1
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiol Spectr 2016; 3:PLAS-0039-2014. [PMID: 26104702 DOI: 10.1128/microbiolspec.plas-0039-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.
Collapse
|
3
|
Ietswaart R, Szardenings F, Gerdes K, Howard M. Competing ParA structures space bacterial plasmids equally over the nucleoid. PLoS Comput Biol 2014; 10:e1004009. [PMID: 25521716 PMCID: PMC4270457 DOI: 10.1371/journal.pcbi.1004009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022] Open
Abstract
Low copy number plasmids in bacteria require segregation for stable inheritance through cell division. This is often achieved by a parABC locus, comprising an ATPase ParA, DNA-binding protein ParB and a parC region, encoding ParB-binding sites. These minimal components space plasmids equally over the nucleoid, yet the underlying mechanism is not understood. Here we investigate a model where ParA-ATP can dynamically associate to the nucleoid and is hydrolyzed by plasmid-associated ParB, thereby creating nucleoid-bound, self-organizing ParA concentration gradients. We show mathematically that differences between competing ParA concentrations on either side of a plasmid can specify regular plasmid positioning. Such positioning can be achieved regardless of the exact mechanism of plasmid movement, including plasmid diffusion with ParA-mediated immobilization or directed plasmid motion induced by ParB/parC-stimulated ParA structure disassembly. However, we find experimentally that parABC from Escherichia coli plasmid pB171 increases plasmid mobility, inconsistent with diffusion/immobilization. Instead our observations favor directed plasmid motion. Our model predicts less oscillatory ParA dynamics than previously believed, a prediction we verify experimentally. We also show that ParA localization and plasmid positioning depend on the underlying nucleoid morphology, indicating that the chromosomal architecture constrains ParA structure formation. Our directed motion model unifies previously contradictory models for plasmid segregation and provides a robust mechanistic basis for self-organized plasmid spacing that may be widely applicable.
Collapse
Affiliation(s)
- Robert Ietswaart
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Florian Szardenings
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kenn Gerdes
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
4
|
Werner G, Coque TM, Franz CMAP, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol 2013; 303:360-79. [PMID: 23602510 DOI: 10.1016/j.ijmm.2013.03.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) and glycopeptides are therapeutically important and reported in increasing numbers. On the other hand, isolates of E. faecalis and E. faecium are commensals of the intestines of humans, many vertebrate and invertebrate animals and may also constitute an active part of the plant flora. Certain enterococcal isolates are used as starter cultures or supplements in food fermentation and food preservation. Due to their preferred intestinal habitat, their wide occurrence, robustness and ease of cultivation, enterococci are used as indicators for fecal pollution assessing hygiene standards for fresh- and bathing water and they serve as important key indicator bacteria for various veterinary and human resistance surveillance systems. Enterococci are widely prevalent and genetically capable of acquiring, conserving and disseminating genetic traits including resistance determinants among enterococci and related Gram-positive bacteria. In the present review we aimed at summarizing recent advances in the current understanding of the population biology of enterococci, the role mobile genetic elements including plasmids play in shaping the population structure and spreading resistance. We explain how these elements could be classified and discuss mechanisms of plasmid transfer and regulation and the role and cross-talk of enterococcal isolates from food and food animals to humans.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Stapyhlococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, 38855 Wernigerode, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Persistent, toxin-antitoxin system-independent, tetracycline resistance-encoding plasmid from a dairy Enterococcus faecium isolate. Appl Environ Microbiol 2011; 77:7096-103. [PMID: 21784909 DOI: 10.1128/aem.05168-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tetracycline-resistant (Tet(r)) dairy Enterococcus faecium isolate designated M7M2 was found to carry both tet(M) and tet(L) genes on a 19.6-kb plasmid. After consecutive transfer in the absence of tetracycline, the resistance-encoding plasmid persisted in 99% of the progenies. DNA sequence analysis revealed that the 19.6-kb plasmid contained 28 open reading frames (ORFs), including a tet(M)-tet(L)-mob gene cluster, as well as a 10.6-kb backbone highly homologous (99.9%) to the reported plasmid pRE25, but without an identified toxin-antitoxin (TA) plasmid stabilization system. The derived backbone plasmid without the Tet(r) determinants exhibited a 100% retention rate in the presence of acridine orange, suggesting the presence of a TA-independent plasmid stabilization mechanism, with its impact on the persistence of a broad spectrum of resistance-encoding traits still to be elucidated. The tet(M)-tet(L) gene cluster from M7M2 was functional and transmissible and led to acquired resistance in Enterococcus faecalis OG1RF by electroporation and in Streptococcus mutans UA159 by natural transformation. Southern hybridization showed that both the tet(M) and tet(L) genes were integrated into the chromosome of S. mutans UA159, while the whole plasmid was transferred to and retained in E. faecalis OG1RF. Quantitative real-time reverse transcription-PCR (RT-PCR) indicated tetracycline-induced transcription of both the tet(M) and tet(L) genes of pM7M2. The results indicated that multiple mechanisms might have contributed to the persistence of antibiotic resistance-encoding genes and that the plasmids pM7M2, pIP816, and pRE25 are likely correlated evolutionarily.
Collapse
|
6
|
Wu M, Zampini M, Bussiek M, Hoischen C, Diekmann S, Hayes F. Segrosome assembly at the pliable parH centromere. Nucleic Acids Res 2011; 39:5082-97. [PMID: 21378121 PMCID: PMC3130281 DOI: 10.1093/nar/gkr115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The segrosome of multiresistance plasmid TP228 comprises ParF, which is a member of the ParA ATPase superfamily, and the ParG ribbon–helix–helix factor that assemble jointly on the parH centromere. Here we demonstrate that the distinctive parH site (∼100-bp) consists of an array of degenerate tetramer boxes interspersed by AT-rich spacers. Although numerous consecutive AT-steps are suggestive of inherent curvature, parH lacks an intrinsic bend. Sequential deletion of parH tetramers progressively reduced centromere function. Nevertheless, the variant subsites could be rearranged in different geometries that accommodated centromere activity effectively revealing that the site is highly elastic in vivo. ParG cooperatively coated parH: proper centromere binding necessitated the protein's N-terminal flexible tails which modulate the centromere binding affinity of ParG. Interaction of the ParG ribbon–helix–helix domain with major groove bases in the tetramer boxes likely provides direct readout of the centromere. In contrast, the AT-rich spacers may be implicated in indirect readout that mediates cooperativity between ParG dimers assembled on adjacent boxes. ParF alone does not bind parH but instead loads into the segrosome interactively with ParG, thereby subtly altering centromere conformation. Assembly of ParF into the complex requires the N-terminal flexible tails in ParG that are contacted by ParF.
Collapse
Affiliation(s)
- Meiyi Wu
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|
7
|
Liu ZH, Ma YL, He YP, Zhang P, Zhou YK, Qin H. Tamoxifen reverses the multi-drug-resistance of an established human cholangiocarcinoma cell line in combined chemotherapeutics. Mol Biol Rep 2010; 38:1769-75. [PMID: 20835928 DOI: 10.1007/s11033-010-0291-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 09/02/2010] [Indexed: 12/18/2022]
Abstract
Our previous study established the human multi-drug-resistant cholangiocarcinoma cell line QBC939/ADM. In this study, we investigate further the ability of tamoxifen (TAM) to reverse drug-resistance to chemotherapeutics using QBC939/ADM cells. Cell growth inhibition was determined by the MTT assay, while cell cycle progression, apoptosis and the intra-cellular concentration of adriamycin (ADM) were all determined by flow cytometry. P-glycoprotein (P-gp) protein and mRNA expression was determined by Western blotting and real-time PCR. Growth inhibition and apoptosis induced by ADM, mitomycin (MMC), or vindesine (VDS) were enhanced after pre-treatment with 5 or 10 μM TAM, while only VDS increased cell numbers in the G(2)/M phase. The intra-cellular concentration of ADM rose after pre-treatment with 10 μM TAM, but not 5 μM TAM. Furthermore, real-time PCR and western blot analysis revealed down-regulation of P-gp expression in QBC939/ADM cells after TAM pre-treatment. The enhanced effects of TAM on growth inhibition, apoptosis, and intra-cellular concentration and the down-regulation of P-gp expression were blocked by an anti-P-gp antibody. TAM (10 μM) may reverse the multi-drug-resistance (MDR) of QBC939/ADM and enhance the chemotherapeutic effects on cholangiocarcinoma, by competitively inhibiting over-expressed P-gp.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | | | | | | | | | | |
Collapse
|
8
|
Plasmid pSM19035, a model to study stable maintenance in Firmicutes. Plasmid 2010; 64:1-17. [PMID: 20403380 DOI: 10.1016/j.plasmid.2010.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 12/15/2022]
Abstract
pSM19035 is a low-copy-number theta-replicating plasmid, which belongs to the Inc18 family. Plasmids of this family, which show a modular organization, are functional in evolutionarily diverse bacterial species of the Firmicutes Phylum. This review summarizes our understanding, accumulated during the last 20 years, on the genetics, biochemistry, cytology and physiology of the five pSM19035 segregation (seg) loci, which map outside of the minimal replicon. The segA locus plays a role both in maximizing plasmid random segregation, and in avoiding replication fork collapses in those plasmids with long inverted repeated regions. The segB1 locus, which acts as the ultimate determinant of plasmid maintenance, encodes a short-lived epsilon(2) antitoxin protein and a long-lived zeta toxin protein, which form a complex that neutralizes zeta toxicity. The cells that do not receive a copy of the plasmid halt their proliferation upon decay of the epsilon(2) antitoxin. The segB2 locus, which encodes two trans-acting, ParA- and ParB-like proteins and six cis-acting parS centromeres, actively ensures equal or roughly equal distribution of plasmid copies to daughter cells. The segC locus includes functions that promote the shift from the use of DNA polymerase I to the replicase (PolC-PolE DNA polymerases). The segD locus, which encodes a trans-acting transcriptional repressor, omega(2), and six cis-acting cognate sites, coordinates the expression of genes that control copy number, better-than-random segregation and partition, and assures the proper balance of these different functions. Working in concert the five different loci achieve almost absolute plasmid maintenance with a minimal growth penalty.
Collapse
|
9
|
Establishment and identification of the human multi-drug-resistant cholangiocarcinoma cell line QBC939/ADM. Mol Biol Rep 2010; 38:3075-82. [PMID: 20111907 DOI: 10.1007/s11033-010-9975-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
In this study, we aim to establish the human multi-drug-resistant cholangiocarcinoma cell line QBC939/ADM which can be grow and passaged steadily in 1 μg/ml concentration of adriamycin in appropriate medium. The human multi-drug-resistant cholangiocarcinoma cell line QBC939/ADM was established using the method of exposure to medium with adriamycin alternated between high and low concentration with gradually increasing concentration. Furthermore, QBC939 and QBC939/ADM were both treated with adriamycin, mitomycin and vindesine, and then detected by MTT assay, respectively. Growth cycle and intra-cellular concentrations of ADM within cells of each group were determined by flow cytometry. Expression levels of P-glycoprotein were detected by Western bolt and real-time PCR. Results showed that, compared with QBC939, the inhibitive rates of adriamycin, mitomycin and vindesine to QBC939/ADM were lower. Content of ADM in the QBC939/ADM was lower. Western bolt and real time PCR showed that P-glycoprotein in the QBC939/ADM group was over expressed. Therefore, QBC939/ADM was establish and identified as the multi-drug-resistant cell line, which can grow and be passaged steadily in 1 μg/ml concentration adriamycin in appropriate medium. And the multi-drug-resistant character of QBC939/ADM was indicated to be related to the over expression of P-glycoprotein induced by chemotherapeutic drugs.
Collapse
|
10
|
Nov Klaiman T, Hosid S, Bolshoy A. Upstream curved sequences in E. coli are related to the regulation of transcription initiation. Comput Biol Chem 2009; 33:275-82. [PMID: 19646927 DOI: 10.1016/j.compbiolchem.2009.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/17/2009] [Indexed: 01/03/2023]
Abstract
The advancement in Escherichia coli genome research has made the information regarding transcription start sites of many genes available. A study relying on the availability of transcription start locations was performed. The first question addressed was what an average DNA curvature profile upstream of genes would look like when these genes are aligned by transcription start sites in comparison to alignment by translation start sites. Since it was hypothesized that curvature plays a role in transcription regulation, the expectation was that curvature measurements relative to transcription starts, rather than translation, should strengthen the signal. Our study justified this expectation. The second question aimed to clarify the relation between DNA curvature and promoter strength. Through clustering based on DNA curvature profiles along promoter regions, a strong positive correlation between the promoter strength and the curved DNA was found. The third question dealt with dinucleotide periodicity in E. coli to see whether a periodicity pattern specific to promoter regions exists. Such unknown pattern might shed new light on transcription regulation mechanisms in E. coli. A sequence periodicity of about 11 bp is characteristic to the whole E. coli genome, and is especially well-expressed in intergenic regions. Here it was shown that regions of the size of about 100-150 bp centered 70-100 bp upstream to transcription starts carry hidden periodicity with a period of about 10.3 bp.
Collapse
Affiliation(s)
- Tamar Nov Klaiman
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | | | | |
Collapse
|
11
|
Liaqat I, Sabri AN. Isolation and characterization of biocides resistant bacteria from dental unit water line biofilms. J Basic Microbiol 2009; 49:275-84. [DOI: 10.1002/jobm.200800212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Weaver KE, Kwong SM, Firth N, Francia MV. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids. Plasmid 2009; 61:94-109. [PMID: 19100285 DOI: 10.1016/j.plasmid.2008.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multiresistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
13
|
Bouet JY, Lane D. Molecular basis of the supercoil deficit induced by the mini-F plasmid partition complex. J Biol Chem 2008; 284:165-173. [PMID: 19001378 DOI: 10.1074/jbc.m802752200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of a partition complex on plasmid F by binding of SopB protein to the sopC centromere is the first step in the partition process that ensures stability of F in dividing cells. Establishment of the complex enables nonspecific binding of SopB to neighboring DNA, which extends the partition complex and provokes reduction of negative supercoiling of the plasmid. This reduction is believed to reflect winding of DNA into positive supercoils about SopB to create a nucleoprotein structure of probable importance to partition. We have searched for evidence that SopB alters plasmid topology. Permutation analysis indicated only modest bending of linear DNA fragments, and in vivo DNase I footprinting revealed no enhanced cleavages indicating curvature. In vitro, SopB binding left no topological trace in relaxed-circular DNA treated with topoisomerase I or in nicked circles closed by ligase. In vivo, novobiocin-mediated inhibition of DNA gyrase relaxed a plasmid carrying the partition complex but left no residue of positive supercoils. Hence, SopB does not reduce plasmid supercoiling directly. We did observe that SopB partly prevented removal of negative supercoils from plasmid DNA by topoisomerase I and partly prevented ligation of nicked circles, indicating that it acts as a physical obstacle. The supercoil deficit is thus better explained as SopB recoating of just-replicated DNA, which shelters it from gyrase and from topological changes in SopB-free DNA. This topological simplicity distinguishes the Sop partition complex from other complexes described.
Collapse
Affiliation(s)
- Jean-Yves Bouet
- Laboratoire de Microbiologie et Gánátique Moláculaires, CNRS, F-31000 Toulouse, France and LMGM, Universitáde Toulouse, UPS, F-31000 Toulouse, France; Laboratoire de Microbiologie et Gánátique Moláculaires, CNRS, F-31000 Toulouse, France and LMGM, Universitáde Toulouse, UPS, F-31000 Toulouse, France.
| | - David Lane
- Laboratoire de Microbiologie et Gánátique Moláculaires, CNRS, F-31000 Toulouse, France and LMGM, Universitáde Toulouse, UPS, F-31000 Toulouse, France
| |
Collapse
|
14
|
Mishra P, Sharma RK. Gentamicin complexes of cobalt(II), nickel(II), cadmium(II) and tin(II). MAIN GROUP CHEMISTRY 2008. [DOI: 10.1080/10241220802197469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J 2008; 412:1-18. [PMID: 18426389 DOI: 10.1042/bj20080359] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA segregation or partition is an essential process that ensures stable genome transmission. In prokaryotes, partition is best understood for plasmids, which serve as tractable model systems to study the mechanistic underpinnings of DNA segregation at a detailed atomic level owing to their simplicity. Specifically, plasmid partition requires only three elements: a centromere-like DNA site and two proteins: a motor protein, generally an ATPase, and a centromere-binding protein. In the first step of the partition process, multiple centromere-binding proteins bind co-operatively to the centromere, which typically consists of several tandem repeats, to form a higher-order nucleoprotein complex called the partition complex. The partition complex recruits the ATPase to form the segrosome and somehow activates the ATPase for DNA separation. Two major families of plasmid par systems have been delineated based on whether they utilize ATPase proteins with deviant Walker-type motifs or actin-like folds. In contrast, the centromere-binding proteins show little sequence homology even within a given family. Recent structural studies, however, have revealed that these centromere-binding proteins appear to belong to one of two major structural groups: those that employ helix-turn-helix DNA-binding motifs or those with ribbon-helix-helix DNA-binding domains. The first structure of a higher-order partition complex was recently revealed by the structure of pSK41 centromere-binding protein, ParR, bound to its centromere site. This structure showed that multiple ParR ribbon-helix-helix motifs bind symmetrically to the tandem centromere repeats to form a large superhelical structure with dimensions suitable for capture of the filaments formed by the actinlike ATPases. Surprisingly, recent data indicate that the deviant Walker ATPase proteins also form polymer-like structures, suggesting that, although the par families harbour what initially appeared to be structurally and functionally divergent proteins, they actually utilize similar mechanisms of DNA segregation. Thus, in the present review, the known Par protein and Par-protein complex structures are discussed with regard to their functions in DNA segregation in an attempt to begin to define, at a detailed atomic level, the molecular mechanisms involved in plasmid segregation.
Collapse
|
16
|
Hoischen C, Bussiek M, Langowski J, Diekmann S. Escherichia coli low-copy-number plasmid R1 centromere parC forms a U-shaped complex with its binding protein ParR. Nucleic Acids Res 2007; 36:607-15. [PMID: 18056157 PMCID: PMC2241845 DOI: 10.1093/nar/gkm672] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli low-copy-number plasmid R1 contains a segregation machinery composed of parC, ParR and parM. The R1 centromere-like site parC contains two separate sets of repeats. By atomic force microscopy (AFM) we show here that ParR molecules bind to each of the 5-fold repeated iterons separately with the intervening sequence unbound by ParR. The two ParR protein complexes on parC do not complex with each other. ParR binds with a stoichiometry of about one ParR dimer per each single iteron. The measured DNA fragment lengths agreed with B-form DNA and each of the two parC 5-fold interon DNA stretches adopts a linear path in its complex with ParR. However, the overall parC/ParR complex with both iteron repeats bound by ParR forms an overall U-shaped structure: the DNA folds back on itself nearly completely, including an angle of ∼150°. Analysing linear DNA fragments, we never observed dimerized ParR complexes on one parC DNA molecule (intramolecular) nor a dimerization between ParR complexes bound to two different parC DNA molecules (intermolecular). This bacterial segrosome is compared to other bacterial segregation complexes. We speculate that partition complexes might have a similar overall structural organization and, at least in part, common functional properties.
Collapse
Affiliation(s)
- C Hoischen
- Molecular Biology, FLI, Leibniz-Institute for Age Research, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | |
Collapse
|