1
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Jandova Z, Vargiu AV, Bonvin AMJJ. Native or Non-Native Protein-Protein Docking Models? Molecular Dynamics to the Rescue. J Chem Theory Comput 2021; 17:5944-5954. [PMID: 34342983 PMCID: PMC8444332 DOI: 10.1021/acs.jctc.1c00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Molecular docking excels at creating a plethora of potential models of protein-protein complexes. To correctly distinguish the favorable, native-like models from the remaining ones remains, however, a challenge. We assessed here if a protocol based on molecular dynamics (MD) simulations would allow distinguishing native from non-native models to complement scoring functions used in docking. To this end, the first models for 25 protein-protein complexes were generated using HADDOCK. Next, MD simulations complemented with machine learning were used to discriminate between native and non-native complexes based on a combination of metrics reporting on the stability of the initial models. Native models showed higher stability in almost all measured properties, including the key ones used for scoring in the Critical Assessment of PRedicted Interaction (CAPRI) competition, namely the positional root mean square deviations and fraction of native contacts from the initial docked model. A random forest classifier was trained, reaching a 0.85 accuracy in correctly distinguishing native from non-native complexes. Reasonably modest simulation lengths of the order of 50-100 ns are sufficient to reach this accuracy, which makes this approach applicable in practice.
Collapse
Affiliation(s)
- Zuzana Jandova
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Attilio Vittorio Vargiu
- Physics
Department, University of Cagliari, Cittadella
Universitaria, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Alexandre M. J. J. Bonvin
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
3
|
Mineev KS, Kryukova EV, Kasheverov IE, Egorova NS, Zhmak MN, Ivanov IA, Senko DA, Feofanov AV, Ignatova AA, Arseniev AS, Utkin YN, Tsetlin VI. Spatial Structure and Activity of Synthetic Fragments of Lynx1 and of Nicotinic Receptor Loop C Models. Biomolecules 2020; 11:biom11010001. [PMID: 33374963 PMCID: PMC7821949 DOI: 10.3390/biom11010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/06/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022] Open
Abstract
Lynx1, membrane-bound protein co-localized with the nicotinic acetylcholine receptors (nAChRs) and regulates their function, is a three-finger protein (TFP) made of three β-structural loops, similarly to snake venom α-neurotoxin TFPs. Since the central loop II of α-neurotoxins is involved in binding to nAChRs, we have recently synthesized the fragments of Lynx1 central loop, including those with the disulfide between Cys residues introduced at N- and C-termini, some of them inhibiting muscle-type nAChR similarly to the whole-size water-soluble Lynx1 (ws-Lynx1). Literature shows that the main fragment interacting with TFPs is the C-loop of both nAChRs and acetylcholine binding proteins (AChBPs) while some ligand-binding capacity is preserved by analogs of this loop, for example, by high-affinity peptide HAP. Here we analyzed the structural organization of these peptide models of ligands and receptors and its role in binding. Thus, fragments of Lynx1 loop II, loop C from the Lymnaea stagnalis AChBP and HAP were synthesized in linear and Cys-cyclized forms and structurally (CD and NMR) and functionally (radioligand assay on Torpedo nAChR) characterized. Connecting the C- and N-termini by disulfide in the ws-Lynx1 fragment stabilized its conformation which became similar to the loop II within the 1H-NMR structure of ws-Lynx1, the activity being higher than for starting linear fragment but lower than for peptide with free cysteines. Introduced disulfides did not considerably change the structure of HAP and of loop C fragments, the former preserving high affinity for α-bungarotoxin, while, surprisingly, no binding was detected with loop C and its analogs.
Collapse
Affiliation(s)
- Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Department of Physico-Chemical Biology and Biotechnology, Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Russia
- Correspondence: ; Tel.: +7-(495)-330-74-83
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Igor E. Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia S. Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Igor A. Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Dmitry A. Senko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey V. Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia A. Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Alexander S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
4
|
Gulsevin A, Meiler J, Horenstein NA. A Computational Analysis of the Factors Governing the Dynamics of α7 nAChR and Its Homologs. Biophys J 2020; 119:1656-1669. [PMID: 33010233 PMCID: PMC7642335 DOI: 10.1016/j.bpj.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor is a homopentameric ion channel from the Cys-loop receptor superfamily targeted for psychiatric indications and inflammatory pain. Molecular dynamics studies of the receptor have focused on residue mobility and global conformational changes to address receptor function. However, a comparative analysis of α7 with its homologs that cannot trigger channel opening has not been made so far. To identify the residues involved in α7 activation, we ran triplicate 500-ns molecular dynamics simulations with an α7 extracellular domain homology model and two acetylcholine-binding protein homologs. We tested the effect of ligand binding and amino acid sequence on the structure and dynamics of the three proteins. We found that mobile regions identified based on root mean-square deviation and root mean-square fluctuation values are not always consistent among the individual α7 extracellular domain simulations. Comparison of the replica-average properties of the three proteins based on dynamic cross-correlation maps showed that ligand binding affects the coupling between the C-loop and the Cys-loop, vestibular loop, and β1-β2 loops. In addition, the main-immunogenic-region-like domain of α7 went through correlated motions with multiple domains of the receptor. These correlated motions were absent or diminished in α7 homologs, suggesting a unique role in α7 activation.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Biochemistry Division, University of Florida, Gainesville, Florida; Department of Chemistry, Vanderbilt University, Nashville, Tennessee.
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Leipzig University Medical School, Institute for Drug Discovery, Leipzig, Germany
| | - Nicole A Horenstein
- Department of Chemistry, Biochemistry Division, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Gulsevin A. Nicotinic receptor pharmacology in silico: Insights and challenges. Neuropharmacology 2020; 177:108257. [PMID: 32738311 DOI: 10.1016/j.neuropharm.2020.108257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChR) are homo- or hetero-pentameric ligand-gated ion channels of the Cys-loop superfamily and play important roles in the nervous system and muscles. Studies on nAChR benefit from in silico modeling due to the lack of high-resolution structures for most receptor subtypes and challenges in experiments addressing the complex mechanism of activation involving allosteric sites. Although there is myriad of computational modeling studies on nAChR, the multitude of the methods and parameters used in these studies makes modeling nAChR a daunting task, particularly for the non-experts in the field. To address this problem, the modeling literature on Torpedo nAChR and α7 nAChR were focused on as examples of heteromeric and homomeric nAChR, and the key in silico modeling studies between the years 1995-2019 were concisely reviewed. This was followed by a critical analysis of these studies by comparing the findings with each other and with the emerging experimental and computational data on nAChR. Based on these critical analyses, suggestions were made to guide the future researchers in the field of in silico modeling of nAChR. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA, 37221.
| |
Collapse
|
6
|
Interactions of the α3β2 Nicotinic Acetylcholine Receptor Interfaces with α-Conotoxin LsIA and its Carboxylated C-terminus Analogue: Molecular Dynamics Simulations. Mar Drugs 2020; 18:md18070349. [PMID: 32635340 PMCID: PMC7401271 DOI: 10.3390/md18070349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Notably, α-conotoxins with carboxy-terminal (C-terminal) amidation are inhibitors of the pentameric nicotinic acetylcholine receptors (nAChRs), which are therapeutic targets for neurological diseases and disorders. The (α3)2(β2)3 nAChR subunit arrangement comprises a pair of α3(+)β2(−) and β2(+)α3(−) interfaces, and a β2(+)β2(−) interface. The β2(+)β2(−) interface has been suggested to have higher agonist affinity relative to the α3(+)β2(−) and β2(+)α3(−) interfaces. Nevertheless, the interactions formed by these subunit interfaces with α-conotoxins are not well understood. Therefore, in order to address this, we modelled the interactions between α-conotoxin LsIA and the α3β2 subtype. The results suggest that the C-terminal carboxylation of LsIA predominantly influenced the enhanced contacts of the conotoxin via residues P7, P14 and C17 on LsIA at the α3(+)β2(−) and β2(+)α3(−) interfaces. However, this enhancement is subtle at the β2(+)β2(−) site, which can compensate the augmented interactions by LsIA at α3(+)β2(−) and β2(+)α3(−) binding sites. Therefore, the divergent interactions at the individual binding interface may account for the minor changes in binding affinity to α3β2 subtype by C-terminal carboxylation of LsIA versus its wild type, as shown in previous experimental results. Overall, these findings may facilitate the development of new drug leads or subtype-selective probes.
Collapse
|
7
|
Gulsevin A, Papke RL, Horenstein N. In Silico Modeling of the α7 Nicotinic Acetylcholine Receptor: New Pharmacological Challenges Associated with Multiple Modes of Signaling. Mini Rev Med Chem 2020; 20:841-864. [PMID: 32000651 PMCID: PMC8719523 DOI: 10.2174/1389557520666200130105256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
The α7 nicotinic acetylcholine receptor is a homopentameric ion-channel of the Cys-loop superfamily characterized by its low probability of opening, high calcium permeability, and rapid desensitization. The α7 receptor has been targeted for the treatment of the cognitive symptoms of schizophrenia, depression, and Alzheimer's disease, but it is also involved in inflammatory modulation as a part of the cholinergic anti-inflammatory pathway. Despite its functional importance, in silico studies of the α7 receptor cannot produce a general model explaining the structural features of receptor activation, nor predict the mode of action for various ligand classes. Two particular problems in modeling the α7 nAChR are the absence of a high-resolution structure and the presence of five potentially nonequivalent orthosteric ligand binding sites. There is wide variability regarding the templates used for homology modeling, types of ligands investigated, simulation methods, and simulation times. However, a systematic survey focusing on the methodological similarities and differences in modeling α7 has not been done. In this work, we make a critical analysis of the modeling literature of α7 nAChR by comparing the findings of computational studies with each other and with experimental studies under the main topics of structural studies, ligand binding studies, and comparisons with other nAChR. In light of our findings, we also summarize current problems in the field and make suggestions for future studies concerning modeling of the α7 receptor.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610, United States
| | - Nicole Horenstein
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| |
Collapse
|
8
|
Wen J, Hung A. Effects of C-Terminal Carboxylation on α-Conotoxin LsIA Interactions with Human α7 Nicotinic Acetylcholine Receptor: Molecular Simulation Studies. Mar Drugs 2019; 17:md17040206. [PMID: 30987002 PMCID: PMC6521072 DOI: 10.3390/md17040206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 01/25/2023] Open
Abstract
α-Conotoxins selectively bind to nicotinic acetylcholine receptors (nAChRs), which are therapeutic targets due to their important role in signaling transmission in excitable cells. A previous experimental study has demonstrated that carboxylation of the C-terminal of α-conotoxin LsIA reduces its potency to inhibit human α7 nAChR relative to naturally amidated LsIA. However, little is known about the contribution of conformational changes in the receptor and interactions, induced by C-terminal amidation/carboxylation of conotoxins, to selective binding to nAChRs, since most conotoxins and some disulfide-rich peptides from other conotoxin subfamilies possess a naturally amidated C-terminal. In this study, we employ homology modeling and molecular dynamics (MD) simulations to propose the determinants for differential interactions between amidated and carboxylated LsIAs with α7 nAChR. Our findings indicate an overall increased number of contacts favored by binding of amidated LsIA versus its carboxylated counterpart. Toxin-receptor pairwise interactions, which may play a role in enhancing the potency of the former, include ARG10-TRP77, LEU141 and CYS17-GLN79 via persistent hydrogen bonds and cation-π interactions, which are weakened in the carboxylated form due to a strong intramolecular salt-bridge formed by ARG10 and carboxylated C-terminus. The binding of amidated LsIA also induces enhanced movements in loop C and the juxtamembrane Cys-loop that are closely associated with receptor function. Additionally, the impacts of binding of LsIA on the overall structure and inter-subunit contacts were examined using inter-residue network analysis, suggesting a clockwise tilting of the α7 C and F loops upon binding to carboxylated LsIA, which is absent for amidated LsIA binding. The predicted molecular mechanism of LsIA binding to the α7 receptor may provide new insights into the important role of the C-terminal in the binding potency of conotoxins at neuronal nAChRs for pharmacological purposes.
Collapse
Affiliation(s)
- Jierong Wen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC3001, Australia.
| | - Andrew Hung
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC3001, Australia.
| |
Collapse
|
9
|
Chiodo L, Malliavin TE, Giuffrida S, Maragliano L, Cottone G. Closed-Locked and Apo-Resting State Structures of the Human α7 Nicotinic Receptor: A Computational Study. J Chem Inf Model 2018; 58:2278-2293. [PMID: 30359518 DOI: 10.1021/acs.jcim.8b00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nicotinic acetylcholine receptors, belonging to the Cys-loop superfamily of ligand-gated ion channels (LGICs), are membrane proteins present in neurons and at neuromuscular junctions. They are responsible for signal transmission, and their function is regulated by neurotransmitters, agonists, and antagonists drugs. A detailed knowledge of their conformational transition in response to ligand binding is critical to understanding the basis of ligand-receptor interaction, in view of new pharmacological approaches to control receptor activity. However, the scarcity of experimentally derived structures of human channels makes this perspective extremely challenging. To contribute overcoming this issue, we have recently reported structural models for the open and the desensitized states of the human α7 nicotinic receptor. Here, we provide all-atom structural models of the same receptor in two different nonconductive states. The first structure, built via homology modeling and relaxed with extensive Molecular Dynamics simulations, represents the receptor bound to the natural antagonist α-conotoxin ImI. After comparison with available experimental data and computational models of other eukaryotic LGICs, we deem it consistent with the "closed-locked" state. The second model, obtained with simulations from the spontaneous relaxation of the open, agonist-bound α7 structure after ligand removal, recapitulates the characteristics of the apo-resting state of the receptor. These results add to our previous work on the active and desensitized state conformations, contributing to the structural characterization of the conformational landscape of the human α7 receptor and suggesting benchmarks to discriminate among conformations found in experiments or in simulations of LGICs. In particular key interactions at the interface between the extracellular domain and the transmembrane domain are identified, that could be critical to the α7 receptor function.
Collapse
Affiliation(s)
- Letizia Chiodo
- Department of Engineering , Campus Bio-Medico University of Rome , Via Á. del Portillo 21 , 00128 Rome , Italy
| | - Thérèse E Malliavin
- Institut Pasteur and CNRS UMR 3528, Unité de Bioinformatique Structurale , 25-28 rue du Dr Roux , 75015 Paris , France.,Centre de Bioinformatique, Biostatistique et Biologie Intégrative , Institut Pasteur and CNRS USR 3756 , 25-28 rue du Dr Roux , 75015 Paris , France
| | - Sergio Giuffrida
- Department of Physics and Chemistry , University of Palermo , Viale delle Scienze Ed. 17 , 90128 Palermo , Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe) , Istituto Italiano di Tecnologia , Largo Rosanna Benzi, 10 , 16132 Genoa , Italy.,IRCCS Ospedale Policlinico San Martino , Largo Rosanna Benzi 10 , 16132 Genoa , Italy
| | - Grazia Cottone
- Department of Physics and Chemistry , University of Palermo , Viale delle Scienze Ed. 17 , 90128 Palermo , Italy
| |
Collapse
|
10
|
Ion BF, Wells MM, Chen Q, Xu Y, Tang P. Ketamine Inhibition of the Pentameric Ligand-Gated Ion Channel GLIC. Biophys J 2017; 113:605-612. [PMID: 28793215 DOI: 10.1016/j.bpj.2017.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
Ketamine inhibits pentameric ligand-gated ion channels (pLGICs), including the bacterial pLGIC from Gloeobacter violaceus (GLIC). The crystal structure of GLIC shows R-ketamine bound to an extracellular intersubunit cavity. Here, we performed molecular dynamics simulations of GLIC in the absence and presence of R- or S-ketamine. No stable binding of S-ketamine in the original cavity was observed in the simulations, largely due to its unfavorable access to residue D154, which provides important electrostatic interactions to stabilize R-ketamine binding. Contrary to the symmetric binding shown in the crystal structure, R-ketamine moved away from some of the binding sites and was bound to GLIC asymmetrically at the end of simulations. The asymmetric binding is consistent with the experimentally measured negative cooperativity of ketamine binding to GLIC. In the presence of R-ketamine, all subunits showed changes in structure and dynamics, irrespective of binding stability; the extracellular intersubunit cavity expanded and intersubunit electrostatic interactions involved in channel activation were altered. R-ketamine binding promoted a conformational shift toward closed GLIC. Conformational changes near the ketamine-binding site were propagated to the interface between the extracellular and transmembrane domains, and further to the pore-lining TM2 through two pathways: pre-TM1 and the β1-β2 loop. Both signaling pathways have been predicted previously using the perturbation-based Markovian transmission model. The study provides a structural and dynamics basis for the inhibitory modulation of ketamine on pLGICs.
Collapse
Affiliation(s)
- Bogdan F Ion
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marta M Wells
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qiang Chen
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan Xu
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pei Tang
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
11
|
Zhou HX. Gating Motions and Stationary Gating Properties of Ionotropic Glutamate Receptors: Computation Meets Electrophysiology. Acc Chem Res 2017; 50:814-822. [PMID: 28186717 PMCID: PMC5398286 DOI: 10.1021/acs.accounts.6b00598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels essential to all aspects of brain function, including higher order processes such as learning and memory. For decades, electrophysiology was the primary means for characterizing the function of iGluRs and gaining mechanistic insight. Since the turn of the century, structures of isolated water-soluble domains and transmembrane-domain-containing constructs have provided the basis for formulating mechanistic hypotheses. Because these structures only represent sparse, often incomplete snapshots during iGluR activation, significant gaps in knowledge remain regarding structures, energetics, and dynamics of key substates along the functional processes. Some of these gaps have recently been filled by molecular dynamics simulations and theoretical modeling. In this Account, I describe our work in the latter arena toward characterizing iGluR gating motions and developing a formalism for calculating thermodynamic and kinetic properties of stationary gating. The structures of iGluR subunits have a highly modular architecture, in which the ligand-binding domain and the transmembrane domain are well separated and connected by flexible linkers. The ligand-binding domain in turn is composed of two subdomains. During activation, agonist binding induces the closure of the intersubdomain cleft. The cleft closure leads to the outward pulling of a linker tethered to the extracellular terminus of the major pore-lining helix of the transmembrane domain, thereby opening the channel. This activation model based on molecular dynamics simulations was validated by residue-specific information from electrophysiological data on cysteine mutants. A further critical test was made through introducing glycine insertions in the linker. Molecular dynamics simulations showed that, with lengthening by glycine insertions, the linker became less effective in pulling the pore-lining helix, leading to weaker stabilization of the channel-open state. In full agreement, single-channel recordings showed that the channel open probability decreased progressively as the linker was lengthened by glycine insertions. Crystal structures of ligand-binding domains showing different degrees of cleft closure between full and partial agonists suggested a simple mechanism for one subtype of iGluRs, but mysteries surrounded a second subtype, where the ligand-binding domains open to similar degrees when bound with either full or partial agonists. Our free energy simulations now suggest that broadening of the free energy basin for cleft closure is a plausible solution. A theoretical basis for these mechanistic hypotheses on partial agonisms was provided by a model for the free energy surface of a full receptor, where the stabilization by cleft closure is transmitted via the linker to the channel-open state. This model can be implemented by molecular dynamics simulations to predict thermodynamic and kinetics properties of stationary gating that are amenable to direct test by single-channel recordings. Close integration between computation and electrophysiology holds great promises in revealing the conformations of key substates in functional processes and the mechanisms of disease-associated mutations.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and
Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
12
|
Kalita MM, Fischer WB. Asymmetric dynamics of ion channel forming proteins - Hepatitis C virus (HCV) p7 bundles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1462-70. [PMID: 27079148 DOI: 10.1016/j.bbamem.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/01/2023]
Abstract
Protein p7 of hepatitis C virus (HCV) is a short 63 amino acid membrane protein which homo-oligomerises in the lipid membrane to form ion and proton conducting bundles. Two different genotypes (GTs) of p7, 1a and 5a, are used to simulate hexameric bundles of the protein embedded in a fully hydrated lipid bilayer during 400 ns molecular dynamics (MD) simulations. Whilst the bundle of GT 1a is based on a fully computational derived structure, the bundle of GT 5a is based on NMR spectroscopic data. Results of a full correlation analysis (FCA) reveal that albeit structural differences both bundles screen local minima during the simulation. The collective motion of the protein domains is asymmetric. No 'breathing-mode'-like dynamics is observed. The presence of divalent ions, such as Ca-ions affects the dynamics of especially solvent exposed parts of the protein, but leaves the asymmetric domain motion unaffected.
Collapse
Affiliation(s)
- Monoj Mon Kalita
- Institute of Biophotonics and Biophotonics and Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wolfgang B Fischer
- Institute of Biophotonics and Biophotonics and Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan, ROC.
| |
Collapse
|
13
|
Di Maio D, Chandramouli B, Brancato G. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel. PLoS One 2015; 10:e0140258. [PMID: 26465896 PMCID: PMC4605793 DOI: 10.1371/journal.pone.0140258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/12/2015] [Indexed: 11/29/2022] Open
Abstract
Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested.
Collapse
Affiliation(s)
- Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | | | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- * E-mail:
| |
Collapse
|
14
|
Mohammad Hosseini Naveh Z, Malliavin TE, Maragliano L, Cottone G, Ciccotti G. Conformational changes in acetylcholine binding protein investigated by temperature accelerated molecular dynamics. PLoS One 2014; 9:e88555. [PMID: 24551117 PMCID: PMC3923797 DOI: 10.1371/journal.pone.0088555] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit.
Collapse
Affiliation(s)
| | - Therese E. Malliavin
- Institut Pasteur and CNRS UMR 3528, Unité de Bioinformatique Structurale, Paris, France
| | - Luca Maragliano
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Grazia Cottone
- School of Physics, University College Dublin, Dublin, Ireland
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
- * E-mail:
| | - Giovanni Ciccotti
- School of Physics, University College Dublin, Dublin, Ireland
- Department of Physics, University of Roma “La Sapienza”, Rome, Italy
| |
Collapse
|
15
|
Rashid MH, Kuyucak S. Free Energy Simulations of Binding of HsTx1 Toxin to Kv1 Potassium Channels: the Basis of Kv1.3/Kv1.1 Selectivity. J Phys Chem B 2014; 118:707-16. [DOI: 10.1021/jp410950h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- M. Harunur Rashid
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
16
|
Dai J, Zhou HX. An NMDA receptor gating mechanism developed from MD simulations reveals molecular details underlying subunit-specific contributions. Biophys J 2013; 104:2170-81. [PMID: 23708357 DOI: 10.1016/j.bpj.2013.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/22/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are obligate heterotetrameric ligand-gated ion channels that play critical roles in learning and memory. Here, using targeted molecular dynamics simulations, we developed an atomistic model for the gating of the GluN1/GluN2A NMDA receptor. Upon agonist binding, lobe closure of the ligand-binding domain produced outward pulling of the M3-D2 linkers, leading to outward movements of the C-termini of the pore-lining M3 helices and opening of the channel. The GluN2A subunits, similar to the distal (B/D) subunits in the homotetrameric GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate receptor, had greater M3 outward movements and thus contributed more to channel gating than the GluN1 subunits. Our gating model is validated by functional studies, including cysteine modification data indicating wider accessibility to the GluN1 M3 helices than to the GluN2A M3 helices from the lumen of the open channel, and reveals why the Lurcher mutation in GluN1 has a stronger ability in maintaining channel opening than the counterpart in GluN2A. The resulting structural model for the open state provides an explanation for the Ca(2+) permeability of NMDA receptors, and the structural differences between the closed and open states form the basis for drug design.
Collapse
Affiliation(s)
- Jian Dai
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
17
|
Abstract
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communication in the nervous system and are involved in fundamental processes such as attention, learning, and memory. They are oligomeric protein assemblies that convert a chemical signal into an ion flux through the postsynaptic membrane, but the molecular mechanism of gating ions has remained elusive. Here, we present atomistic molecular dynamics simulations of the prokaryotic channels from Gloeobacter violaceus (GLIC) and Erwinia chrysanthemi (ELIC), whose crystal structures are thought to represent the active and the resting states of pLGICs, respectively, and of the eukaryotic glutamate-gated chloride channel from Caenorhabditis elegans (GluCl), whose open-channel structure was determined complexed with the positive allosteric modulator ivermectin. Structural observables extracted from the trajectories of GLIC and ELIC are used as progress variables to analyze the time evolution of GluCl, which was simulated in the absence of ivermectin starting from the structure with bound ivermectin. The trajectory of GluCl with ivermectin removed shows a sequence of structural events that couple agonist unbinding from the extracellular domain to ion-pore closing in the transmembrane domain. Based on these results, we propose a structural mechanism for the allosteric communication leading to deactivation/activation of the GluCl channel. This model of gating emphasizes the coupling between the quaternary twisting and the opening/closing of the ion pore and is likely to apply to other members of the pLGIC family.
Collapse
|
18
|
Mowrey D, Cheng MH, Liu LT, Willenbring D, Lu X, Wymore T, Xu Y, Tang P. Asymmetric ligand binding facilitates conformational transitions in pentameric ligand-gated ion channels. J Am Chem Soc 2013; 135:2172-80. [PMID: 23339564 DOI: 10.1021/ja307275v] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anesthetic propofol inhibits the currents of the homopentameric ligand-gated ion channel GLIC, yet the crystal structure of GLIC with five propofol molecules bound symmetrically shows an open-channel conformation. To address this dilemma and determine if the symmetry of propofol binding sites affects the channel conformational transition, we performed a total of 1.5 μs of molecular dynamics simulations for different GLIC systems with propofol occupancies of 0, 1, 2, 3, and 5. GLIC without propofol binding or with five propofol molecules bound symmetrically, showed similar channel conformation and hydration status over multiple replicates of 100-ns simulations. In contrast, asymmetric binding to one, two or three equivalent sites in different subunits accelerated the channel dehydration, increased the conformational heterogeneity of the pore-lining TM2 helices, and shifted the lateral and radial tilting angles of TM2 toward a closed-channel conformation. The results differentiate two groups of systems based on the propofol binding symmetry. The difference between symmetric and asymmetric groups is correlated with the variance in the propofol-binding cavity adjacent to the hydrophobic gate and the force imposed by the bound propofol. Asymmetrically bound propofol produced greater variance in the cavity size that could further elevate the conformation heterogeneity. The force trajectory generated by propofol in each subunit over the course of a simulation exhibits an ellipsoidal shape, which has the larger component tangential to the pore. Asymmetric propofol binding creates an unbalanced force that expedites the channel conformation transitions. The findings from this study not only suggest that asymmetric binding underlies the propofol functional inhibition of GLIC, but also advocate for the role of symmetry breaking in facilitating channel conformational transitions.
Collapse
Affiliation(s)
- David Mowrey
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ashby JA, McGonigle IV, Price KL, Cohen N, Comitani F, Dougherty DA, Molteni C, Lummis SCR. GABA binding to an insect GABA receptor: a molecular dynamics and mutagenesis study. Biophys J 2012. [PMID: 23200041 DOI: 10.1016/j.bpj.2012.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RDL receptors are GABA-activated inhibitory Cys-loop receptors found throughout the insect CNS. They are a key target for insecticides. Here, we characterize the GABA binding site in RDL receptors using computational and electrophysiological techniques. A homology model of the extracellular domain of RDL was generated and GABA docked into the binding site. Molecular dynamics simulations predicted critical GABA binding interactions with aromatic residues F206, Y254, and Y109 and hydrophilic residues E204, S176, R111, R166, S176, and T251. These residues were mutated, expressed in Xenopus oocytes, and their functions assessed using electrophysiology. The data support the binding mechanism provided by the simulations, which predict that GABA forms many interactions with binding site residues, the most significant of which are cation-π interactions with F206 and Y254, H-bonds with E204, S205, R111, S176, T251, and ionic interactions with R111 and E204. These findings clarify the roles of a range of residues in binding GABA in the RDL receptor, and also show that molecular dynamics simulations are a useful tool to identify specific interactions in Cys-loop receptors.
Collapse
|
20
|
Du J, Dong H, Zhou HX. Size matters in activation/inhibition of ligand-gated ion channels. Trends Pharmacol Sci 2012; 33:482-93. [PMID: 22789930 DOI: 10.1016/j.tips.2012.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022]
Abstract
Cys loop, glutamate, and P2X receptors are ligand-gated ion channels (LGICs) with 5, 4, and 3 protomers, respectively. There is now growing atomic level understanding of their gating mechanisms. Although each family is unique in the architecture of the ligand-binding pocket, the pathway for motions to propagate from ligand-binding domain to transmembrane domain, and the gating motions of the transmembrane domain, there are common features among the LGICs, which are the focus of the present review. In particular, agonists and competitive antagonists apparently induce opposite motions of the binding pocket. A simple way to control the motional direction is ligand size. Agonists, usually small, induce closure of the binding pocket, leading to opening of the channel pore, whereas antagonists, usually large, induce opening of the binding pocket, thereby stabilizing the closed pore. A cross-family comparison of the gating mechanisms of the LGICs, focusing in particular on the role played by ligand size, provides new insight on channel activation/inhibition and design of pharmacological compounds.
Collapse
Affiliation(s)
- Juan Du
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
21
|
Gating mechanism of a P2X4 receptor developed from normal mode analysis and molecular dynamics simulations. Proc Natl Acad Sci U S A 2012; 109:4140-5. [PMID: 22378652 DOI: 10.1073/pnas.1119546109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
P2X receptors are trimeric ATP-gated cation channels participating in diverse physiological processes. How ATP binding triggers channel opening remains unclear. Here the gating mechanism of a P2X receptor was studied by normal mode analysis and molecular dynamics (MD) simulations. Based on the resting-state crystal structure, a normal mode involving coupled motions of three β-strands (β1, β13, and β14) at the trimeric interface of the ligand-binding ectodomain and the pore-lining helix (TM2) in the transmembrane domain (TMD) was identified. The resulting widening of the fenestrations above the TMD and opening of the transmembrane pore produce known signatures of channel activation. In MD simulations, ATP was initially placed in the putative binding pocket (defined by four charged residues located in β1, β13 and β14) in two opposite orientations, with the adenine either proximal or distal to the TMD. In the proximal orientation, the triphosphate group extends outward to draw in the four charged residues, leading to closure of β13/β14 toward β1. The adenine ring, wedged between β1 and β13, acts as a fulcrum for the β14 lever, turning a modest closure around the triphosphate group into significant opening of the pre-TM2 loop. The motions of these β-strands are similar to those in the putative channel-activation normal mode. In the distal orientation, the ATP stabilizes the trimeric interface and the closure of the pre-TM2 loop, possibly representing desensitization. Our computational studies produced the first complete model, supported by experimental data, for how ATP binding triggers activation of a P2X receptor.
Collapse
|
22
|
Taly A, Colas C, Malliavin T, Blondel A, Nilges M, Corringer PJ, Joseph D. Discrimination of agonists versus antagonists of nicotinic ligands based on docking onto AChBP structures. J Mol Graph Model 2011; 30:100-9. [PMID: 21764343 DOI: 10.1016/j.jmgm.2011.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/27/2011] [Accepted: 06/22/2011] [Indexed: 11/26/2022]
Abstract
Numerous high-resolution crystallographic structures of the acetylcholine binding protein (AChBP), a molluscan cholinergic protein, homologous to the extracellular domain of nicotinic acetylcholine receptors, are available. This offers opportunities to model the interaction between various ligands and the acetylcholine binding site. Herein we present a study of the interplay between ligand binding and motions of the C-loop capping the binding site. Nicotinic agonists and antagonists were docked on AChBP X-ray structures. It is shown that the studied agonists and antagonists can be discriminated according to their higher affinities for structures respectively obtained in the presence of agonists or antagonists, highlighting the fact that AChBP structures retain a pharmacological footprint of the compound used in crystallography experiments. A detailed analysis of the binding site cavities suggests that this property is mainly related to the shape of the cavities.
Collapse
Affiliation(s)
- Antoine Taly
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 74 Route du Rhin-BP 60024, 67401 Illkirch Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Dong H, Zhou HX. Atomistic mechanism for the activation and desensitization of an AMPA-subtype glutamate receptor. Nat Commun 2011; 2:354. [PMID: 21673675 PMCID: PMC3518439 DOI: 10.1038/ncomms1362] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/20/2011] [Indexed: 11/09/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate fast excitatory synaptic transmission in the central nervous system. Upon agonist binding, an iGluR opens to allow the flow of cations and subsequently enters into a desensitized state. It remains unclear how agonist binding to the ligand-binding domain (LBD) is transmitted to the transmembrane domain (TMD) for channel activation and desensitization. Here we report molecular dynamics simulations of an AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-subtype iGluR in explicit water and membrane. Channel opening and closing were observed in simulations of the activation and desensitization processes, respectively. The motions of the LBD-TMD linkers along the central axis of the receptor and in the lateral plane contributed cooperatively to channel opening and closing. The detailed mechanism of channel activation and desensitization suggested by the simulations here is consistent with existing data and may serve as a guide for new experiments and for the design of pharmacological agents.
Collapse
Affiliation(s)
- Hao Dong
- Department of Physics, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
24
|
Nilmeier J, Hua L, Coutsias EA, Jacobson MP. Assessing protein loop flexibility by hierarchical Monte Carlo sampling. J Chem Theory Comput 2011; 7:1564-1574. [PMID: 21743800 PMCID: PMC3129859 DOI: 10.1021/ct1006696] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Loop flexibility is often crucial to protein biological function in solution. We report a new Monte Carlo method for generating conformational ensembles for protein loops and cyclic peptides. The approach incorporates the triaxial loop closure method which addresses the inverse kinematic problem for generating backbone move sets that do not break the loop. Sidechains are sampled together with the backbone in a hierarchical way, making it possible to make large moves that cross energy barriers. As an initial application, we apply the method to the flexible loop in triosephosphate isomerase that caps the active site, and demonstrate that the resulting loop ensembles agree well with key observations from previous structural studies. We also demonstrate, with 3 other test cases, the ability to distinguish relatively flexible and rigid loops within the same protein.
Collapse
Affiliation(s)
- Jerome Nilmeier
- Department of Pharmaceutical Chemistry, University of California in San Francisco, San Francisco, California 94158-2517
| | - Lan Hua
- Department of Pharmaceutical Chemistry, University of California in San Francisco, San Francisco, California 94158-2517
| | - Evangelos A. Coutsias
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California in San Francisco, San Francisco, California 94158-2517
| |
Collapse
|
25
|
Yu R, Craik DJ, Kaas Q. Blockade of neuronal α7-nAChR by α-conotoxin ImI explained by computational scanning and energy calculations. PLoS Comput Biol 2011; 7:e1002011. [PMID: 21390272 PMCID: PMC3048385 DOI: 10.1371/journal.pcbi.1002011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/05/2011] [Indexed: 01/01/2023] Open
Abstract
α-Conotoxins potently inhibit isoforms of nicotinic acetylcholine receptors (nAChRs), which are essential for neuronal and neuromuscular transmission. They are also used as neurochemical tools to study nAChR physiology and are being evaluated as drug leads to treat various neuronal disorders. A number of experimental studies have been performed to investigate the structure-activity relationships of conotoxin/nAChR complexes. However, the structural determinants of their binding interactions are still ambiguous in the absence of experimental structures of conotoxin-receptor complexes. In this study, the binding modes of α-conotoxin ImI to the α7-nAChR, currently the best-studied system experimentally, were investigated using comparative modeling and molecular dynamics simulations. The structures of more than 30 single point mutants of either the conotoxin or the receptor were modeled and analyzed. The models were used to explain qualitatively the change of affinities measured experimentally, including some nAChR positions located outside the binding site. Mutational energies were calculated using different methods that combine a conformational refinement procedure (minimization with a distance dependent dielectric constant or explicit water, or molecular dynamics using five restraint strategies) and a binding energy function (MM-GB/SA or MM-PB/SA). The protocol using explicit water energy minimization and MM-GB/SA gave the best correlations with experimental binding affinities, with an R2 value of 0.74. The van der Waals and non-polar desolvation components were found to be the main driving force for binding of the conotoxin to the nAChR. The electrostatic component was responsible for the selectivity of the various ImI mutants. Overall, this study provides novel insights into the binding mechanism of α-conotoxins to nAChRs and the methodological developments reported here open avenues for computational scanning studies of a rapidly expanding range of wild-type and chemically modified α-conotoxins. Conotoxins are peptide toxins extracted from the venom of carnivorous marine cone snails. Members of the α-conotoxin subfamily potently block nicotinic acetylcholine receptors (nAChRs), which are involved in signal transmission between two neurons or between neurons and muscle fibers. nAChRs are important pharmacological targets due to their involvement in the transmission of pain stimuli and also in numerous neurone diseases and disorders. Their potency and specificity have led to the development of α-conotoxins as drug leads, and also to their use in the investigation of the role of nAChRs in various physiological processes. The most studied conotoxin/nAChR system, ImI/α7, was modeled in this study, and several computational methods were tested for their ability to explain the perturbations observed experimentally after introducing single point mutations into either ImI or the α7 receptor. The aim of this study was to establish a theoretical basis to rapidly identify new α-conotoxin mutants that might have improved specificity and affinity for a given receptor subtype. Furthermore, hundreds of thousands of conotoxins are predicted to exist, and computational methods are needed to help streamline the discovery of their molecular targets.
Collapse
Affiliation(s)
- Rilei Yu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David J. Craik
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Quentin Kaas
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
26
|
Zheng W, Auerbach A. Decrypting the sequence of structural events during the gating transition of pentameric ligand-gated ion channels based on an interpolated elastic network model. PLoS Comput Biol 2011; 7:e1001046. [PMID: 21253563 PMCID: PMC3017109 DOI: 10.1371/journal.pcbi.1001046] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/01/2010] [Indexed: 01/22/2023] Open
Abstract
Despite many experimental and computational studies of the gating transition of pentameric ligand-gated ion channels (pLGICs), the structural basis of how ligand binding couples to channel gating remains unknown. By using a newly developed interpolated elastic network model (iENM), we have attempted to compute a likely transition pathway from the closed- to the open-channel conformation of pLGICs as captured by the crystal structures of two prokaryotic pLGICs. The iENM pathway predicts a sequence of structural events that begins at the ligand-binding loops and is followed by the displacements of two key loops (loop 2 and loop 7) at the interface between the extracellular and transmembrane domain, the tilting/bending of the pore-lining M2 helix, and subsequent movements of M4, M3 and M1 helices in the transmembrane domain. The predicted order of structural events is in broad agreement with the Φ-value analysis of α subunit of nicotinic acetylcholine receptor mutants, which supports a conserved core mechanism for ligand-gated channel opening in pLGICs. Further perturbation analysis has supported the critical role of certain intra-subunit and inter-subunit interactions in dictating the above sequence of events.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| | - Anthony Auerbach
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
27
|
Mohan S, Sheena A, Poulose N, Anilkumar G. Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition. PLoS One 2010; 5:e14217. [PMID: 21151967 PMCID: PMC2997047 DOI: 10.1371/journal.pone.0014217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 11/15/2010] [Indexed: 02/03/2023] Open
Abstract
Background Glucose transporter 4 (GLUT4) is an insulin facilitated glucose transporter that plays an important role in maintaining blood glucose homeostasis. GLUT4 is sequestered into intracellular vesicles in unstimulated cells and translocated to the plasma membrane by various stimuli. Understanding the structural details of GLUT4 will provide insights into the mechanism of glucose transport and its regulation. To date, a crystal structure for GLUT4 is not available. However, earlier work from our laboratory proposed a well validated homology model for GLUT4 based on the experimental data available on GLUT1 and the crystal structure data obtained from the glycerol 3-phosphate transporter. Methodology/Principal Findings In the present study, the dynamic behavior of GLUT4 in a membrane environment was analyzed using three forms of GLUT4 (apo, substrate and ATP-substrate bound states). Apo form simulation analysis revealed an extracellular open conformation of GLUT4 in the membrane favoring easy exofacial binding of substrate. Simulation studies with the substrate bound form proposed a stable state of GLUT4 with glucose, which can be a substrate-occluded state of the transporter. Principal component analysis suggested a clockwise movement for the domains in the apo form, whereas ATP substrate-bound form induced an anti-clockwise rotation. Simulation studies suggested distinct conformational changes for the GLUT4 domains in the ATP substrate-bound form and favor a constricted behavior for the transport channel. Various inter-domain hydrogen bonds and switching of a salt-bridge network from E345-R350-E409 to E345-R169-E409 contributed to this ATP-mediated channel constriction favoring substrate occlusion and prevention of its release into cytoplasm. These data are consistent with the biochemical studies, suggesting an inhibitory role for ATP in GLUT-mediated glucose transport. Conclusions/Significance In the absence of a crystal structure for any glucose transporter, this study provides mechanistic details of the conformational changes in GLUT4 induced by substrate and its regulator.
Collapse
Affiliation(s)
- Suma Mohan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Aswathy Sheena
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Ninu Poulose
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | | |
Collapse
|
28
|
Brams M, Gay EA, Sáez JC, Guskov A, van Elk R, van der Schors RC, Peigneur S, Tytgat J, Strelkov SV, Smit AB, Yakel JL, Ulens C. Crystal structures of a cysteine-modified mutant in loop D of acetylcholine-binding protein. J Biol Chem 2010; 286:4420-8. [PMID: 21115477 DOI: 10.1074/jbc.m110.188730] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Covalent modification of α7 W55C nicotinic acetylcholine receptors (nAChR) with the cysteine-modifying reagent [2-(trimethylammonium)ethyl] methanethiosulfonate (MTSET(+)) produces receptors that are unresponsive to acetylcholine, whereas methyl methanethiolsulfonate (MMTS) produces enhanced acetylcholine-gated currents. Here, we investigate structural changes that underlie the opposite effects of MTSET(+) and MMTS using acetylcholine-binding protein (AChBP), a homolog of the extracellular domain of the nAChR. Crystal structures of Y53C AChBP show that MTSET(+)-modification stabilizes loop C in an extended conformation that resembles the antagonist-bound state, which parallels our observation that MTSET(+) produces unresponsive W55C nAChRs. The MMTS-modified mutant in complex with acetylcholine is characterized by a contracted C-loop, similar to other agonist-bound complexes. Surprisingly, we find two acetylcholine molecules bound in the ligand-binding site, which might explain the potentiating effect of MMTS modification in W55C nAChRs. Unexpectedly, we observed in the MMTS-Y53C structure that ten phosphate ions arranged in two rings at adjacent sites are bound in the vestibule of AChBP. We mutated homologous residues in the vestibule of α1 GlyR and observed a reduction in the single channel conductance, suggesting a role of this site in ion permeation. Taken together, our results demonstrate that targeted modification of a conserved aromatic residue in loop D is sufficient for a conformational switch of AChBP and that a defined region in the vestibule of the extracellular domain contributes to ion conduction in anion-selective Cys-loop receptors.
Collapse
Affiliation(s)
- Marijke Brams
- Laboratory of Structural Neurobiology, KULeuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dimitropoulos N, Papakyriakou A, Dalkas GA, Chasapis CT, Poulas K, Spyroulias GA. A computational investigation on the role of glycosylation in the binding of alpha1 nicotinic acetylcholine receptor with two alpha-neurotoxins. Proteins 2010; 79:142-52. [DOI: 10.1002/prot.22867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Musiani F, Bertoša B, Magistrato A, Zambelli B, Turano P, Losasso V, Micheletti C, Ciurli S, Carloni P. Computational Study of the DNA-Binding Protein Helicobacter pylori NikR: The Role of Ni2+ 2 Francesco Musiani and Branimir Bertoša contributed equally to the simulations presented here. J Chem Theory Comput 2010; 6:3503-15. [DOI: 10.1021/ct900635z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Francesco Musiani
- Laboratory of Bioinorganic Chemistry, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, International School for Advanced Studies (SISSA) and CNR-IOM-DEMOCRITOS National Simulation Center, via Bonomea 265, 34136 Trieste, Italy, Ruder Bošković Institute, Bijeniěka 54, 10000 Zagreb, Croatia, German Research School for Simulation Science, FZ-Jülichand RWTH, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany, Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019
| | - Branimir Bertoša
- Laboratory of Bioinorganic Chemistry, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, International School for Advanced Studies (SISSA) and CNR-IOM-DEMOCRITOS National Simulation Center, via Bonomea 265, 34136 Trieste, Italy, Ruder Bošković Institute, Bijeniěka 54, 10000 Zagreb, Croatia, German Research School for Simulation Science, FZ-Jülichand RWTH, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany, Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019
| | - Alessandra Magistrato
- Laboratory of Bioinorganic Chemistry, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, International School for Advanced Studies (SISSA) and CNR-IOM-DEMOCRITOS National Simulation Center, via Bonomea 265, 34136 Trieste, Italy, Ruder Bošković Institute, Bijeniěka 54, 10000 Zagreb, Croatia, German Research School for Simulation Science, FZ-Jülichand RWTH, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany, Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, International School for Advanced Studies (SISSA) and CNR-IOM-DEMOCRITOS National Simulation Center, via Bonomea 265, 34136 Trieste, Italy, Ruder Bošković Institute, Bijeniěka 54, 10000 Zagreb, Croatia, German Research School for Simulation Science, FZ-Jülichand RWTH, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany, Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019
| | - Paola Turano
- Laboratory of Bioinorganic Chemistry, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, International School for Advanced Studies (SISSA) and CNR-IOM-DEMOCRITOS National Simulation Center, via Bonomea 265, 34136 Trieste, Italy, Ruder Bošković Institute, Bijeniěka 54, 10000 Zagreb, Croatia, German Research School for Simulation Science, FZ-Jülichand RWTH, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany, Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019
| | - Valeria Losasso
- Laboratory of Bioinorganic Chemistry, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, International School for Advanced Studies (SISSA) and CNR-IOM-DEMOCRITOS National Simulation Center, via Bonomea 265, 34136 Trieste, Italy, Ruder Bošković Institute, Bijeniěka 54, 10000 Zagreb, Croatia, German Research School for Simulation Science, FZ-Jülichand RWTH, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany, Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019
| | - Cristian Micheletti
- Laboratory of Bioinorganic Chemistry, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, International School for Advanced Studies (SISSA) and CNR-IOM-DEMOCRITOS National Simulation Center, via Bonomea 265, 34136 Trieste, Italy, Ruder Bošković Institute, Bijeniěka 54, 10000 Zagreb, Croatia, German Research School for Simulation Science, FZ-Jülichand RWTH, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany, Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, International School for Advanced Studies (SISSA) and CNR-IOM-DEMOCRITOS National Simulation Center, via Bonomea 265, 34136 Trieste, Italy, Ruder Bošković Institute, Bijeniěka 54, 10000 Zagreb, Croatia, German Research School for Simulation Science, FZ-Jülichand RWTH, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany, Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019
| | - Paolo Carloni
- Laboratory of Bioinorganic Chemistry, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy, International School for Advanced Studies (SISSA) and CNR-IOM-DEMOCRITOS National Simulation Center, via Bonomea 265, 34136 Trieste, Italy, Ruder Bošković Institute, Bijeniěka 54, 10000 Zagreb, Croatia, German Research School for Simulation Science, FZ-Jülichand RWTH, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany, Center for Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019
| |
Collapse
|
31
|
Zhu F, Hummer G. Gating transition of pentameric ligand-gated ion channels. Biophys J 2010; 97:2456-63. [PMID: 19883588 DOI: 10.1016/j.bpj.2009.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 02/03/2023] Open
Abstract
Pentameric ligand-gated ion channels are an important family of membrane proteins and play key roles in physiological processes, including signal transduction at chemical synapses. Here, we study the conformational changes associated with the opening and closing of the channel pore. Based on recent crystal structures of two prokaryotic members of the family in open and closed states, respectively, mixed elastic network models are constructed for the transmembrane domain. To explore the conformational changes in the gating transition, a coarse-grained transition path is computed that smoothly connects the closed and open conformations of the channel. We find that the conformational transition involves no major rotations of the transmembrane helices, and is instead characterized by a concerted tilting of helices M2 and M3. In addition, helix M2 changes its bending state, which results in an early closure of the pore during the open-to-closed transition.
Collapse
Affiliation(s)
- Fangqiang Zhu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
32
|
Zhou HX, McCammon JA. The gates of ion channels and enzymes. Trends Biochem Sci 2009; 35:179-85. [PMID: 19926290 DOI: 10.1016/j.tibs.2009.10.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 02/01/2023]
Abstract
Protein dynamics are essential for virtually all protein functions, certainly for gating mechanisms of ion channels and regulation of enzyme catalysis. Ion channels usually feature a gate in the channel pore that prevents ion permeation in the closed state. Some bifunctional enzymes with two distant active sites use a tunnel to transport intermediate products; a gate can help prevent premature leakage. Enzymes with a buried active site also require a tunnel for substrate entrance; a gate along the tunnel can contribute to selectivity. The gates in these different contexts show distinct characteristics in sequence, structure and dynamics, but they also have common features. In particular, aromatic residues often appear to serve as gates, probably because of their ability, through side chain rotation, to effect large changes in cross section.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | | |
Collapse
|
33
|
Tsetlin V, Utkin Y, Kasheverov I. Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Biochem Pharmacol 2009; 78:720-31. [PMID: 19501053 DOI: 10.1016/j.bcp.2009.05.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
|
34
|
Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 2009; 8:733-50. [PMID: 19721446 DOI: 10.1038/nrd2927] [Citation(s) in RCA: 542] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinic receptors - a family of ligand-gated ion channels that mediate the effects of the neurotransmitter acetylcholine - are among the most well understood allosteric membrane proteins from a structural and functional perspective. There is also considerable interest in modulating nicotinic receptors to treat nervous-system disorders such as Alzheimer's disease, schizophrenia, depression, attention deficit hyperactivity disorder and tobacco addiction. This article describes both recent advances in our understanding of the assembly, activity and conformational transitions of nicotinic receptors, as well as developments in the therapeutic application of nicotinic receptor ligands, with the aim of aiding novel drug discovery by bridging the gap between these two rapidly developing fields.
Collapse
|
35
|
Huang X, Zheng F, Zhan CG. Modeling differential binding of alpha4beta2 nicotinic acetylcholine receptor with agonists and antagonists. J Am Chem Soc 2009; 130:16691-6. [PMID: 19554732 DOI: 10.1021/ja8055326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional structures of both the open- and closed-channel states of alpha4beta2 receptor have been modeled and used to study their binding with representative agonists and antagonists. The obtained binding structures and free energies consistently reveal that antagonists bind more favorably with the closed-channel state and agonists bind more favorably with the open-channel state. The computational insights have led us to propose a computational strategy and protocol predicting whether a receptor ligand is an agonist or antagonist. Using the computational protocol, one only needs to calculate the relative binding free energies for a ligand binding with the open- and closed-channel structures. The ligand is predicted to be an agonist if the binding free energy calculated for the ligand binding with the open-channel state is significantly lower than that for its binding with the closed-channel state. If the binding free energy of a ligand with the open-channel state is higher than that with the closed-channel, the ligand is predicted to be an antagonist. The binding free energies calculated for all of the ligands binding with their most favorable channel states of the receptor are all close to the corresponding experimentally derived binding free energies. The new computational insights obtained and novel computational strategy and protocol proposed in this study are expected to be valuable in structure-based rational design of novel agonists/antagonists of nAChRs as therapeutic agents.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
36
|
Cheng X, Ivanov I, Wang H, Sine SM, McCammon JA. Molecular-dynamics simulations of ELIC-a prokaryotic homologue of the nicotinic acetylcholine receptor. Biophys J 2009; 96:4502-13. [PMID: 19486673 DOI: 10.1016/j.bpj.2009.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 11/19/2022] Open
Abstract
The ligand-gated ion channel from Erwinia chrysanthemi (ELIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. ELIC is similar to the nAChR in its primary sequence and overall subunit organization, but despite their structural similarity, it is not clear whether these two ligand-gated ion channels operate in a similar manner. Further, it is not known to what extent mechanistic insights gleaned from the ELIC structure translate to eukaryotic counterparts such as the nAChR. Here we use molecular-dynamics simulations to probe the conformational dynamics and hydration of the transmembrane pore of ELIC. The results are compared with those from our previous simulation of the human alpha7 nAChR. Overall, ELIC displays increased stability compared to the nAChR, whereas the two proteins exhibit remarkable similarity in their global motion and flexibility patterns. The majority of the increased stability of ELIC does not stem from the deficiency of the models used in the simulations, and but rather seems to have a structural basis. Slightly altered dynamical correlation features are also observed among several loops within the membrane region. In sharp contrast to the nAChR, ELIC is completely dehydrated from the pore center to the extracellular end throughout the simulation. Finally, the simulation of an ELIC mutant substantiates the important role of F246 on the stability, hydration and possibly function of the ELIC channel.
Collapse
Affiliation(s)
- Xiaolin Cheng
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | | | | | | | | |
Collapse
|
37
|
Gleitsman KR, Lester HA, Dougherty DA. Probing the role of backbone hydrogen bonding in a critical beta sheet of the extracellular domain of a cys-loop receptor. Chembiochem 2009; 10:1385-91. [PMID: 19405066 DOI: 10.1002/cbic.200900092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Probing the sheet: The network of hydrogen bonds formed in the outer beta sheet of the nicotinic acetylcholine receptor (nAChR; see figure) is fairly robust and tolerates single amide-to-ester mutations throughout. However, eliminating two proximal hydrogen bonds completely destroys receptor function; this adds further support to gating models that ascribe important roles to these beta strands of the nAChR extracellular domain.Long-range communication is essential for the function of members of the Cys-loop family of neurotransmitter-gated ion channels. The involvement of the peptide backbone in binding-induced conformational changes that lead to channel gating in these membrane proteins is an interesting, but unresolved issue. To probe the role of the peptide backbone, we incorporated a series of alpha-hydroxy acid analogues into the beta-sheet-rich extracellular domain of the muscle subtype of the nicotinic acetylcholine receptor, the prototypical Cys-loop receptor. Specifically, mutations were made in beta strands 7 and 10 of the alpha subunit. A number of single backbone mutations in this region were well tolerated. However, simultaneous introduction of two proximal backbone mutations led to surface-expressed, nonfunctional receptors. Together, these data suggest that while the receptor is remarkably robust in its ability to tolerate single amide-to-ester mutations throughout these beta strands, more substantial perturbations to this region have a profound effect on the protein. These results support a model in which backbone movements in the outer beta sheet are important for receptor function.
Collapse
Affiliation(s)
- Kristin R Gleitsman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91106, USA
| | | | | |
Collapse
|
38
|
Conformational heterogeneity of the M2 proton channel and a structural model for channel activation. Proc Natl Acad Sci U S A 2009; 106:13311-6. [PMID: 19633188 DOI: 10.1073/pnas.0906553106] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The M2 protein of influenza virus A is a proton-selective ion channel activated by pH. Structure determination by solid-state and solution NMR and X-ray crystallography has contributed significantly to our understanding, but channel activation may involve conformations not captured by these studies. Indeed, solid-state NMR data demonstrate that the M2 protein possesses significant conformational heterogeneity. Here, we report molecular dynamics (MD) simulations of the M2 transmembrane domain (TMD) in the absence and presence of the antiviral drug amantadine. The ensembles of MD conformations for both apo and bound forms reproduced the NMR data well. The TMD helix was found to kink around Gly-34, where water molecules penetrated deeply into the backbone. The amantadine-bound form exhibited a single peak approximately 10 degrees in the distribution of helix-kink angle, but the apo form exhibited 2 peaks, approximately 0 degrees and 40 degrees . Conformations of the apo form with small and large kink angles had narrow and wide pores, respectively, around the primary gate formed by His-37 and Trp-41. We propose a structural model for channel activation, in which the small-kink conformations dominate before proton uptake by His-37 from the exterior, and proton uptake makes the large-kink conformations more favorable, thereby priming His-37 for proton release to the interior.
Collapse
|
39
|
Paleari L, Cesario A, Fini M, Russo P. alpha7-Nicotinic receptor antagonists at the beginning of a clinical era for NSCLC and Mesothelioma? Drug Discov Today 2009; 14:822-36. [PMID: 19616116 DOI: 10.1016/j.drudis.2009.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 11/26/2022]
Abstract
Of the human solid cancers, Non-Small Cell Lung Cancer (NSCLC) and Malignant Pleural Mesothelioma (MPM) display a natural history supporting the concept that they develop from multiple preneoplastic pathways. Recently, new evidence suggested that nicotinic Acetylcholine Receptors (nAChRs) play a significant role in lung cancer predisposition and natural history. This review is based on some translational research aimed at evaluating the potential therapeutic effect of nAChR antagonists on NSCLC and MPM. The background and rationale of this approach are based on the experimental observations that: (a) NSCLC and MPM cells express nAChRs and (b) the activation of these receptors by agonists, namely nicotine, inhibits apoptosis, whereas receptor antagonists have a pro-apoptotic effect.
Collapse
Affiliation(s)
- Laura Paleari
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy.
| | | | | | | |
Collapse
|
40
|
Zhou HX, Qin S, Tjong H. Modeling Protein–Protein and Protein–Nucleic Acid Interactions: Structure, Thermodynamics, and Kinetics. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2008. [DOI: 10.1016/s1574-1400(08)00004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|