1
|
Tang Z, Wu J, Wu S, Tang W, Zhang JR, Zhu W, Zhu JJ, Chen Z. Single molecule-driven nanomotors reveal the dynamic-disordered chemomechanical transduction of active enzymes. SCIENCE ADVANCES 2025; 11:eads0446. [PMID: 39888997 PMCID: PMC11784849 DOI: 10.1126/sciadv.ads0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/31/2024] [Indexed: 02/02/2025]
Abstract
Enzymes facilitate the conversion of chemical energy into mechanical work during biochemical reactions, thereby regulating the dynamic metabolic activity of living systems. However, directly observing the energy release facilitated by fluctuating individual enzymes remains a challenge, leading to a contentious debate regarding the underlying reasons for this phenomenon. Here, we aim to overcome this challenge by developing an oscillating nanomotor powered by a single-molecule enzyme, which allows real-time tracking of energy transduction in enzymatic reactions. Through analysis of the shifts in free energy profiles within the nanomotors, our results unveil not only the heterogeneous energy release patterns of individual enzyme molecules but also the dynamic disorder of a particular enzyme in energy release over extended monitoring periods. By exploring six distinct types of single-molecule enzymatic reactions, we provide the direct evidence supporting the argument that the reaction enthalpy governs the enzymatic energy release. This approach has implications for understanding the mechanism of enzymatic catalysis and developing highly efficient nanomotors.
Collapse
Affiliation(s)
- Zhuodong Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Ave., Nanjing 210023, China
| | - Jingyu Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Ave., Nanjing 210023, China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Ave., Nanjing 210023, China
| | - Wenjing Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Ave., Nanjing 210023, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Ave., Nanjing 210023, China
| | - Wenlei Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Ave., Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Ave., Nanjing 210023, China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Ave., Nanjing 210023, China
| |
Collapse
|
2
|
Eady RR, Samar Hasnain S. New horizons in structure-function studies of copper nitrite reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214463] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Pradhan B, Engelhard C, Van Mulken S, Miao X, Canters GW, Orrit M. Single electron transfer events and dynamical heterogeneity in the small protein azurin from Pseudomonas aeruginosa. Chem Sci 2019; 11:763-771. [PMID: 34123050 PMCID: PMC8146731 DOI: 10.1039/c9sc05405g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Monitoring the fluorescence of single-dye-labeled azurin molecules, we observed the reaction of azurin with hexacyanoferrate under controlled redox potential yielding data on the timing of individual (forward and backward) electron transfer (ET) events. Change-point analysis of the time traces demonstrates significant fluctuations of ET rates and of mid-point potential E 0. These fluctuations are a signature of dynamical heterogeneity, here observed on a 14 kDa protein, the smallest to date. By correlating changes in forward and backward reaction rates we found that 6% of the observed change events could be explained by a change in midpoint potential, while for 25% a change of the donor-acceptor coupling could explain the data. The remaining 69% are driven by variations in complex association constants or structural changes that cause forward and back ET rates to vary independently. Thus, the observed spread in individual ET rates could be related in a unique way to variations in molecular parameters. The relevance for the understanding of metabolic processes is briefly discussed.
Collapse
Affiliation(s)
- Biswajit Pradhan
- Huygens-Kamerlingh Onnes Laboratory, Leiden University 2300 RA Leiden Netherlands
| | | | | | - Xueyan Miao
- School of Public Health, Guilin Medical University 541004 Guilin China
| | - Gerard W Canters
- Huygens-Kamerlingh Onnes Laboratory, Leiden University 2300 RA Leiden Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University 2300 RA Leiden Netherlands
| |
Collapse
|
4
|
Bohr SSR, Lund PM, Kallenbach AS, Pinholt H, Thomsen J, Iversen L, Svendsen A, Christensen SM, Hatzakis NS. Direct observation of Thermomyces lanuginosus lipase diffusional states by Single Particle Tracking and their remodeling by mutations and inhibition. Sci Rep 2019; 9:16169. [PMID: 31700110 PMCID: PMC6838188 DOI: 10.1038/s41598-019-52539-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipases are interfacially activated enzymes that catalyze the hydrolysis of ester bonds and constitute prime candidates for industrial and biotechnological applications ranging from detergent industry, to chiral organic synthesis. As a result, there is an incentive to understand the mechanisms underlying lipase activity at the molecular level, so as to be able to design new lipase variants with tailor-made functionalities. Our understanding of lipase function primarily relies on bulk assay averaging the behavior of a high number of enzymes masking structural dynamics and functional heterogeneities. Recent advances in single molecule techniques based on fluorogenic substrate analogues revealed the existence of lipase functional states, and furthermore so how they are remodeled by regulatory cues. Single particle studies of lipases on the other hand directly observed diffusional heterogeneities and suggested lipases to operate in two different modes. Here to decipher how mutations in the lid region controls Thermomyces lanuginosus lipase (TLL) diffusion and function we employed a Single Particle Tracking (SPT) assay to directly observe the spatiotemporal localization of TLL and rationally designed mutants on native substrate surfaces. Parallel imaging of thousands of individual TLL enzymes and HMM analysis allowed us to observe and quantify the diffusion, abundance and microscopic transition rates between three linearly interconverting diffusional states for each lipase. We proposed a model that correlate diffusion with function that allowed us to predict that lipase regulation, via mutations in lid region or product inhibition, primarily operates via biasing transitions to the active states.
Collapse
Affiliation(s)
- Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Philip M Lund
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Amalie S Kallenbach
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Henrik Pinholt
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Lars Iversen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | - Allan Svendsen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | | | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark.
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Advances in Engineering and Application of Optogenetic Indicators for Neuroscience. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our ability to investigate the brain is limited by available technologies that can record biological processes in vivo with suitable spatiotemporal resolution. Advances in optogenetics now enable optical recording and perturbation of central physiological processes within the intact brains of model organisms. By monitoring key signaling molecules noninvasively, we can better appreciate how information is processed and integrated within intact circuits. In this review, we describe recent efforts engineering genetically-encoded fluorescence indicators to monitor neuronal activity. We summarize recent advances of sensors for calcium, potassium, voltage, and select neurotransmitters, focusing on their molecular design, properties, and current limitations. We also highlight impressive applications of these sensors in neuroscience research. We adopt the view that advances in sensor engineering will yield enduring insights on systems neuroscience. Neuroscientists are eager to adopt suitable tools for imaging neural activity in vivo, making this a golden age for engineering optogenetic indicators.
Collapse
|
6
|
Strianese M, Palm GJ, Kohlhause D, Ndamba LA, Tabares LC, Pellecchia C. Azurin and HS-
: Towards Implementation of a Sensor for HS-
Detection. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy
| | - Gottfried J. Palm
- Institute for Biochemistry; University of Greifswald; Felix-Hausdorff-Str. 4 17489 Greifswald Germany
| | - David Kohlhause
- Institute for Biochemistry; University of Greifswald; Felix-Hausdorff-Str. 4 17489 Greifswald Germany
| | - Lionel A. Ndamba
- Leiden; Leiden University; P.O. Box 9504 2300 RA Leiden Netherlands
| | - Leandro C. Tabares
- Institute for Integrative Biology of the Cell (I2BC); Department of Biochemistry, Biophysics and Structural Biology; Université Paris-Saclay, CEA, CNRS UMR 9198; 91198 Gif-sur-Yvette France
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy
| |
Collapse
|
7
|
Matyushov DV. Fluctuation relations, effective temperature, and ageing of enzymes: The case of protein electron transfer. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Jung SR, Lee SW, Hohng S. Real-Time Monitoring of the Binding/Dissociation and Redox States of a Single Transition Metal Ions. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seung-Ryoung Jung
- Department of Physics and Astronomy; Seoul National University; Seoul Republic of Korea
- National Center of Creative Research initiatives, Seoul National University; Seoul Republic of Korea
| | - Sang-Wook Lee
- Department of Physics and Astronomy; Seoul National University; Seoul Republic of Korea
- National Center of Creative Research initiatives, Seoul National University; Seoul Republic of Korea
| | - Sungchul Hohng
- National Center of Creative Research initiatives, Seoul National University; Seoul Republic of Korea
- Institute of Applied Physics, Seoul National University; Seoul Republic of Korea
| |
Collapse
|
9
|
Cao C, Long YT. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Acc Chem Res 2018; 51:331-341. [PMID: 29364650 DOI: 10.1021/acs.accounts.7b00143] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis, we develop an integrated current measurement system and an accurate data processing method for nanopore sensing. The unique geometric structure of a biological nanopore offers a distinct advantage as a nanosensor for single-molecule sensing. The construction of the pore entrance is responsible for capturing the target molecule, while the lumen region determines the translocation process of the single molecule. Since the capture of the target molecule is predominantly diffusion-limited, it is expected that the capture ability of the nanopore toward the target analyte could be effectively enhanced by site-directed mutations of key amino acids with desirable groups. Additionally, changing the side chains inside the wall of the biological nanopore could optimize the geometry of the pore and realize an optimal interaction between the single-molecule interface and the analyte. These improvements would allow for high spatial and current resolution of nanopore sensors, which would ensure the possibility of dynamic study of single biomolecules, including their metastable conformations, charge distributions, and interactions. In the future, data analysis with powerful algorithms will make it possible to automatically and statistically extract detailed information while an analyte translocates through the pore. We conclude that these improvements could have tremendous potential applications for nanopore sensing in the near future.
Collapse
Affiliation(s)
- Chan Cao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
10
|
Andreoni A, Sen S, Hagedoorn PL, Buma WJ, Aartsma TJ, Canters GW. Fluorescence Correlation Spectroscopy of Labeled Azurin Reveals Photoinduced Electron Transfer between Label and Cu Center. Chemistry 2018; 24:646-654. [PMID: 29064125 DOI: 10.1002/chem.201703733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/06/2022]
Abstract
Fluorescent labeling of biomacromolecules enjoys increasing popularity for structural, mechanistic, and microscopic investigations. Its success hinges on the ability of the dye to alternate between bright and dark states. Förster resonance energy transfer (FRET) is an important source of fluorescence modulation. Photo-induced electron transfer (PET) may occur as well, but is often considered only when donor and acceptor are in van der Waals contact. In this study, PET is shown between a label and redox centers in oxidoreductases, which may occur over large distances. In the small blue copper protein azurin, labeled with ATTO655, PET is observed when the label is at 18.5 Å, but not when it is at 29.1 Å from the Cu. For CuII , PET from label to Cu occurs at a rate of (4.8±0.3)×104 s-1 and back at (0.7±0.1)×103 s-1 . With CuI the numbers are (3.3±0.7)×106 s-1 and (1.0±0.1)×104 s-1 . Reorganization energies and electronic coupling elements are in the range of 0.8-1.2 eV and 0.02-0.5 cm-1 , respectively. These data are compatible with electron transfer (ET) along a through-bond pathway although transient complex formation followed by ET cannot be ruled out. The outcome of this study is a useful guideline for experimental designs in which oxidoreductases are labelled with fluorescent dyes, with particular attention to single molecule investigations. The labelling position for FRET can be optimized to avoid reactions like PET by evaluating the structure and thermodynamics of protein and label.
Collapse
Affiliation(s)
- Alessio Andreoni
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands.,Present address: National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Saptaswa Sen
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands.,Present address: AlbaNova University Center, Department of Applied Physics, KTH-Royal Institute of, Technology, 10691, Stockholm, Sweden
| | - Peter-Leon Hagedoorn
- TU Delft, Applied Sciences, Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Wybren J Buma
- Van't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD, Amsterdam, The Netherlands
| | - Thijs J Aartsma
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands
| | - Gerard W Canters
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CC, Leiden, The Netherlands
| |
Collapse
|
11
|
Medina JS, Arismendi-Arrieta DJ, Alemán JV, Prosmiti R. Developing time to frequency-domain descriptors for relaxation processes: Local trends. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Abstract
Over the last decade, femtoliter arrays have been used as a simple and robust way to encapsulate and monitor the kinetics of single enzyme molecules. Encapsulating individual enzyme molecules within a femtoliter-sized reaction chamber does not require immobilization of the enzyme molecules or fluorescent tagging of the enzyme molecules, which offers the unique advantage of observing unmodified single enzyme molecules free in solution. Several fascinating details about enzyme kinetics have been revealed using these femtoliter arrays, which were unattainable from traditional ensemble experiments. Here, we discuss various considerations to take into account when developing single-molecule enzyme assays in femtoliter arrays and the advantages and disadvantages of various protocols.
Collapse
Affiliation(s)
| | - D R Walt
- Tufts University, Medford, MA, United States.
| |
Collapse
|
13
|
Loring RF. Lattice model of spatial correlations in catalysis. J Chem Phys 2016; 145:134508. [DOI: 10.1063/1.4964282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
14
|
Crawford JJ, Hollett JW, Craig DB. Determination of the inhibitor dissociation constant of an individual unmodified enzyme molecule in free solution. Electrophoresis 2016; 37:2217-25. [PMID: 27271375 DOI: 10.1002/elps.201600201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/12/2016] [Accepted: 05/26/2016] [Indexed: 11/11/2022]
Abstract
Single enzyme molecule assays on E. coli β-galactosidase were performed using a capillary electrophoresis-based method. Three types of assays were performed. The catalytic rate of 20 individual molecules was assayed in duplicate in the presence of 50 μM substrate. The ratio of rates for the second incubation relative to the first was 0.96 ± 0.03, showing the reproducibility of the method. In the second assay, the rates were determined in the absence and presence of 210 μM L-ribose, a competitive inhibitor. The ratio of the rate in the presence of inhibitor to that in its absence for 19 individual molecules was 0.44 ± 0.23. This large relative standard deviation suggests that each individual enzyme molecule was affected to a different extent by the presence of the inhibitor, which is consistent with KI being heterogeneous. To estimate KI for individual molecules, a third assay was performed. Each molecule was incubated in the presence of 30 and 50 μM substrate and then in the presence of 50 μM substrate plus 210 μM inhibitor. Comparison of the rates in the two substrate concentrations allowed for the determination of the individual Km of each molecule. From this value and the difference in rates in the presence and absence of inhibitor, the individual molecule KI values were determined. This value was found to differ between individual molecules and was found to increase with an increase in Km . Modeling showed that a heterogeneity in KI results in an alteration in the Michaelis-Menten curve for a population of enzymes in the presence of a competitive inhibitor.
Collapse
Affiliation(s)
| | | | - Douglas B Craig
- Chemistry Department, University of Winnipeg, Winnipeg, Canada
| |
Collapse
|
15
|
Berry SM, Strange JN, Bladholm EL, Khatiwada B, Hedstrom CG, Sauer AM. Nitrite Reductase Activity in Engineered Azurin Variants. Inorg Chem 2016; 55:4233-47. [PMID: 27055058 DOI: 10.1021/acs.inorgchem.5b03006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrite reductase (NiR) activity was examined in a series of dicopper P.a. azurin variants in which a surface binding copper site was added through site-directed mutagenesis. Four variants were synthesized with copper binding motifs inspired by the catalytic type 2 copper binding sites found in the native noncoupled dinuclear copper enzymes nitrite reductase and peptidylglycine α-hydroxylating monooxygenase. The four azurin variants, denoted Az-NiR, Az-NiR3His, Az-PHM, and Az-PHM3His, maintained the azurin electron transfer copper center, with the second designed copper site located over 13 Å away and consisting of mutations Asn10His,Gln14Asp,Asn16His-azurin, Asn10His,Gln14His,Asn16His-azurin, Gln8Met,Gln14His,Asn16His-azurin, and Gln8His,Gln14His,Asn16His-azurin, respectively. UV-visible absorption spectroscopy, EPR spectroscopy, and electrochemistry of the sites demonstrate copper binding as well as interaction with small exogenous ligands. The nitrite reduction activity of the variants was determined, including the catalytic Michaelis-Menten parameters. The variants showed activity (0.34-0.59 min(-1)) that was slower than that of native NiRs but comparable to that of other model systems. There were small variations in activity of the four variants that correlated with the number of histidines in the added copper site. Catalysis was found to be reversible, with nitrite produced from NO. Reactions starting with reduced azurin variants demonstrated that electrons from both copper centers were used to reduce nitrite, although steady-state catalysis required the T2 copper center and did not require the T1 center. Finally, experiments separating rates of enzyme reduction from rates of reoxidation by nitrite demonstrated that the reaction with nitrite was rate limiting during catalysis.
Collapse
Affiliation(s)
- Steven M Berry
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Jacob N Strange
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Erika L Bladholm
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Balabhadra Khatiwada
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Christine G Hedstrom
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Alexandra M Sauer
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
16
|
Moses M, Hedegård P, Hatzakis N. Quantification of Functional Dynamics of Membrane Proteins Reconstituted in Nanodiscs Membranes by Single Turnover Functional Readout. Methods Enzymol 2016; 581:227-256. [DOI: 10.1016/bs.mie.2016.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Bavishi K, Hatzakis NS. Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules 2014; 19:19407-34. [PMID: 25429564 PMCID: PMC6272019 DOI: 10.3390/molecules191219407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022] Open
Abstract
The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions in deciphering mechanisms that underlie protein folding, structural and functional dynamics by single molecule fluorescence microscopy techniques. We will discuss a few selected examples highlighting the power of the emerging techniques and finally discuss the future improvements and directions.
Collapse
Affiliation(s)
- Krutika Bavishi
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Center for Synthetic Biology "bioSYNergy", Villum Research Center "Plant Plasticity", University of Copenhagen, Thorvaldsenvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Nikos S Hatzakis
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
18
|
Rezgui R, Lestini R, Kühn J, Fave X, McLeod L, Myllykallio H, Alexandrou A, Bouzigues C. Differential interaction kinetics of a bipolar structure-specific endonuclease with DNA flaps revealed by single-molecule imaging. PLoS One 2014; 9:e113493. [PMID: 25412080 PMCID: PMC4239081 DOI: 10.1371/journal.pone.0113493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/23/2014] [Indexed: 11/18/2022] Open
Abstract
As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5′ and 3′-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5′ or 3′ extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.
Collapse
Affiliation(s)
- Rachid Rezgui
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Roxane Lestini
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Joëlle Kühn
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Xenia Fave
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Lauren McLeod
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
| | - Cedric Bouzigues
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS (Centre National pour la Recherche Scientifique) UMR (Unité Mixte de Recherche) 7645, Inserm (Institut national de la santé et de la recherche médicale) U696, Palaiseau, France
- * E-mail:
| |
Collapse
|
19
|
Manioglu S, Atis M, Aas M, Kiraz A, Bayraktar H. Direct conversion of cytochrome c spectral shifts to fluorescence using photochromic FRET. Chem Commun (Camb) 2014; 50:12333-6. [PMID: 25183463 DOI: 10.1039/c4cc06146b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photochromic fluorescence resonance energy transfer (pcFRET) was used to monitor the redox activity of non-fluorescent heme protein. Venus fluorescent protein was used as a donor where its emission intensity was reversibly modulated by the absorption change of Cytochrome c.
Collapse
Affiliation(s)
- Selen Manioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, 34450, Turkey
| | | | | | | | | |
Collapse
|
20
|
Enzyme molecules in solitary confinement. Molecules 2014; 19:14417-45. [PMID: 25221867 PMCID: PMC6271441 DOI: 10.3390/molecules190914417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.
Collapse
|
21
|
Zou P, Zhao Y, Douglass AD, Hochbaum DR, Brinks D, Werley CA, Harrison DJ, Campbell RE, Cohen AE. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat Commun 2014; 5:4625. [PMID: 25118186 PMCID: PMC4134104 DOI: 10.1038/ncomms5625] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Genetically encoded fluorescent reporters of membrane potential promise to reveal aspects of neural function not detectable by other means. We present a palette of multi-colored brightly fluorescent genetically encoded voltage indicators with sensitivities from 8 – 13% ΔF/F per 100 mV, and half-maximal response times from 4 – 7 ms. A fluorescent protein is fused to an Archaerhodopsin-derived voltage sensor. Voltage-induced shifts in the absorption spectrum of the rhodopsin lead to voltage-dependent nonradiative quenching of the appended fluorescent protein. Through a library screen, we identify linkers and fluorescent protein combinations which report neuronal action potentials in cultured rat hippocampal neurons with a single-trial signal-to-noise ratio from 7 to 9 in a 1 kHz imaging bandwidth at modest illumination intensity. The freedom to choose a voltage indicator from an array of colors facilitates multicolor voltage imaging, as well as combination with other optical reporters and optogenetic actuators.
Collapse
Affiliation(s)
- Peng Zou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Yongxin Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132
| | - Daniel R Hochbaum
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Daan Brinks
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Christopher A Werley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - D Jed Harrison
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.,Howard Hughes Medical Institute
| |
Collapse
|
22
|
Tabares LC, Gupta A, Aartsma TJ, Canters GW. Tracking electrons in biological macromolecules: from ensemble to single molecule. Molecules 2014; 19:11660-78. [PMID: 25102116 PMCID: PMC6271485 DOI: 10.3390/molecules190811660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 11/29/2022] Open
Abstract
Nature utilizes oxido-reductases to cater to the energy demands of most biochemical processes in respiratory species. Oxido-reductases are capable of meeting this challenge by utilizing redox active sites, often containing transition metal ions, which facilitate movement and relocation of electrons/protons to create a potential gradient that is used to energize redox reactions. There has been a consistent struggle by researchers to estimate the electron transfer rate constants in physiologically relevant processes. This review provides a brief background on the measurements of electron transfer rates in biological molecules, in particular Cu-containing enzymes, and highlights the recent advances in monitoring these electron transfer events at the single molecule level or better to say, at the individual event level.
Collapse
Affiliation(s)
- Leandro C Tabares
- Commissariat à l'Energie Atomique, Institut de Biologie et de Technologies de Saclay, Service de Bioénergétique, Biologie Structurale et Mécanismes (CNRS UMR-8221), Gif-sur-Yvette Cedex 91191, France
| | - Ankur Gupta
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, PO Box 9504, RA Leiden 2300, The Netherlands
| | - Thijs J Aartsma
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, PO Box 9504, RA Leiden 2300, The Netherlands
| | - Gerard W Canters
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, PO Box 9504, RA Leiden 2300, The Netherlands.
| |
Collapse
|
23
|
Turunen P, Rowan AE, Blank K. Single-enzyme kinetics with fluorogenic substrates: lessons learnt and future directions. FEBS Lett 2014; 588:3553-63. [DOI: 10.1016/j.febslet.2014.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/05/2023]
|
24
|
Mathwig K, Aartsma TJ, Canters GW, Lemay SG. Nanoscale methods for single-molecule electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:383-404. [PMID: 25000819 DOI: 10.1146/annurev-anchem-062012-092557] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development of experiments capable of probing individual molecules has led to major breakthroughs in fields ranging from molecular electronics to biophysics, allowing direct tests of knowledge derived from macroscopic measurements and enabling new assays that probe population heterogeneities and internal molecular dynamics. Although still somewhat in their infancy, such methods are also being developed for probing molecular systems in solution using electrochemical transduction mechanisms. Here we outline the present status of this emerging field, concentrating in particular on optical methods, metal-molecule-metal junctions, and electrochemical nanofluidic devices.
Collapse
Affiliation(s)
- Klaus Mathwig
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands; ,
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
26
|
Laursen T, Singha A, Rantzau N, Tutkus M, Borch J, Hedegård P, Stamou D, Møller BL, Hatzakis NS. Single molecule activity measurements of cytochrome P450 oxidoreductase reveal the existence of two discrete functional states. ACS Chem Biol 2014; 9:630-4. [PMID: 24359083 DOI: 10.1021/cb400708v] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electron transfer between membrane spanning oxidoreductase enzymes controls vital metabolic processes. Here we studied for the first time with single molecule resolution the function of P450 oxidoreductase (POR), the canonical membrane spanning activator of all microsomal cytochrome P450 enzymes. Measurements and statistical analysis of individual catalytic turnover cycles shows POR to sample at least two major functional states. This phenotype may underlie regulatory interactions with different cytochromes P450 but to date has remained masked in bulk kinetics. To ensure that we measured the inherent behavior of POR, we reconstituted the full length POR in "native like" membrane patches, nanodiscs. Nanodisc reconstitution increased stability by ∼2-fold as compared to detergent solubilized POR and showed significantly increased activity at biologically relevant ionic strength conditions, highlighting the importance of studying POR function in a membrane environment. This assay paves the way for studying the function of additional membrane spanning oxidoreductases with single molecule resolution.
Collapse
Affiliation(s)
- Tomas Laursen
- Plant
Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, DK-1871 Frederiksberg C, Denmark
- bioSYNergy,
Center for Synthetic Biology, University of Copenhagen, Denmark
| | - Aparajita Singha
- Bio-Nanotechnology
Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
- bioSYNergy,
Center for Synthetic Biology, University of Copenhagen, Denmark
| | - Nicolai Rantzau
- Bio-Nanotechnology
Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
- bioSYNergy,
Center for Synthetic Biology, University of Copenhagen, Denmark
| | - Marijonas Tutkus
- Bio-Nanotechnology
Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
- bioSYNergy,
Center for Synthetic Biology, University of Copenhagen, Denmark
| | - Jonas Borch
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, DK−5230 Odense M, Denmark
| | - Per Hedegård
- Nano-Science
Center, Niels Bohr Institute, University of Copenhagen, Denmark
| | - Dimitrios Stamou
- Bio-Nanotechnology
Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
- bioSYNergy,
Center for Synthetic Biology, University of Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant
Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, DK-1871 Frederiksberg C, Denmark
- bioSYNergy,
Center for Synthetic Biology, University of Copenhagen, Denmark
| | - Nikos S. Hatzakis
- Bio-Nanotechnology
Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck
Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
- bioSYNergy,
Center for Synthetic Biology, University of Copenhagen, Denmark
| |
Collapse
|
27
|
Gupta A, Aartsma TJ, Canters GW. One at a Time: Intramolecular Electron-Transfer Kinetics in Small Laccase Observed during Turnover. J Am Chem Soc 2014; 136:2707-10. [DOI: 10.1021/ja411078b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ankur Gupta
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Thijs J. Aartsma
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Gerard W. Canters
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
28
|
Hatzakis NS. Single molecule insights on conformational selection and induced fit mechanism. Biophys Chem 2014; 186:46-54. [DOI: 10.1016/j.bpc.2013.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 01/24/2023]
|
29
|
JØRGENSEN SUNEK, HATZAKIS NIKOSS. INSIGHTS IN ENZYME FUNCTIONAL DYNAMICS AND ACTIVITY REGULATION BY SINGLE MOLECULE STUDIES. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013300028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The advent of advanced single molecule measurements heralded the arrival of a wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways not deducible by conventional bulk assays. They offered the direct observation and quantification of the abundance and life time of multiple states and transient intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements, thus providing unprecedented insights into complex biological processes. Here we survey the current state of the art in single-molecule fluorescence microscopy methodology for studying the mechanism of enzymatic activity and the insights on protein functional dynamics. We will initially discuss the strategies employed to date, their limitations and possible ways to overcome them, and finally how single enzyme kinetics can advance our understanding on mechanisms underlying function and regulation of proteins. [Formula: see text]Special Issue Comment: This review focuses on functional dynamics of individual enzymes and is related to the review on ion channels by Lu,44 the reviews on mathematical treatment of Flomenbom45 and Sach et al.,46 and review on FRET by Ruedas-Rama et al.41
Collapse
Affiliation(s)
- SUNE K. JØRGENSEN
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| | - NIKOS S. HATZAKIS
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Akkilic N, van der Grient F, Kamran M, Sanghamitra NJM. Chemically-induced redox switching of a metalloprotein reveals thermodynamic and kinetic heterogeneity, one molecule at a time. Chem Commun (Camb) 2014; 50:14523-6. [DOI: 10.1039/c4cc06334a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FRET-based detection of individual azurin–Cy5 molecules shows an on (reduction)–off (oxidation) fluorescence switching, reveals the redox parameters.
Collapse
Affiliation(s)
- Namik Akkilic
- Biological and Soft Matter Physics
- LION
- Leiden University
- 2333 CA Leiden, The Netherlands
| | - Fenna van der Grient
- Biological and Soft Matter Physics
- LION
- Leiden University
- 2333 CA Leiden, The Netherlands
| | - Muhammad Kamran
- Biological and Soft Matter Physics
- LION
- Leiden University
- 2333 CA Leiden, The Netherlands
| | | |
Collapse
|
31
|
Chen P, Keller AM, Joshi CP, Martell DJ, Andoy NM, Benítez JJ, Chen TY, Santiago AG, Yang F. Single-molecule dynamics and mechanisms of metalloregulators and metallochaperones. Biochemistry 2013; 52:7170-83. [PMID: 24053279 DOI: 10.1021/bi400597v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding how cells regulate and transport metal ions is an important goal in the field of bioinorganic chemistry, a frontier research area that resides at the interface of chemistry and biology. This Current Topic reviews recent advances from the authors' group in using single-molecule fluorescence imaging techniques to identify the mechanisms of metal homeostatic proteins, including metalloregulators and metallochaperones. It emphasizes the novel mechanistic insights into how dynamic protein-DNA and protein-protein interactions offer efficient pathways via which MerR-family metalloregulators and copper chaperones can fulfill their functions. This work also summarizes other related single-molecule studies of bioinorganic systems and provides an outlook toward single-molecule imaging of metalloprotein functions in living cells.
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Holzmeister P, Acuna GP, Grohmann D, Tinnefeld P. Breaking the concentration limit of optical single-molecule detection. Chem Soc Rev 2013; 43:1014-28. [PMID: 24019005 DOI: 10.1039/c3cs60207a] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, single-molecule detection has been successfully utilized in the life sciences and materials science. Yet, single-molecule measurements only yield meaningful results when working in a suitable, narrow concentration range. On the one hand, diffraction limits the minimal size of the observation volume in optical single-molecule measurements and consequently a sample must be adequately diluted so that only one molecule resides within the observation volume. On the other hand, at ultra-low concentrations relevant for sensing, the detection volume has to be increased in order to detect molecules in a reasonable timespan. This in turn results in the loss of an optimal signal-to-noise ratio necessary for single-molecule detection. This review discusses the requirements for effective single-molecule fluorescence applications, reflects on the motivation for the extension of the dynamic concentration range of single-molecule measurements and reviews various approaches that have been introduced recently to solve these issues. For the high-concentration limit, we identify four promising strategies including molecular confinement, optical observation volume reduction, temporal separation of signals and well-conceived experimental designs that specifically circumvent the high concentration limit. The low concentration limit is addressed by increasing the measurement speed, parallelization, signal amplification and preconcentration. The further development of these ideas will expand our possibilities to interrogate research questions with the clarity and precision provided only by the single-molecule approach.
Collapse
Affiliation(s)
- Phil Holzmeister
- Braunschweig University of Technology, Institute for Physical & Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany.
| | | | | | | |
Collapse
|
33
|
Schwabe A, Maarleveld TR, Bruggeman FJ. Exploration of the spontaneous fluctuating activity of single enzyme molecules. FEBS Lett 2013; 587:2744-52. [PMID: 23850890 DOI: 10.1016/j.febslet.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/30/2022]
Abstract
Single enzyme molecules display inevitable, stochastic fluctuations in their catalytic activity. In metabolism, for instance, the stochastic activity of individual enzymes is averaged out due to their high copy numbers per single cell. However, many processes inside cells rely on single enzyme activity, such as transcription, replication, translation, and histone modifications. Here we introduce the main theoretical concepts of stochastic single-enzyme activity starting from the Michaelis-Menten enzyme mechanism. Next, we discuss stochasticity of multi-substrate enzymes, of enzymes and receptors with multiple conformational states and finally, how fluctuations in receptor activity arise from fluctuations in signal concentration. This paper aims to introduce the exciting field of single-molecule enzyme kinetics and stochasticity to a wider audience of biochemists and systems biologists.
Collapse
Affiliation(s)
- Anne Schwabe
- Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
34
|
Xu A, Li F, Robinson H, Yeung ES. Can Protein Conformers Be Fractionated by Crystallization? Anal Chem 2013; 85:6372-7. [DOI: 10.1021/ac400762x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aoshuang Xu
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Fenglei Li
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Howard Robinson
- Biology Department, 463, Brookhaven National Laboratory,
Upton, New York 11973-5000, United States
| | - Edward S. Yeung
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
35
|
Pudney CR, Lane RSK, Fielding AJ, Magennis SW, Hay S, Scrutton NS. Enzymatic single-molecule kinetic isotope effects. J Am Chem Soc 2013; 135:3855-64. [PMID: 23402437 DOI: 10.1021/ja309286r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ensemble-based measurements of kinetic isotope effects (KIEs) have advanced physical understanding of enzyme-catalyzed reactions, but controversies remain. KIEs are used as reporters of rate-limiting H-transfer steps, quantum mechanical tunnelling, dynamics and multiple reactive states. Single molecule (SM) enzymatic KIEs could provide new information on the physical basis of enzyme catalysis. Here, single pair fluorescence energy transfer (spFRET) was used to measure SM enzymatic KIEs on the H-transfer catalyzed by the enzyme pentaerythritol tetranitrate reductase. We evaluated a range of methods for extracting the SM KIE from single molecule spFRET time traces. The SM KIE enabled separation of contributions from nonenzymatic protein and fluorophore processes and H-transfer reactions. Our work demonstrates SM KIE analysis as a new method for deconvolving reaction chemistry from intrinsic dynamics.
Collapse
Affiliation(s)
- Christopher R Pudney
- Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|
36
|
Terentyeva TG, Hofkens J, Komatsuzaki T, Blank K, Li CB. Time-Resolved Single Molecule Fluorescence Spectroscopy of an α-Chymotrypsin Catalyzed Reaction. J Phys Chem B 2013; 117:1252-60. [DOI: 10.1021/jp310663v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatyana G. Terentyeva
- Photochemistry & Spectroscopy, Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johan Hofkens
- Photochemistry & Spectroscopy, Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tamiki Komatsuzaki
- Molecule & Life Nonlinear Sciences, Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Japan
| | - Kerstin Blank
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Chun-Biu Li
- Molecule & Life Nonlinear Sciences, Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Japan
| |
Collapse
|
37
|
Wang Q, Goldsmith RH, Jiang Y, Bockenhauer SD, Moerner W. Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. Acc Chem Res 2012; 45:1955-64. [PMID: 22616716 DOI: 10.1021/ar200304t] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single-molecule fluorescence measurements allow researchers to study asynchronous dynamics and expose molecule-to-molecule structural and behavioral diversity, which contributes to the understanding of biological macromolecules. To provide measurements that are most consistent with the native environment of biomolecules, researchers would like to conduct these measurements in the solution phase if possible. However, diffusion typically limits the observation time to approximately 1 ms in many solution-phase single-molecule assays. Although surface immobilization is widely used to address this problem, this process can perturb the system being studied and contribute to the observed heterogeneity. Combining the technical capabilities of high-sensitivity single-molecule fluorescence microscopy, real-time feedback control and electrokinetic flow in a microfluidic chamber, we have developed a device called the anti-Brownian electrokinetic (ABEL) trap to significantly prolong the observation time of single biomolecules in solution. We have applied the ABEL trap method to explore the photodynamics and enzymatic properties of a variety of biomolecules in aqueous solution and present four examples: the photosynthetic antenna allophycocyanin, the chaperonin enzyme TRiC, a G protein-coupled receptor protein, and the blue nitrite reductase redox enzyme. These examples illustrate the breadth and depth of information which we can extract in studies of single biomolecules with the ABEL trap. When confined in the ABEL trap, the photosynthetic antenna protein allophycocyanin exhibits rich dynamics both in its emission brightness and its excited state lifetime. As each molecule discontinuously converts from one emission/lifetime level to another in a primarily correlated way, it undergoes a series of state changes. We studied the ATP binding stoichiometry of the multi-subunit chaperonin enzyme TRiC in the ABEL trap by counting the number of hydrolyzed Cy3-ATP using stepwise photobleaching. Unlike ensemble measurements, the observed ATP number distributions depart from the standard cooperativity models. Single copies of detergent-stabilized G protein-coupled receptor proteins labeled with a reporter fluorophore also show discontinuous changes in emission brightness and lifetime, but the various states visited by the single molecules are broadly distributed. As an agonist binds, the distributions shift slightly toward a more rigid conformation of the protein. By recording the emission of a reporter fluorophore which is quenched by reduction of a nearby type I Cu center, we probed the enzymatic cycle of the redox enzyme nitrate reductase. We determined the rate constants of a model of the underlying kinetics through an analysis of the dwell times of the high/low intensity levels of the fluorophore versus nitrite concentration.
Collapse
Affiliation(s)
- Quan Wang
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| | - Randall H. Goldsmith
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| | - Yan Jiang
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| | - Samuel D. Bockenhauer
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| | - W.E. Moerner
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| |
Collapse
|
38
|
Elmalk AT, Salverda JM, Tabares LC, Canters GW, Aartsma TJ. Probing redox proteins on a gold surface by single molecule fluorescence spectroscopy. J Chem Phys 2012; 136:235101. [PMID: 22779620 DOI: 10.1063/1.4728107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interaction between the fluorescently labeled redox protein, azurin, and a thin gold film is characterized using single-molecule fluorescence intensity and lifetime measurements. Fluorescence quenching starts at distances below 2.3 nm from the gold surface. At shorter distances the quantum yield may decrease down to fourfold for direct attachment of the protein to bare gold. Outside of the quenching range, up to fivefold enhancement of the fluorescence is observed on average with increasing roughness of the gold layer. Fluorescence-detected redox activity of individual azurin molecules, with a lifetime switching ratio of 0.4, is demonstrated for the first time close to a gold surface.
Collapse
Affiliation(s)
- Abdalmohsen T Elmalk
- Leiden Institute of Physics, Leiden University, Huygens Laboratory, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Artés JM, Díez-Pérez I, Gorostiza P. Transistor-like behavior of single metalloprotein junctions. NANO LETTERS 2012; 12:2679-2684. [PMID: 21973084 DOI: 10.1021/nl2028969] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Single protein junctions consisting of azurin bridged between a gold substrate and the probe of an electrochemical tunneling microscope (ECSTM) have been obtained by two independent methods that allowed statistical analysis over a large number of measured junctions. Conductance measurements yield (7.3 ± 1.5) × 10(-6)G(0) in agreement with reported estimates using other techniques. Redox gating of the protein with an on/off ratio of 20 was demonstrated and constitutes a proof-of-principle of a single redox protein field-effect transistor.
Collapse
Affiliation(s)
- Juan M Artés
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028 Spain
| | | | | |
Collapse
|
40
|
Hatzakis NS, Wei L, Jorgensen SK, Kunding AH, Bolinger PY, Ehrlich N, Makarov I, Skjot M, Svendsen A, Hedegård P, Stamou D. Single enzyme studies reveal the existence of discrete functional states for monomeric enzymes and how they are "selected" upon allosteric regulation. J Am Chem Soc 2012; 134:9296-302. [PMID: 22489643 DOI: 10.1021/ja3011429] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allosteric regulation of enzymatic activity forms the basis for controlling a plethora of vital cellular processes. While the mechanism underlying regulation of multimeric enzymes is generally well understood and proposed to primarily operate via conformational selection, the mechanism underlying allosteric regulation of monomeric enzymes is poorly understood. Here we monitored for the first time allosteric regulation of enzymatic activity at the single molecule level. We measured single stochastic catalytic turnovers of a monomeric metabolic enzyme (Thermomyces lanuginosus Lipase) while titrating its proximity to a lipid membrane that acts as an allosteric effector. The single molecule measurements revealed the existence of discrete binary functional states that could not be identified in macroscopic measurements due to ensemble averaging. The discrete functional states correlate with the enzyme's major conformational states and are redistributed in the presence of the regulatory effector. Thus, our data support allosteric regulation of monomeric enzymes to operate via selection of preexisting functional states and not via induction of new ones.
Collapse
Affiliation(s)
- Nikos S Hatzakis
- Bio-Nanotechnology Laboratory, Department of Chemistry, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ochoa MA, Zhou X, Chen P, Loring RF. Interpreting single turnover catalysis measurements with constrained mean dwell times. J Chem Phys 2012; 135:174509. [PMID: 22070308 DOI: 10.1063/1.3657855] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Observation of a chemical transformation at the single-molecule level yields a detailed view of kinetic pathways contributing to the averaged results obtained in a bulk measurement. Studies of a fluorogenic reaction catalyzed by gold nanoparticles have revealed heterogeneous reaction dynamics for these catalysts. Measurements on single nanoparticles yield binary trajectories with stochastic transitions between a dark state in which no product molecules are adsorbed and a fluorescent state in which one product molecule is present. The mean dwell time in either state gives information corresponding to a bulk measurement. Quantifying fluctuations from mean kinetics requires identifying properties of the fluorescence trajectory that are selective in emphasizing certain dynamic processes according to their time scales. We propose the use of constrained mean dwell times, defined as the mean dwell time in a state with the constraint that the immediately preceding dwell time in the other state is, for example, less than a variable time. Calculations of constrained mean dwell times for a kinetic model with dynamic disorder demonstrate that these quantities reveal correlations among dynamic fluctuations at different active sites on a multisite catalyst. Constrained mean dwell times are determined from measurements of single nanoparticle catalysis. The results indicate that dynamical fluctuations at different active sites are correlated, and that especially rapid reaction events produce particularly slowly desorbing product molecules.
Collapse
Affiliation(s)
- Maicol A Ochoa
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
42
|
Nicolardi S, Andreoni A, Tabares LC, van der Burgt YEM, Canters GW, Deelder AM, Hensbergen PJ. Top-down FTICR MS for the identification of fluorescent labeling efficiency and specificity of the Cu-protein azurin. Anal Chem 2012; 84:2512-20. [PMID: 22320330 DOI: 10.1021/ac203370f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent protein labeling has been an indispensable tool in many applications of biochemical, biophysical, and cell biological research. Although detailed information about the labeling stoichiometry and exact location of the label is often not necessary, for other purposes, this information is crucial. We have studied the potential of top-down electrospray ionization (ESI)-15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to study the degree and positioning of fluorescent labeling. For this purpose, we have labeled the Cu-protein azurin with the fluorescent label ATTO 655-N-hydroxysuccinimide(NHS)-ester and fractionated the sample using anion exchange chromatography. Subsequently, individual fractions were analyzed by ESI-15T FTICR to determine the labeling stoichiometry, followed by top-down MS fragmentation, to locate the position of the label. Results showed that, upon labeling with ATTO 655-NHS, multiple different species of either singly or doubly labeled azurin were formed. Top-down fragmentation of different species, either with or without the copper, resulted in a sequence coverage of approximately 50%. Different primary amine groups were found to be (potential) labeling sites, and Lys-122 was identified as the major labeling attachment site. In conclusion, we have demonstrated that anion exchange chromatography in combination with ultrahigh resolution 15T ESI-FTICR top-down mass spectrometry is a valuable tool for measuring fluorescent labeling efficiency and specificity.
Collapse
Affiliation(s)
- Simone Nicolardi
- Biomolecular Mass Spectrometry Unit, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Terentyeva TG, Engelkamp H, Rowan AE, Komatsuzaki T, Hofkens J, Li CB, Blank K. Dynamic disorder in single-enzyme experiments: facts and artifacts. ACS NANO 2012; 6:346-54. [PMID: 22133314 DOI: 10.1021/nn203669r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Using a single-molecule fluorescence approach, the time series of catalytic events of an enzymatic reaction can be monitored, yielding a sequence of fluorescent "on"- and "off"-states. An accurate on/off-assignment is complicated by the intrinsic and extrinsic noise in every single-molecule fluorescence experiment. Using simulated data, the performance of the most widely employed binning and thresholding approach was systematically compared to change point analysis. It is shown that the underlying on- and off-histograms as well as the off-autocorrelation are not necessarily extracted from the "signal'' buried in noise. The shapes of the on- and off-histograms are affected by artifacts introduced by the analysis procedure and depend on the signal-to-noise ratio and the overall fluorescence intensity. For experimental data where the background intensity is not constant over time we consider change point analysis to be more accurate. When using change point analysis for data of the enzyme α-chymotrypsin, no characteristics of dynamic disorder was found. In light of these results, dynamic disorder might not be a general sign of enzymatic reactions.
Collapse
Affiliation(s)
- Tatyana G Terentyeva
- Photochemistry & Spectroscopy, Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Strianese M, Staiano M, Ruggiero G, Labella T, Pellecchia C, D'Auria S. Fluorescence-based biosensors. Methods Mol Biol 2012; 875:193-216. [PMID: 22573441 DOI: 10.1007/978-1-61779-806-1_9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of optical sensors has been a growing research area over the last three decades. A wide range of books and review articles has been published by experts in the field who have highlighted the advantages of optical sensing over other transduction methods. Fluorescence is by far the method most often applied and comes in a variety of schemes. Nowadays, one of the most common approaches in the field of optical biosensors is to combine the high sensitivity of fluorescence detection in combination with the high selectivity provided by ligand-binding proteins. In this chapter we deal with reviewing our recent results on the implementation of fluorescence-based sensors for monitoring environmentally hazardous gas molecules (e.g. nitric oxide, hydrogen sulfide). Reflectivity-based sensors, fluorescence correlation spectroscopy-based (FCS) systems, and sensors relying on the enhanced fluorescence emission on silver island films (SIFs) coupled to the total internal reflection fluorescence mode (TIRF) for the detection of gliadin and other prolamines considered toxic for celiac patients are also discussed herein.
Collapse
Affiliation(s)
- Maria Strianese
- Department of Chemistry, University of Salerno, Salerno, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Bayraktar H, Fields AP, Kralj JM, Spudich JL, Rothschild KJ, Cohen AE. Ultrasensitive measurements of microbial rhodopsin photocycles using photochromic FRET. Photochem Photobiol 2012; 88:90-7. [PMID: 22010969 PMCID: PMC3253248 DOI: 10.1111/j.1751-1097.2011.01011.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial rhodopsins are an important class of light-activated transmembrane proteins whose function is typically studied on bulk samples. Herein, we apply photochromic fluorescence resonance energy transfer to investigate the dynamics of these proteins with sensitivity approaching the single-molecule limit. The brightness of a covalently linked organic fluorophore is modulated by changes in the absorption spectrum of the endogenous retinal chromophore that occur as the molecule undergoes a light-activated photocycle. We studied the photocycles of blue-absorbing proteorhodopsin and sensory rhodopsin II (SRII). Clusters of 2-3 molecules of SRII clearly showed a light-induced photocycle. Single molecules of SRII showed a photocycle upon signal averaging over several illumination cycles.
Collapse
Affiliation(s)
| | | | | | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, Texas
| | - Kenneth J. Rothschild
- Department of Physics and Photonics Center, Boston University, Boston, Massachusetts
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology
- Department of Physics, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
46
|
Redox cycling and kinetic analysis of single molecules of solution-phase nitrite reductase. Proc Natl Acad Sci U S A 2011; 108:17269-74. [PMID: 21969548 DOI: 10.1073/pnas.1113572108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule measurements are a valuable tool for revealing details of enzyme mechanisms by enabling observation of unsynchronized behavior. However, this approach often requires immobilizing the enzyme on a substrate, a process which may alter enzyme behavior. We apply a microfluidic trapping device to allow, for the first time, prolonged solution-phase measurement of single enzymes in solution. Individual redox events are observed for single molecules of a blue nitrite reductase and are used to extract the microscopic kinetic parameters of the proposed catalytic cycle. Changes in parameters as a function of substrate concentration are consistent with a random sequential substrate binding mechanism.
Collapse
|
47
|
Tabares LC, Kostrz D, Elmalk A, Andreoni A, Dennison C, Aartsma TJ, Canters GW. Fluorescence lifetime analysis of nitrite reductase from Alcaligenes xylosoxidans at the single-molecule level reveals the enzyme mechanism. Chemistry 2011; 17:12015-9. [PMID: 21922585 DOI: 10.1002/chem.201102063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Leandro C Tabares
- Leiden Institute of Physics, Huygens Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Krzemiński Ł, Ndamba L, Canters GW, Aartsma TJ, Evans SD, Jeuken LJC. Spectroelectrochemical Investigation of Intramolecular and Interfacial Electron-Transfer Rates Reveals Differences Between Nitrite Reductase at Rest and During Turnover. J Am Chem Soc 2011; 133:15085-93. [DOI: 10.1021/ja204891v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lionel Ndamba
- Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | - Gerard W. Canters
- Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | - Thijs J. Aartsma
- Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | | | | |
Collapse
|
49
|
Kaji T, Yamada T, Ueda R, Xu X, Otomo A. Fabrication of two-dimensional Ta2O5 photonic crystal slabs with ultra-low background emission toward highly sensitive fluorescence spectroscopy. OPTICS EXPRESS 2011; 19:1422-1428. [PMID: 21263683 DOI: 10.1364/oe.19.001422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A two-dimensional tantalum pentoxide (Ta2O5) photonic crystal (PC) slab with low-background emission was fabricated and a 12-fold enhancement of fluorescence from the organic dyes of perylene diimide adsorbed on the surface of the PCs was observed. The background emissions of the Ta2O5 substrates with and without the PCs after thermal annealing at 600°C with oxygen gas were comparable to that of a well-cleaned cover glass. This is to date the lowest level of background emissions of two-dimensional PCs using materials with a high refractive index (>2). The results reported here provide new insights into the fabrication of the photonic devices that enable highly sensitive fluorescence microscopy or optical detections.
Collapse
Affiliation(s)
- Takahiro Kaji
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Nishi-Ku, Kobe, Japan.
| | | | | | | | | |
Collapse
|
50
|
van den Wildenberg SMJL, Bollen YJM, Peterman EJG. How to quantify protein diffusion in the bacterial membrane. Biopolymers 2011; 95:312-21. [PMID: 21240922 DOI: 10.1002/bip.21585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 01/18/2023]
Abstract
Lateral diffusion of proteins in the plane of a biological membrane is important for many vital processes, including energy conversion, signaling, chemotaxis, cell division, protein insertion, and secretion. In bacteria, all these functions are located in a single membrane. Therefore, quantitative measurements of protein diffusion in bacterial membranes can provide insight into many important processes. Diffusion of membrane proteins in eukaryotes has been studied in detail using various experimental techniques, including fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), and particle tracking using single-molecule fluorescence (SMF) microscopy. In case of bacteria, such experiments are intrinsically difficult due to the small size of the cells. Here, we review these experimental approaches to quantify diffusion in general and their strengths and weaknesses when applied to bacteria. In addition, we propose a method to extract multiple diffusion coefficients from trajectories obtained from SMF data, using cumulative probability distributions (CPDs). We demonstrate the power of this approach by quantifying the heterogeneous diffusion of the bacterial membrane protein TatA, which forms a pore for the translocation of folded proteins. Using computer simulations, we study the effect of cell dimensions and membrane curvature on measured CPDs. We find that at least two mobile populations with distinct diffusion coefficients (of 7 and 169 nm(2) ms(-1) , respectively) are necessary to explain the experimental data. The approach described here should be widely applicable for the quantification of membrane-protein diffusion in living bacteria.
Collapse
|