on media in the presence and absence of glucose or soluble starch as the sole carbon source screened 33 candidate TF-encoding genes that regulate amylase gene expression. Thirty of the 33 genes were successfully knocked out in the parental strain T. pinophilus ∆TpKu70, with seven of the deletion mutants firstly displaying significant changes in amylase production as compared with the parental strain. Among these, ∆TpRfx1 (TpRfx1: Talaromyces pinophilus Rfx1) showed the most significant decrease (81.5%) in amylase production, as well as a 57.7% reduction in filter paper cellulase production. Real-time quantitative reverse transcription PCR showed that TpRfx1 dynamically regulated the expression of major amylase and cellulase genes during cell growth, and in vitro electrophoretic mobility shift assay revealed that TpRfx1 bound the promoter regions of genes encoding α-amylase (TP04014/Amy13A), glucoamylase (TP09267/Amy15A), cellobiohydrolase (TP09412/cbh1), β-glucosidase (TP05820/bgl1), and endo-β-1,4-glucanase (TP08514/eg1). TpRfx1 protein containing a regulatory factor X (RFX) DNA-binding domain belongs to RFX family. CONCLUSION We identified a novel RFX protein TpRFX1 that directly regulates the expression of amylase and cellulase genes in T. pinophilus, which provides new insights into the regulatory mechanism of fungal amylase and cellulase gene expression.
Collapse
Affiliation(s)
- Gui-Yan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Feng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
5
|
Church M, Smith KC, Alhussain MM, Pennings S, Fleming AB. Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene. Nucleic Acids Res 2017; 45:4413-4430. [PMID: 28115623 PMCID: PMC5416777 DOI: 10.1093/nar/gkx028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/19/2017] [Indexed: 01/12/2023] Open
Abstract
The Saccharomyces cerevisiae FLO1 gene encodes a cell wall protein that imparts cell-cell adhesion. FLO1 transcription is regulated via the antagonistic activities of the Tup1-Cyc8 co-repressor and Swi-Snf co-activator complexes. Tup1-Cyc8 represses transcription through the organization of strongly positioned, hypoacetylated nucleosomes across gene promoters. Swi-Snf catalyzes remodeling of these nucleosomes in a mechanism involving histone acetylation that is poorly understood. Here, we show that FLO1 de-repression is accompanied by Swi-Snf recruitment, promoter histone eviction and Sas3 and Ada2(Gcn5)-dependent histone H3K14 acetylation. In the absence of H3K14 acetylation, Swi-Snf recruitment and histone eviction proceed, but transcription is reduced, suggesting these processes, while essential, are not sufficient for de-repression. Further analysis in the absence of H3K14 acetylation reveals RNAP II recruitment at the FLO1 promoter still occurs, but RNAP II is absent from the gene-coding region, demonstrating Sas3 and Ada2-dependent histone H3 acetylation is required for transcription elongation. Analysis of the transcription kinetics at other genes reveals shared mechanisms coupled to a distinct role for histone H3 acetylation, essential at FLO1, downstream of initiation. We propose histone H3 acetylation in the coding region provides rate-limiting control during the transition from initiation to elongation which dictates whether the gene is permissive for transcription.
Collapse
Affiliation(s)
- Michael Church
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Kim C Smith
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Mohamed M Alhussain
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Sari Pennings
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Alastair B Fleming
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
6
|
Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae. Genetics 2015; 202:551-63. [PMID: 26627840 DOI: 10.1534/genetics.115.183715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022] Open
Abstract
Nucleosome-depleted regions (NDRs) are present immediately adjacent to the transcription start site in most eukaryotic promoters. Here we show that NDRs in the upstream promoter region can profoundly affect gene regulation. Chromatin at the yeast HO promoter is highly repressive and numerous coactivators are required for expression. We modified the HO promoter with segments from the well-studied CLN2 NDR, creating chimeric promoters differing in nucleosome occupancy but with binding sites for the same activator, SBF. Nucleosome depletion resulted in substantial increases in both factor binding and gene expression and allowed activation from a much longer distance, probably by allowing recruited coactivators to act further downstream. Nucleosome depletion also affected sequential activation of the HO promoter; HO activation typically requires the ordered recruitment of activators first to URS1, second to the left-half of URS2 (URS2-L), and finally to the right-half of URS2 (URS2-R), with each region representing distinct gates that must be unlocked to achieve activation. The absence of nucleosomes at URS2-L resulted in promoters no longer requiring both the URS1 and URS2-L gates, as either gate alone is now sufficient to promote binding of the SBF factor to URS2-R. Furthermore, nucleosome depletion at URS2 altered the timing of HO expression and bypassed the regulation that restricts expression to mother cells. Our results reveal insight into how nucleosomes can create a requirement for ordered recruitment of factors to facilitate complex transcriptional regulation.
Collapse
|
7
|
Qiu H, Chereji RV, Hu C, Cole HA, Rawal Y, Clark DJ, Hinnebusch AG. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation. Genome Res 2015; 26:211-25. [PMID: 26602697 PMCID: PMC4728374 DOI: 10.1101/gr.196337.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022]
Abstract
Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells. Using ChIP-seq to interrogate all 70 exemplar genes in single, double, and triple mutants implicated Gcn5, Snf2, and Ydj1 in H3 eviction at most, but not all, Gcn4 target promoters, with Gcn5 generally playing the greatest role and Ydj1 the least. Remarkably, these three cofactors cooperate similarly in H3 eviction at virtually all yeast promoters. Defective H3 eviction in cofactor mutants was coupled with reduced Pol II occupancies for the Gcn4 transcriptome and the most highly expressed uninduced genes, but the relative Pol II levels at most genes were unaffected or even elevated. These findings indicate that nucleosome eviction is crucial for robust transcription of highly expressed genes but that other steps in gene activation are more rate-limiting for most other yeast genes.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Răzvan V Chereji
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Cuihua Hu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yashpal Rawal
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Hansen AS, O'Shea EK. cis Determinants of Promoter Threshold and Activation Timescale. Cell Rep 2015; 12:1226-33. [PMID: 26279577 DOI: 10.1016/j.celrep.2015.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 11/16/2022] Open
Abstract
Although the relationship between DNA cis-regulatory sequences and gene expression has been extensively studied at steady state, how cis-regulatory sequences affect the dynamics of gene induction is not known. The dynamics of gene induction can be described by the promoter activation timescale (AcTime) and amplitude threshold (AmpThr). Combining high-throughput microfluidics with quantitative time-lapse microscopy, we control the activation dynamics of the budding yeast transcription factor, Msn2, and reveal how cis-regulatory motifs in 20 promoter variants of the Msn2-target-gene SIP18 affect AcTime and AmpThr. By modulating Msn2 binding sites, we can decouple AmpThr from AcTime and switch the SIP18 promoter class from high AmpThr and slow AcTime to low AmpThr and either fast or slow AcTime. We present a model that quantitatively explains gene-induction dynamics on the basis of the Msn2-binding-site number, TATA box location, and promoter nucleosome organization. Overall, we elucidate the cis-regulatory logic underlying promoter decoding of TF dynamics.
Collapse
Affiliation(s)
- Anders S Hansen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Northwest Laboratory, 52 Oxford Street, Cambridge, MA 02138, USA; Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Northwest Laboratory, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Erin K O'Shea
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Northwest Laboratory, 52 Oxford Street, Cambridge, MA 02138, USA; Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Northwest Laboratory, 52 Oxford Street, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Northwest Laboratory, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
10
|
Le NT, Ho TB, Ho BH. Computational reconstruction of transcriptional relationships from ChIP-chip data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:300-307. [PMID: 22848139 DOI: 10.1109/tcbb.2012.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
UNLABELLED Eukaryotic gene transcription is a complex process, which requires the orchestrated recruitment of a large number of proteins, such as sequence-specific DNA binding factors, chromatin remodelers and modifiers, and general transcription machinery, to regulatory regions. Previous works have shown that these regulatory proteins favor specific organizational theme along promoters. Details about how they cooperatively regulate transcriptional process, however, remain unclear. We developed a method to reconstruct a Bayesian network (BN) model representing functional relationships among various transcriptional components. The positive/negative influence between these components was measured from protein binding and nucleosome occupancy data and embedded into the model. Application on S.cerevisiae ChIP-Chip data showed that the proposed method can recover confirmed relationships, such as Isw1-Pol II, TFIIH-Pol II, TFIIB-TBP, Pol II-H3K36Me3, H3K4Me3-H3K14Ac, etc. Moreover, it can distinguish colocating components from functionally related ones. Novel relationships, e.g., ones between Mediator and chromatin remodeling complexes (CRCs), and the combinatorial regulation of Pol II recruitment and activity by CRCs and general transcription factors (GTFs), were also suggested. CONCLUSION protein binding events during transcription positively influence each other. Among contributing components, GTFs and CRCs play pivotal roles in transcriptional regulation. These findings provide insights into the regulatory mechanism.
Collapse
Affiliation(s)
- Ngoc Tu Le
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.
| | | | | |
Collapse
|
11
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
12
|
Bai L, Ondracka A, Cross FR. Multiple sequence-specific factors generate the nucleosome-depleted region on CLN2 promoter. Mol Cell 2011; 42:465-76. [PMID: 21596311 PMCID: PMC3119483 DOI: 10.1016/j.molcel.2011.03.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/12/2011] [Accepted: 03/30/2011] [Indexed: 01/29/2023]
Abstract
Nucleosome-depleted regions (NDRs) are ubiquitous on eukaryotic promoters. The formation of many NDRs cannot be readily explained by previously proposed mechanisms. Here, we carry out a focused study on a physiologically important NDR in the yeast CLN2 promoter (CLN2pr). We show that this NDR does not result from intrinsically unfavorable histone-DNA interaction. Instead, we identified eight conserved factor binding sites, including that of Reb1, Mcm1, and Rsc3, that cause the local nucleosome depletion. These nucleosome-depleting factors (NDFs) work redundantly, and simultaneously mutating all their binding sites eliminates CLN2pr NDR. The loss of the NDR induces unreliable "on/off" expression in individual cell cycles, but in the presence of the NDR, NDFs have little direct effect on transcription. We present bioinformatic evidence that the formation of many NDRs across the genome involves multiple NDFs. Our findings also provide significant insight into the composition and spatial organization of functional promoters.
Collapse
Affiliation(s)
- Lu Bai
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY, 10065, USA.
| | | | | |
Collapse
|
13
|
Sequential recruitment of SAGA and TFIID in a genomic response to DNA damage in Saccharomyces cerevisiae. Mol Cell Biol 2010; 31:190-202. [PMID: 20956559 DOI: 10.1128/mcb.00317-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic genes respond to their environment by changing the expression of selected genes. The question we address here is whether distinct transcriptional responses to different environmental signals elicit distinct modes of assembly of the transcription machinery. In particular, we examine transcription complex assembly by the stress-directed SAGA complex versus the housekeeping assembly factor TFIID. We focus on genomic responses to the DNA damaging agent methyl methanesulfonate (MMS) in comparison to responses to acute heat shock, looking at changes in genome-wide factor occupancy measured by chromatin immunoprecipitation-microchip (ChIP-chip) and ChIP-sequencing analyses. Our data suggest that MMS-induced genes undergo transcription complex assembly sequentially, first involving SAGA and then involving a slower TFIID recruitment, whereas heat shock genes utilize the SAGA and TFIID pathways rapidly and in parallel. Also Crt1, the repressor of model MMS-inducible ribonucleotide reductase genes, was found not to play a wider role in repression of DNA damage-inducible genes. Taken together, our findings reveal a distinct involvement of gene and chromatin regulatory factors in response to DNA damage versus heat shock and suggest different implementations of the SAGA and TFIID assembly pathways that may depend upon whether a sustained or transient change in gene expression ensues.
Collapse
|
14
|
Bai L, Morozov AV. Gene regulation by nucleosome positioning. Trends Genet 2010; 26:476-83. [PMID: 20832136 DOI: 10.1016/j.tig.2010.08.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 11/26/2022]
Abstract
To achieve high compaction, most genomic DNA in eukaryotes is incorporated into nucleosomes; however, regulatory factors and transcriptional machinery must gain access to chromatin to extract genetic information. This conflict is partially resolved by a particular arrangement of nucleosome locations on the genome. Across all eukaryotic species, promoters and other regulatory sequences are more nucleosome-depleted, whereas transcribed regions tend to be occupied with well-positioned, high-density nucleosomal arrays. This nucleosome positioning pattern, as well as its dynamic regulation, facilitates the access of transcription factors to their target sites and plays a crucial role in determining the transcription level, cell-to-cell variation and activation or repression dynamics.
Collapse
Affiliation(s)
- Lu Bai
- The Rockefeller University, New York, NY, 10065, USA.
| | | |
Collapse
|
15
|
Kuzmina JL, Panov VV, Vorobyeva NE, Soshnikova NV, Kopantseva MR, Nikolenko JV, Nabirochkina EN, Georgieva SG, Shidlovskii YV. SAYP is a novel regulator of metazoan development. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410080028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Abstract
The rapid activation of gene expression in response to stimuli occurs largely through the regulation of RNA polymerase II-dependent transcription. In this Review, we discuss events that occur during the transcription cycle in eukaryotes that are important for the rapid and specific activation of gene expression in response to external stimuli. In addition to regulated recruitment of the transcription machinery to the promoter, it has now been shown that control steps can include chromatin remodelling and the release of paused polymerase. Recent work suggests that some components of signal transduction cascades also play an integral part in activating transcription at target genes.
Collapse
|
17
|
Erkina TY, Zou Y, Freeling S, Vorobyev VI, Erkine AM. Functional interplay between chromatin remodeling complexes RSC, SWI/SNF and ISWI in regulation of yeast heat shock genes. Nucleic Acids Res 2009; 38:1441-9. [PMID: 20015969 PMCID: PMC2836563 DOI: 10.1093/nar/gkp1130] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromatin remodeling is an essential part of transcription initiation. We show that at heat shock gene promoters functional interactions between individual ATP-dependent chromatin remodeling complexes play critical role in both nucleosome displacement and Pol II recruitment. Using HSP12, HSP82 and SSA4 gene promoters as reporters, we demonstrated that while inactivation of SNF2, a critical ATPase of the SWI/SNF complex, primarily affects the HSP12 promoter, depletion of STH1- a SNF2 homolog from the RSC complex reduces histone displacement and abolishes the Pol II recruitment at all three promoters. From these results, we conclude that redundancy between SWI/SNF and RSC complexes is only partial and likely is affecting different chromatin remodeling steps. While inactivation of other individual ATP-dependent chromatin remodeling complexes negligibly affects reporter promoters, combinatorial inactivation of SNF2 and ISW1 has a synergistic effect by diminishing histone loss during heat induction and eliminating Pol II recruitment. Importantly, it also eliminates preloading of HSF on HSP82 and SSA4 promoters before heat shock and diminishes HSF binding during heat shock. These observations suggest that prior action of chromatin remodeling complexes is necessary for the activator binding.
Collapse
Affiliation(s)
- T Y Erkina
- College of Pharmacy and Health Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, IN 46208, USA
| | | | | | | | | |
Collapse
|
18
|
Soshnikova NV, Vorobyeva NI, Krasnov AN, Georgieva SG, Nabirochkina EN, Shidlovskii YV. Novel complex formed by the SAYP transcriptional coactivator. Mol Biol 2009. [DOI: 10.1134/s0026893309060107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Set2-dependent K36 methylation is regulated by novel intratail interactions within H3. Mol Cell Biol 2009; 29:6413-26. [PMID: 19822661 DOI: 10.1128/mcb.00876-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modifications to histones have been studied extensively, but the requirement for the residues within the tails for different stages of transcription is less clear. Using RNR3 as a model, we found that the residues within the N terminus of H3 are predominantly required for steps after transcription initiation and chromatin remodeling. Specifically, deleting as few as 20 amino acids, or substituting glutamines for lysines in the tail, greatly impaired K36 methylation by Set2. The mutations to the tail described here preserve the residues predicted to fill the active site of Set2, and the deletion mimics the recently described cleavage of the H3 tail that occurs during gene activation. Importantly, maintaining the charge of the unmodified tail by arginine substitutions preserves Set2 function in vivo. The H3 tail is dispensable for Set2 recruitment to genes but is required for the catalytic activity of Set2 in vitro. We propose that Set2 activity is controlled by novel intratail interactions which can be influenced by modifications and changes to the structure of the H3 tail to control the dynamics and localization of methylation during elongation.
Collapse
|
20
|
Young ET, Yen K, Dombek KM, Law GL, Chang E, Arms E. Snf1-independent, glucose-resistant transcription of Adr1-dependent genes in a mediator mutant of Saccharomyces cerevisiae. Mol Microbiol 2009; 74:364-83. [PMID: 19732343 DOI: 10.1111/j.1365-2958.2009.06866.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucose represses transcription of a network of co-regulated genes in Saccharomyces cerevisiae, ensuring that it is utilized before poorer carbon sources are metabolized. Adr1 is a glucose-regulated transcription factor whose promoter binding and activity require Snf1, the yeast homologue of the AMP-activated protein kinase in higher eukaryotes. In this study we found that a temperature-sensitive allele of MED14, a Mediator middle subunit that tethers the tail to the body, allowed a low level of Adr1-independent ADH2 expression that can be enhanced by Adr1 in a dose-dependent manner. A low level of TATA-independent ADH2 expression was observed in the med14-truncated strain and transcription of ADH2 and other Adr1-dependent genes occurred in the absence of Snf1 and chromatin remodeling coactivators. Loss of ADH2 promoter nucleosomes had occurred in the med14 strain in repressing conditions and did not require ADR1. A global analysis of transcription revealed that loss of Med14 function was associated with both up- and down- regulation of several groups of co-regulated genes, with ADR1-dependent genes being the most highly represented in the upregulated class. Expression of most genes was not significantly affected by the loss of Med14 function.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
21
|
A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression. Mol Cell Biol 2009; 29:3255-65. [PMID: 19349301 DOI: 10.1128/mcb.01741-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gene expression depends upon the antagonistic actions of chromatin remodeling complexes. While this has been studied extensively for the enzymes that covalently modify the tails of histones, the mechanism of how ATP-dependent remodeling complexes antagonize each other to maintain the proper level of gene activity is not known. The gene encoding a large subunit of ribonucleotide reductase, RNR3, is regulated by ISW2 and SWI/SNF, complexes that repress and activate transcription, respectively. Here, we studied the functional interactions of these two complexes at RNR3. Deletion of ISW2 causes constitutive recruitment of SWI/SNF, and conditional reexpression of ISW2 causes the repositioning of nucleosomes and reduced SWI/SNF occupancy at RNR3. Thus, ISW2 is required for restriction of access of SWI/SNF to the RNR3 promoter under the uninduced condition. Interestingly, the binding of sequence-specific DNA binding factors and the general transcription machinery are unaffected by the status of ISW2, suggesting that disruption of nucleosome positioning does not cause a nonspecific increase in cross-linking of all factors to RNR3. We provide evidence that ISW2 does not act on SWI/SNF directly but excludes its occupancy by positioning nucleosomes over the promoter. Genetic disruption of nucleosome positioning by other means led to a similar phenotype, linking repressed chromatin structure to SWI/SNF exclusion. Thus, incorporation of promoters into a repressive chromatin structure is essential for prevention of the opportunistic actions of nucleosome-disrupting activities in vivo, providing a novel mechanism for maintaining tight control of gene expression.
Collapse
|
22
|
Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability. Mol Cell Biol 2009; 29:2960-81. [PMID: 19307305 DOI: 10.1128/mcb.01054-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We showed previously that the strong PHO5 promoter is less dependent on chromatin cofactors than the weaker coregulated PHO8 promoter. In this study we asked if chromatin remodeling at the even stronger PHO84 promoter was correspondingly less cofactor dependent. The repressed PHO84 promoter showed a short hypersensitive region that was flanked upstream and downstream by a positioned nucleosome and contained two transactivator Pho4 sites. Promoter induction generated an extensive hypersensitive and histone-depleted region, yielding two more Pho4 sites accessible. This remodeling was strictly Pho4 dependent, strongly dependent on the remodelers Snf2 and Ino80 and on the histone acetyltransferase Gcn5, and more weakly on the acetyltransferase Rtt109. Importantly, remodeling of each of the two positioned nucleosomes required Snf2 and Ino80 to different degrees. Only remodeling of the upstream nucleosome was strictly dependent on Snf2. Further, remodeling of the upstream nucleosome was more dependent on Ino80 than remodeling of the downstream nucleosome. Both nucleosomes differed in their intrinsic stabilities as predicted in silico and measured in vitro. The causal relationship between the different nucleosome stabilities and the different cofactor requirements was shown by introducing destabilizing mutations in vivo. Therefore, chromatin cofactor requirements were determined by intrinsic nucleosome stabilities rather than correlated to promoter strength.
Collapse
|
23
|
Abstract
Knowing the precise locations of nucleosomes in a genome is key to understanding how genes are regulated. Recent 'next generation' ChIP-chip and ChIP-Seq technologies have accelerated our understanding of the basic principles of chromatin organization. Here we discuss what high-resolution genome-wide maps of nucleosome positions have taught us about how nucleosome positioning demarcates promoter regions and transcriptional start sites, and how the composition and structure of promoter nucleosomes facilitate or inhibit transcription. A detailed picture is starting to emerge of how diverse factors, including underlying DNA sequences and chromatin remodelling complexes, influence nucleosome positioning.
Collapse
Affiliation(s)
- Cizhong Jiang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
24
|
Kim HD, O'Shea EK. A quantitative model of transcription factor-activated gene expression. Nat Struct Mol Biol 2008; 15:1192-8. [PMID: 18849996 PMCID: PMC2696132 DOI: 10.1038/nsmb.1500] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/23/2008] [Indexed: 12/12/2022]
Abstract
A challenge facing biology is to develop quantitative, predictive models of gene regulation. Eukaryotic promoters contain transcription factor binding sites of differing affinity and accessibility, but we understand little about how these variables combine to generate a fine-tuned, quantitative transcriptional response. Here we used the PHO5 promoter in budding yeast to quantify the relationship between transcription factor input and gene expression output, termed the gene-regulation function (GRF). A model that captures variable interactions between transcription factors, nucleosomes and the promoter faithfully reproduced the observed quantitative changes in the GRF that occur upon altering the affinity of transcription factor binding sites, and implicates nucleosome-modulated accessibility of transcription factor binding sites in increasing the diversity of gene expression profiles. This work establishes a quantitative framework that can be applied to predict GRFs of other eukaryotic genes.
Collapse
Affiliation(s)
- Harold D Kim
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Northwest Laboratories, 52 Oxford Street, Room 445.40, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
25
|
Sims HI, Baughman CB, Schnitzler GR. Human SWI/SNF directs sequence-specific chromatin changes on promoter polynucleosomes. Nucleic Acids Res 2008; 36:6118-31. [PMID: 18820294 PMCID: PMC2577362 DOI: 10.1093/nar/gkn623] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Studies in humans and other species have revealed that a surprisingly large fraction of nucleosomes adopt specific positions on promoters, and that these positions appear to be determined by nucleosome positioning DNA sequences (NPSs). Recent studies by our lab, using minicircles containing only one nucleosome, indicated that the human SWI/SNF complex (hSWI/SNF) prefers to relocate nucleosomes away from NPSs. We now make use of novel mapping techniques to examine the hSWI/SNF sequence preference for nucleosome movement in the context of polynucleosomal chromatin, where adjacent nucleosomes can limit movement and where hSWI/SNF forms altered dinucleosomal structures. Using two NPS templates (5S rDNA and 601) and two hSWI/SNF target promoter templates (c-myc and UGT1A1), we observed hSWI/SNF-driven depletion of normal mononucleosomes from almost all positions that were strongly favored by assembly. In some cases, these mononucleosomes were moved to hSWI/SNF-preferred sequences. In the majority of other cases, one repositioned mononucleosome appeared to combine with an unmoved mononucleosome forming a specifically localized altered or normal dinucleosome. These effects result in dramatic, template-specific changes in nucleosomal distribution. Taken together, these studies indicate hSWI/SNF is likely to activate or repress transcription of its target genes by generating promoter sequence-specific changes in chromatin configuration.
Collapse
Affiliation(s)
- Hillel I Sims
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
26
|
Zhang H, Kruk JA, Reese JC. Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA. J Biol Chem 2008; 283:27360-27368. [PMID: 18682387 DOI: 10.1074/jbc.m803831200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene encoding ribonucleotide reductase 3 (RNR3) is strongly induced in response to DNA damage. Its expression is strictly dependent upon the TAF(II) subunits of TFIID, which are required for the recruitment of SWI/SNF and nucleosome remodeling. However, full activation of RNR3 also requires GCN5, the catalytic subunit of the SAGA histone acetyltransferase complex. Thus, RNR3 is dependent upon both TFIID and SAGA, two complexes that deliver TATA-binding protein (TBP) to promoters. Furthermore, unlike the majority of TFIID-dominated genes, RNR3 contains a consensus TATA-box, a feature of SAGA-regulated core promoters. Although a large fraction of the genome can be characterized as either TFIID- or SAGA-dominant, it is expected that many genes utilize both. The mechanism of activation and the relative contributions of SAGA and TFIID at genes regulated by both complexes have not been examined. Here we delineated the role of SAGA in the regulation of RNR3 and contrast it to that of TFIID. We find that SAGA components fulfill distinct functions in the regulation of RNR3. The core promoter of RNR3 is SAGA-dependent, and we provide evidence that SAGA, not TAF(II)s within TFIID, are largely responsible for TBP recruitment. This taken together with our previous work provides evidence that SAGA recruits TBP, whereas TFIID mediates chromatin remodeling. Thus, we described an unexpected shift in the division of labor between these two complexes and provide the first characterization of a gene that requires both SAGA and TFIID.
Collapse
Affiliation(s)
- Hesheng Zhang
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jennifer A Kruk
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802.
| |
Collapse
|
27
|
Yeast Rap1 contributes to genomic integrity by activating DNA damage repair genes. EMBO J 2008; 27:1575-84. [PMID: 18480842 DOI: 10.1038/emboj.2008.93] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/14/2008] [Indexed: 11/08/2022] Open
Abstract
Rap1 (repressor-activator protein 1) is a multifunctional protein that controls telomere function, silencing and the activation of glycolytic and ribosomal protein genes. We have identified a novel function for Rap1, regulating the ribonucleotide reductase (RNR) genes that are required for DNA repair and telomere expansion. Both the C terminus and DNA-binding domain of Rap1 are required for the activation of the RNR genes, and the phenotypes of different Rap1 mutants suggest that it utilizes both regions to carry out distinct steps in the activation process. Recruitment of Rap1 to the RNR3 gene is dependent on activation of the DNA damage checkpoint and chromatin remodelling by SWI/SNF. The dependence on SWI/SNF for binding suggests that Rap1 acts after remodelling to prevent the repositioning of nucleosomes back to the repressed state. Furthermore, the recruitment of Rap1 requires TAF(II)s, suggesting a role for TFIID in stabilizing activator binding in vivo. We propose that Rap1 acts as a rheostat controlling nucleotide pools in response to shortened telomeres and DNA damage, providing a mechanism for fine-tuning the RNR genes during checkpoint activation.
Collapse
|
28
|
Tachibana C, Biddick R, Law GL, Young ET. A poised initiation complex is activated by SNF1. J Biol Chem 2007; 282:37308-15. [PMID: 17974563 DOI: 10.1074/jbc.m707363200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Snf1, the yeast AMP kinase homolog, is essential for derepression of glucose-repressed genes that are activated by Adr1. Although required for Adr1 DNA binding, the precise role of Snf1 is unknown. Deletion of histone deacetylase genes allowed constitutive promoter binding of Adr1 and Cat8, another activator of glucose-repressed genes. In repressed conditions, at the Adr1-and Cat8-dependent ADH2 promoter, partial chromatin remodeling had occurred, and the activators recruited a partial preinitiation complex that included RNA polymerase II. Transcription did not occur, however, unless Snf1 was activated, suggesting a Snf1-dependent event that occurs after RNA polymerase II recruitment. Glucose regulation persisted because shifting to low glucose increased expression. Glucose repression could be completely relieved by combining the three elements of 1) chromatin perturbation by mutation of histone deacetylases, 2) activation of Snf1, and 3) the addition of an Adr1 mutant that by itself confers only weak constitutive activity.
Collapse
Affiliation(s)
- Christine Tachibana
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|