1
|
Haddad-Mashadrizeh A, Mirahmadi M, Taghavizadeh Yazdi ME, Gholampour-Faroji N, Bahrami A, Zomorodipour A, Moghadam Matin M, Qayoomian M, Saebnia N. Introns and Their Therapeutic Applications in Biomedical Researches. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3316. [PMID: 38269198 PMCID: PMC10804063 DOI: 10.30498/ijb.2023.334488.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2023] [Indexed: 01/26/2024]
Abstract
Context Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms. Evidence Acquisition In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included. Results & Conclusions The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nazanin Gholampour-Faroji
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmadreza Bahrami
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Maryam Moghadam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Saebnia
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Agoni L. Alternative and aberrant splicing of human endogenous retroviruses in cancer. What about head and neck? —A mini review. Front Oncol 2022; 12:1019085. [PMID: 36338752 PMCID: PMC9631305 DOI: 10.3389/fonc.2022.1019085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are transcribed in many cancer types, including head and neck cancer. Because of accumulating mutations at proviral loci over evolutionary time, HERVs are functionally defective and cannot complete their viral life cycle. Despite that, HERV transcripts, including full-length viral RNAs and viral RNAs spliced as expected at the conventional viral splice sites, can be detected in particular conditions, such as cancer. Interestingly, non-viral–related transcription, including aberrant, non-conventionally spliced RNAs, has been reported as well. The role of HERV transcription in cancer and its contribution to oncogenesis or progression are still debated. Nonetheless, HERVs may constitute a suitable cancer biomarker or a target for therapy. Thus, ongoing research aims both to clarify the basic mechanisms underlying HERV transcription in cancer and to exploit its potential toward clinical application. In this mini-review, we summarize the current knowledge, the most recent findings, and the future perspectives of research on HERV transcription and splicing, with particular focus on head and neck cancer.
Collapse
|
3
|
Jimenez J. Protein-coding tRNA sequences? Gene 2022; 814:146154. [PMID: 34995735 DOI: 10.1016/j.gene.2021.146154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
Transfer RNAs (tRNAs) are ancient molecules likely predating the translation machinery. These extremely conserved RNA molecules transfer amino acids to the ribosome for the synthesis of proteins encoded by mRNAs, but canonical tRNAs are not protein-coding RNAs. Surprisely, when virtually translated, I observed that peptides derived from tRNA sequences match thousands of protein entries in databases. The analysis of these sequences indicates that the vast majority of these tRNA-derived proteins are annotated as small hypothetical peptides, likely arising from sequencing, prediction and/or annotation errors. But life often surpasses fiction. Importantly, tRNA-encoded amino acid domains were also found embedded in large functional proteins. Phylogenetic analysis of representative tRNA-derived protein domains may provide new insights into the origin, plasticity, and evolution of protein-coding genes.
Collapse
Affiliation(s)
- Juan Jimenez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera, km1, 41013 Sevilla, Spain.
| |
Collapse
|
4
|
Tocchini-Valentini GD, Tocchini-Valentini GP. Archaeal tRNA-Splicing Endonuclease as an Effector for RNA Recombination and Novel Trans-Splicing Pathways in Eukaryotes. J Fungi (Basel) 2021; 7:jof7121069. [PMID: 34947051 PMCID: PMC8707768 DOI: 10.3390/jof7121069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
We have characterized a homodimeric tRNA endonuclease from the euryarchaeota Ferroplasma acidarmanus (FERAC), a facultative anaerobe which can grow at temperatures ranging from 35 to 42 °C. This enzyme, contrary to the eukaryal tRNA endonucleases and the homotetrameric Methanocaldococcus jannaschii (METJA) homologs, is able to cleave minimal BHB (bulge–helix–bulge) substrates at 30 °C. The expression of this enzyme in Schizosaccharomyces pombe (SCHPO) enables the use of its properties as effectors by inserting BHB motif introns into hairpin loops normally seen in mRNA transcripts. In addition, the FERAC endonuclease can create proteins with new functionalities through the recombination of protein domains.
Collapse
Affiliation(s)
- Giuseppe D. Tocchini-Valentini
- Istituto di Biochimica e Biologia Cellulare, Campus Internazionale “A. Buzzati-Traverso”, Dipartimento Scienze Biomediche, Consiglio Nazionale delle Ricerche, via Ramarini 32, 00015 Monterotondo, Rome, Italy;
- Dipartimento Scienze Biomediche, European Mouse Mutant Archive (EMMA), INFRAFRONTIER-IMPC, Monterotondo Mouse Clinic, Campus Internazionale “A. Buzzati-Traverso”, Consiglio Nazionale delle Ricerche, via Ramarini 32, 00015 Monterotondo, Rome, Italy
- Correspondence:
| | - Glauco P. Tocchini-Valentini
- Istituto di Biochimica e Biologia Cellulare, Campus Internazionale “A. Buzzati-Traverso”, Dipartimento Scienze Biomediche, Consiglio Nazionale delle Ricerche, via Ramarini 32, 00015 Monterotondo, Rome, Italy;
- Dipartimento Scienze Biomediche, European Mouse Mutant Archive (EMMA), INFRAFRONTIER-IMPC, Monterotondo Mouse Clinic, Campus Internazionale “A. Buzzati-Traverso”, Consiglio Nazionale delle Ricerche, via Ramarini 32, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
5
|
Xu B, Meng Y, Jin Y. RNA structures in alternative splicing and back-splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1626. [PMID: 32929887 DOI: 10.1002/wrna.1626] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
Alternative splicing greatly expands the transcriptomic and proteomic diversities related to physiological and developmental processes in higher eukaryotes. Splicing of long noncoding RNAs, and back- and trans- splicing further expanded the regulatory repertoire of alternative splicing. RNA structures were shown to play an important role in regulating alternative splicing and back-splicing. Application of novel sequencing technologies made it possible to identify genome-wide RNA structures and interaction networks, which might provide new insights into RNA splicing regulation in vitro to in vivo. The emerging transcription-folding-splicing paradigm is changing our understanding of RNA alternative splicing regulation. Here, we review the insights into the roles and mechanisms of RNA structures in alternative splicing and back-splicing, as well as how disruption of these structures affects alternative splicing and then leads to human diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
6
|
Balamurali D, Gorohovski A, Detroja R, Palande V, Raviv-Shay D, Frenkel-Morgenstern M. ChiTaRS 5.0: the comprehensive database of chimeric transcripts matched with druggable fusions and 3D chromatin maps. Nucleic Acids Res 2020; 48:D825-D834. [PMID: 31747015 PMCID: PMC7145514 DOI: 10.1093/nar/gkz1025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric RNA transcripts are formed when exons from two genes fuse together, often due to chromosomal translocations, transcriptional errors or trans-splicing effect. While these chimeric RNAs produce functional proteins only in certain cases, they play a significant role in disease phenotyping and progression. ChiTaRS 5.0 (http://chitars.md.biu.ac.il/) is the latest and most comprehensive chimeric transcript repository, with 111 582 annotated entries from eight species, including 23 167 known human cancer breakpoints. The database includes unique information correlating chimeric breakpoints with 3D chromatin contact maps, generated from public datasets of chromosome conformation capture techniques (Hi-C). In this update, we have added curated information on druggable fusion targets matched with chimeric breakpoints, which are applicable to precision medicine in cancers. The introduction of a new section that lists chimeric RNAs in various cell-lines is another salient feature. Finally, using text-mining techniques, novel chimeras in Alzheimer's disease, schizophrenia, dyslexia and other diseases were collected in ChiTaRS. Thus, this improved version is an extensive catalogue of chimeras from multiple species. It extends our understanding of the evolution of chimeric transcripts in eukaryotes and contributes to the analysis of 3D genome conformational changes and the functional role of chimeras in the etiopathogenesis of cancers and other complex diseases.
Collapse
Affiliation(s)
- Deepak Balamurali
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Alessandro Gorohovski
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rajesh Detroja
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Vikrant Palande
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Dorith Raviv-Shay
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Milana Frenkel-Morgenstern
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
7
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
8
|
Singh A, Zahra S, Das D, Kumar S. AtFusionDB: a database of fusion transcripts in Arabidopsis thaliana. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5277248. [PMID: 30624648 PMCID: PMC6323297 DOI: 10.1093/database/bay135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/29/2018] [Indexed: 02/02/2023]
Abstract
Fusion transcripts are chimeric RNAs generated as a result of fusion either at DNA or RNA level. These novel transcripts have been extensively studied in the case of human cancers but still remain underexamined in plants. In this study, we introduce the first plant-specific database of fusion transcripts named AtFusionDB (http://www.nipgr.res.in/AtFusionDB). This is a comprehensive database that contains the detailed information about fusion transcripts identified in model plant Arabidopsis thaliana. A total of 82 969 fusion transcript entries generated from 17 181 different genes of A. thaliana are available in this database. Apart from the basic information consisting of the Ensembl gene names, official gene name, tissue type, EricScore, fusion type, AtFusionDB ID and sample ID (e.g. Sequence Read Archive ID), additional information like UniProt, gene coordinates (together with the function of parental genes), junction sequence, expression level of both parent genes and fusion transcript may be of high utility to the user. Two different types of search modules viz. ‘Simple Search’ and ‘Advanced Search’ in addition to the ‘Browse’ option with data download facility are provided in this database. Three different modules for mapping and alignment of the query sequences viz. BLASTN, SW Align and Mapping are incorporated in AtFusionDB. This database is a head start for exploring the complex and unexplored domain of gene/transcript fusion in plants.
Collapse
Affiliation(s)
- Ajeet Singh
- Bioinformatics Laboratory, National Institute of Plant Genome Research Aruna Asaf Ali Marg, New Delhi, India
| | - Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research Aruna Asaf Ali Marg, New Delhi, India
| | - Durdam Das
- Bioinformatics Laboratory, National Institute of Plant Genome Research Aruna Asaf Ali Marg, New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
9
|
Chwalenia K, Facemire L, Li H. Chimeric RNAs in cancer and normal physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [DOI: 10.1002/wrna.1427] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Katarzyna Chwalenia
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Loryn Facemire
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Hui Li
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
- Department of Biochemistry and Molecular Genetics, School of Medicine; University of Virginia; Charlottesville VA USA
| |
Collapse
|
10
|
Okonechnikov K, Imai-Matsushima A, Paul L, Seitz A, Meyer TF, Garcia-Alcalde F. InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data. PLoS One 2016; 11:e0167417. [PMID: 27907167 PMCID: PMC5132003 DOI: 10.1371/journal.pone.0167417] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Analysis of fusion transcripts has become increasingly important due to their link with cancer development. Since high-throughput sequencing approaches survey fusion events exhaustively, several computational methods for the detection of gene fusions from RNA-seq data have been developed. This kind of analysis, however, is complicated by native trans-splicing events, the splicing-induced complexity of the transcriptome and biases and artefacts introduced in experiments and data analysis. There are a number of tools available for the detection of fusions from RNA-seq data; however, certain differences in specificity and sensitivity between commonly used approaches have been found. The ability to detect gene fusions of different types, including isoform fusions and fusions involving non-coding regions, has not been thoroughly studied yet. Here, we propose a novel computational toolkit called InFusion for fusion gene detection from RNA-seq data. InFusion introduces several unique features, such as discovery of fusions involving intergenic regions, and detection of anti-sense transcription in chimeric RNAs based on strand-specificity. Our approach demonstrates superior detection accuracy on simulated data and several public RNA-seq datasets. This improved performance was also evident when evaluating data from RNA deep-sequencing of two well-established prostate cancer cell lines. InFusion identified 26 novel fusion events that were validated in vitro, including alternatively spliced gene fusion isoforms and chimeric transcripts that include intergenic regions. The toolkit is freely available to download from http:/bitbucket.org/kokonech/infusion.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Lukas Paul
- Lexogen GmbH, Campus Vienna Biocenter 5, Vienna, Austria
| | | | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (FGA); (TFM)
| | - Fernando Garcia-Alcalde
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (FGA); (TFM)
| |
Collapse
|
11
|
Gorohovski A, Tagore S, Palande V, Malka A, Raviv-Shay D, Frenkel-Morgenstern M. ChiTaRS-3.1-the enhanced chimeric transcripts and RNA-seq database matched with protein-protein interactions. Nucleic Acids Res 2016; 45:D790-D795. [PMID: 27899596 PMCID: PMC5210585 DOI: 10.1093/nar/gkw1127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/17/2022] Open
Abstract
Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922 chimeric transcripts along with 11 714 cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the ‘Full Collection’. In addition, for every chimera, we have added a predicted chimeric protein–protein interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922 chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins.
Collapse
Affiliation(s)
- Alessandro Gorohovski
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Somnath Tagore
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Vikrant Palande
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Assaf Malka
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Dorith Raviv-Shay
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Milana Frenkel-Morgenstern
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel. Corresponding author:
| |
Collapse
|
12
|
Gastaldi S, Zamboni M, Bolasco G, Di Segni G, Tocchini-Valentini GP. Analysis of random PCR-originated mutants of the yeast Ste2 and Ste3 receptors. Microbiologyopen 2016; 5:670-86. [PMID: 27150158 PMCID: PMC4985600 DOI: 10.1002/mbo3.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 01/16/2023] Open
Abstract
The G protein-coupled receptors Ste2 and Ste3 bind α- and a-factor, respectively, in Saccharomyces cerevisiae. These receptors share a similar conformation, with seven transmembrane segments, three intracellular loops, a C-terminus tail, and three extracellular loops. However, the amino acid sequences of these two receptors bear no resemblance to each other. Coincidently the two ligands, α- and a-factor, have different sequences. Both receptors activate the same G protein. To identify amino acid residues that are important for signal transduction, the STE2 and STE3 genes were mutagenized by a random PCR-based method. Mutant receptors were analyzed in MATα cells mutated in the ITC1 gene, whose product represses transcription of a-specific genes in MATα. Expression of STE2 or STE3 in these cells results in autocrine activation of the mating pathway, since this strain produces the Ste2 receptor in addition to its specific ligand, α-factor. It also produces a-factor in addition to its specific receptor, Ste3. Therefore, this strain provides a convenient model to analyze mutants of both receptors in the same background. Many hyperactive mutations were found in STE3, whereas none was detected in STE2. This result is consistent with the different strategies that the two genes have adopted to be expressed.
Collapse
Affiliation(s)
- Serena Gastaldi
- CNR, Institute of Cell Biology and Neurobiology (IBCN), Monterotondo (Rome), 00015, Italy
| | - Michela Zamboni
- CNR, Institute of Cell Biology and Neurobiology (IBCN), Monterotondo (Rome), 00015, Italy
| | - Giulia Bolasco
- EMBL, European Molecular Biology Laboratory, Monterotondo (Rome), 00015, Italy
| | - Gianfranco Di Segni
- CNR, Institute of Cell Biology and Neurobiology (IBCN), Monterotondo (Rome), 00015, Italy
| | | |
Collapse
|
13
|
Lei Q, Li C, Zuo Z, Huang C, Cheng H, Zhou R. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol Evol 2016; 8:562-77. [PMID: 26966239 PMCID: PMC4824033 DOI: 10.1093/gbe/evw025] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint.
Collapse
Affiliation(s)
- Quan Lei
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Cong Li
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Zhixiang Zuo
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| | - Chunhua Huang
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Hanhua Cheng
- Department of Cell Biology, College of Life Sciences, Wuhan University, P.R. China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, P.R. China
| |
Collapse
|
14
|
Shang Y, Tesar D, Hötzel I. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector. Protein Eng Des Sel 2015; 28:437-44. [PMID: 25855659 DOI: 10.1093/protein/gzv018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting.
Collapse
Affiliation(s)
- Yonglei Shang
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin Tesar
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Isidro Hötzel
- Department of Antibody Engineering, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
15
|
Abstract
tRNAs are widely believed to segregate into two classes, I and II. Computational analysis of eukaryotic tRNA entries in Genomic tRNA Database, however, leads to new, albeit paradoxical, presence of more than a thousand class-I tRNAs with uncharacteristic long variable arms (V-arms), like in class-II. Out of 62,202 tRNAs from 69 eukaryotes, as many as 1431 class-I tRNAs have these novel extended V-arms, and we refer to them as paradoxical tRNAs (pxtRNAs). A great majority of these 1431 pxtRNA genes are located in intergenic regions, about 18% embedded in introns of genes or ESTs, and just one in 3'UTR. A check on the conservations of 2D and 3D base pairs for each position of these pxtRNAs reveals a few variations, but they seem to have almost all the known features (already known identity and conserved elements of tRNA). Analyses of the A-Box and B-Box of these pxtRNA genes in eukaryotes display salient deviations from the previously annotated conserved features of the standard promoters, whereas the transcription termination signals are just canonical and non-canonical runs of thymidine, similar to the ones in standard tRNA genes. There is just one such pxtRNA(ProAGG) gene in the entire human genome, and the availability of data allows epigenetic analysis of this human pxtRNA(ProAGG) in three different cell lines, H1 hESC, K562, and NHEK, to assess the level of its expression. Histone acetylation and methylation of this lone pxtRNA(ProAGG) gene in human differ from that of the nine standard human tRNA(ProAGG) genes. The V-arm nucleotide sequences and their secondary structures in pxtRNA differ from that of class-II tRNA. Considering these differences, hypotheses of alternative splicing, non-canonical intron and gene transfer are examined to partially improve the Cove scores of these pxtRNAs and to critically question their antecedence and novelty.
Collapse
Affiliation(s)
- Sanga Mitra
- a Computational Biology Group , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Arpa Samadder
- a Computational Biology Group , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Pijush Das
- b Cancer Biology & Inflammatory Disorder Division , Indian Institute of Chemical Biology , Kolkata , India
| | - Smarajit Das
- c Department of Medical Biochemistry and Cell Biology , Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Jayprokas Chakrabarti
- a Computational Biology Group , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India.,d Gyanxet, BF 286 Salt Lake, Kolkata , India
| |
Collapse
|
16
|
Frenkel-Morgenstern M, Gorohovski A, Vucenovic D, Maestre L, Valencia A. ChiTaRS 2.1--an improved database of the chimeric transcripts and RNA-seq data with novel sense-antisense chimeric RNA transcripts. Nucleic Acids Res 2014; 43:D68-75. [PMID: 25414346 PMCID: PMC4383979 DOI: 10.1093/nar/gku1199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chimeric RNAs that comprise two or more different transcripts have been identified in many cancers and among the Expressed Sequence Tags (ESTs) isolated from different organisms; they might represent functional proteins and produce different disease phenotypes. The ChiTaRS 2.1 database of chimeric transcripts and RNA-Seq data (http://chitars.bioinfo.cnio.es/) is the second version of the ChiTaRS database and includes improvements in content and functionality. Chimeras from eight organisms have been collated including novel sense–antisense (SAS) chimeras resulting from the slippage of the sense and anti-sense intragenic regions. The new database version collects more than 29 000 chimeric transcripts and indicates the expression and tissue specificity for 333 entries confirmed by RNA-seq reads mapping the chimeric junction sites. User interface allows for rapid and easy analysis of evolutionary conservation of fusions, literature references and experimental data supporting fusions in different organisms. More than 1428 cancer breakpoints have been automatically collected from public databases and manually verified to identify their correct cross-references, genomic sequences and junction sites. As a result, the ChiTaRS 2.1 collection of chimeras from eight organisms and human cancer breakpoints extends our understanding of the evolution of chimeric transcripts in eukaryotes as well as their functional role in carcinogenic processes.
Collapse
Affiliation(s)
- Milana Frenkel-Morgenstern
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Alessandro Gorohovski
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Dunja Vucenovic
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Lorena Maestre
- Monoclonal Antibodies Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Alfonso Valencia
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
17
|
Li Y, Zhao D. Basics of Molecular Biology. ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA 2013. [PMCID: PMC7122053 DOI: 10.1007/978-3-642-34303-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Molecular biology is the study of biology on molecular level. The field overlaps with areas of biology and chemistry, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interactions between DNA (deoxyribonucleic acid), RNA (Ribonucleic acid) and protein biosynthesis as well as learning how these interactions are regulated[1].
Collapse
|
18
|
Frenkel-Morgenstern M, Gorohovski A, Lacroix V, Rogers M, Ibanez K, Boullosa C, Andres Leon E, Ben-Hur A, Valencia A. ChiTaRS: a database of human, mouse and fruit fly chimeric transcripts and RNA-sequencing data. Nucleic Acids Res 2012; 41:D142-51. [PMID: 23143107 PMCID: PMC3531201 DOI: 10.1093/nar/gks1041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chimeric RNAs that comprise two or more different transcripts have been identified in many cancers and among the Expressed Sequence Tags (ESTs) isolated from different organisms; they might represent functional proteins and produce different disease phenotypes. The ChiTaRS database of Chimeric Transcripts and RNA-Sequencing data (http://chitars.bioinfo.cnio.es/) collects more than 16 000 chimeric RNAs from humans, mice and fruit flies, 233 chimeras confirmed by RNA-seq reads and ∼2000 cancer breakpoints. The database indicates the expression and tissue specificity of these chimeras, as confirmed by RNA-seq data, and it includes mass spectrometry results for some human entries at their junctions. Moreover, the database has advanced features to analyze junction consistency and to rank chimeras based on the evidence of repeated junction sites. Finally, ‘Junction Search’ screens through the RNA-seq reads found at the chimeras’ junction sites to identify putative junctions in novel sequences entered by users. Thus, ChiTaRS is an extensive catalog of human, mouse and fruit fly chimeras that will extend our understanding of the evolution of chimeric transcripts in eukaryotes and can be advantageous in the analysis of human cancer breakpoints.
Collapse
Affiliation(s)
- Milana Frenkel-Morgenstern
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ma L, Yang S, Zhao W, Tang Z, Zhang T, Li K. Identification and analysis of pig chimeric mRNAs using RNA sequencing data. BMC Genomics 2012; 13:429. [PMID: 22925561 PMCID: PMC3531304 DOI: 10.1186/1471-2164-13-429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 08/17/2012] [Indexed: 01/04/2023] Open
Abstract
Background Gene fusion is ubiquitous over the course of evolution. It is expected to increase the diversity and complexity of transcriptomes and proteomes through chimeric sequence segments or altered regulation. However, chimeric mRNAs in pigs remain unclear. Here we identified some chimeric mRNAs in pigs and analyzed the expression of them across individuals and breeds using RNA-sequencing data. Results The present study identified 669 putative chimeric mRNAs in pigs, of which 251 chimeric candidates were detected in a set of RNA-sequencing data. The 618 candidates had clear trans-splicing sites, 537 of which obeyed the canonical GU-AG splice rule. Only two putative pig chimera variants whose fusion junction was overlapped with that of a known human chimeric mRNA were found. A set of unique chimeric events were considered middle variances in the expression across individuals and breeds, and revealed non-significant variance between sexes. Furthermore, the genomic region of the 5′ partner gene shares a similar DNA sequence with that of the 3′ partner gene for 458 putative chimeric mRNAs. The 81 of those shared DNA sequences significantly matched the known DNA-binding motifs in the JASPAR CORE database. Four DNA motifs shared in parental genomic regions had significant similarity with known human CTCF binding sites. Conclusions The present study provided detailed information on some pig chimeric mRNAs. We proposed a model that trans-acting factors, such as CTCF, induced the spatial organisation of parental genes to the same transcriptional factory so that parental genes were coordinatively transcribed to give birth to chimeric mRNAs.
Collapse
Affiliation(s)
- Lei Ma
- The Key Laboratory for Domestic Animal Genetic Resources and Breeding of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P R China
| | | | | | | | | | | |
Collapse
|
20
|
Yeast pheromone receptor genes STE2 and STE3 are differently regulated at the transcription and polyadenylation level. Proc Natl Acad Sci U S A 2011; 108:17082-6. [PMID: 21969566 DOI: 10.1073/pnas.1114648108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The orderly expression of specific genes is the basis for cell differentiation. Saccharomyces cerevisiae has two haploid mating types, a and α cells, in which the mating-specific genes are differentially expressed. When a and α cells are committed to mate, their growth is arrested. Here we show that a cryptic polyadenylation site is present inside the coding region of the a-specific STE2 gene, encoding the receptor for the α-factor. The two cell types produce an incomplete STE2 transcript, but only a cells generate full-length STE2 mRNA. We eliminated the cryptic poly(A) signal, thereby allowing the production of a complete STE2 mRNA in α cells. We mutagenized α cells and isolated a mutant producing full-length STE2 mRNA. The mutation occurred in the ITC1 gene, whose product, together with the product of ISW2, is known to repress STE2 transcriptional initiation. We propose that the regulation of the yeast mating genes is achieved through a concerted mechanism involving transcriptional and posttranscriptional events. In particular, the early poly(A) site in STE2 could contribute to a complete shutoff of its expression in α cells, avoiding autocrine activation and growth arrest. Remarkably, no cryptic poly(A) sites are present in the a-factor receptor STE3 gene, indicating that S. cerevisiae has devised different strategies to regulate the two receptor genes. It is predictable that a correlation between the repression of a gene and the presence of a cryptic poly(A) site could also be found in other organisms, especially when expression of that gene may be harmful.
Collapse
|
21
|
Kwon BS, Jeong JS, Won YS, Lee CH, Yoon KS, Hyung Jung M, Kim IH, Lee SW. Intracellular efficacy of tumor-targeting group I intron-based trans-splicing ribozyme. J Gene Med 2011; 13:89-100. [PMID: 21322101 DOI: 10.1002/jgm.1545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Group I intron-based trans-splicing ribozyme, which can specifically reprogram human telomerase reverse transcriptase (hTERT) RNA, could be a useful tool for tumor-targeted gene therapy. In the present study, the therapeutic feasibility of this ribozyme was investigated by analyzing trans-splicing efficacy in vivo as well as in cells. METHODS We assessed transgene activation, degree of ribozyme expression, targeted hTERT mRNA level, or the level of trans-splicing products in hTERT(+) cells or in human tumor nodules xenografted in animals after ribozyme administration. RESULTS The activity and efficacy of the trans-splicing ribozyme in cells was dependent on the amount of endogenous hTERT mRNA and/or the accumulation of ribozyme RNA in cells. Intracellular activity of the ribozyme reached a plateau when no more targetable substrate mRNA was available or the ribozyme RNA level was fully saturated. In addition, the efficacy of ribozyme in xenografted tumor tissues was dependent on the dose of the delivered ribozyme-encoding adenoviral vector, indicating the potential of the ribozyme expression level as a determining factor for the in vivo efficacy of the trans-splicing ribozyme. On the basis of these results, we enhanced the intracellular ribozyme activity by increasing the ribozyme expression level transcriptionally and/or post-transcriptionally. CONCLUSIONS We analyzed ribozyme efficacy and determined the most influential factors of its trans-splicing reaction in mammalian cell lines as well as in vivo. The present study could provide insights into the optimization of the trans-splicing ribozyme-based RNA replacement approach to cancer treatment.
Collapse
Affiliation(s)
- Byung-Su Kwon
- Department of Molecular Biology, Dankook University, Yongin, Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
23
|
Herai RH, Yamagishi MEB. Detection of human interchromosomal trans-splicing in sequence databanks. Brief Bioinform 2009; 11:198-209. [PMID: 19955235 DOI: 10.1093/bib/bbp041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Trans-splicing is a common phenomenon in nematodes and kinetoplastids, and it has also been reported in other organisms, including humans. Up to now, all in silico strategies to find evidence of trans-splicing in humans have required that the candidate sequences follow the consensus splicing site rules (spliceosome-mediated mechanism). However, this criterion is not supported by the best human experimental evidence, which, except in a single case, do not follow canonical splicing sites. Moreover, recent findings describe a novel alternative tRNA mediated trans-splicing mechanism, which prescinds the spliceosome machinery. In order to answer the question, 'Are there hybrid mRNAs in sequence databanks, whose characteristics resemble those of the best human experimental evidence?', we have developed a methodology that successfully identified 16 hybrid mRNAs which might be instances of interchromosomal trans-splicing. Each hybrid mRNA is formed by a trans-spliced region (TSR), which was successfully mapped either onto known genes or onto a human endogenous retrovirus (HERV-K) transcript which supports their transcription. The existence of these hybrid mRNAs indicates that trans-splicing may be more widespread than believed. Furthermore, non-canonical splice site patterns suggest that infrequent splicing sites may occur under special conditions, or that an alternative trans-splicing mechanism is involved. Finally, our candidates are supposedly from normal tissue, and a recent study has reported that trans-splicing may occur not only in malignant tissues, but in normal tissues as well. Our methodology can be applied to 5'-UTR, coding sequences and 3'-UTR in order to find new candidates for a posteriori experimental confirmation.
Collapse
Affiliation(s)
- Roberto Hirochi Herai
- Genetics and Molecular Biology Department, Biology Institute, State University of Campinas, 13083-862 Campinas, SP, Brazil.
| | | |
Collapse
|
24
|
Zamboni M, Scarabino D, Tocchini-Valentini GP. Splicing of mRNA mediated by tRNA sequences in mouse cells. RNA (NEW YORK, N.Y.) 2009; 15:2122-8. [PMID: 19850909 PMCID: PMC2779668 DOI: 10.1261/rna.1841609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 08/27/2009] [Indexed: 05/20/2023]
Abstract
tRNA splicing is essential for the formation of tRNAs and therefore for gene expression. A circularly permuted sequence of an amber-suppressor pre-tRNA gene was inserted into the sequence encoding the mouse NEMO protein. We demonstrated that, in mouse cells, the hybrid pre-tRNA/pre-mRNAs can be spliced precisely at the sites of the pre-tRNA intron. This splicing reaction produces functional tRNAs that suppress amber codons as well as translatable mRNAs that sustain the NF-kappaB activation pathway. The RNA molecules extracted from mouse cells were amplified by RT-PCR, and their sequences were determined, confirming the identity of the splice junctions. We then applied the Archaea-express technology, in which an archaeal RNA endonuclease is expressed in mouse cells. We show that both the endogenous eukaryal endonuclease and the archaeal one cleave the hybrid pre-tRNA/pre-mRNAs in the same manner with an additive effect.
Collapse
Affiliation(s)
- Michela Zamboni
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, 00015 Monterotondo, Rome, Italy
| | | | | |
Collapse
|
25
|
Guffanti A, Iacono M, Pelucchi P, Kim N, Soldà G, Croft LJ, Taft RJ, Rizzi E, Askarian-Amiri M, Bonnal RJ, Callari M, Mignone F, Pesole G, Bertalot G, Bernardi LR, Albertini A, Lee C, Mattick JS, Zucchi I, De Bellis G. A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics 2009; 10:163. [PMID: 19379481 PMCID: PMC2678161 DOI: 10.1186/1471-2164-10-163] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 04/20/2009] [Indexed: 02/07/2023] Open
Abstract
Background The cancer transcriptome is difficult to explore due to the heterogeneity of quantitative and qualitative changes in gene expression linked to the disease status. An increasing number of "unconventional" transcripts, such as novel isoforms, non-coding RNAs, somatic gene fusions and deletions have been associated with the tumoral state. Massively parallel sequencing techniques provide a framework for exploring the transcriptional complexity inherent to cancer with a limited laboratory and financial effort. We developed a deep sequencing and bioinformatics analysis protocol to investigate the molecular composition of a breast cancer poly(A)+ transcriptome. This method utilizes a cDNA library normalization step to diminish the representation of highly expressed transcripts and biology-oriented bioinformatic analyses to facilitate detection of rare and novel transcripts. Results We analyzed over 132,000 Roche 454 high-confidence deep sequencing reads from a primary human lobular breast cancer tissue specimen, and detected a range of unusual transcriptional events that were subsequently validated by RT-PCR in additional eight primary human breast cancer samples. We identified and validated one deletion, two novel ncRNAs (one intergenic and one intragenic), ten previously unknown or rare transcript isoforms and a novel gene fusion specific to a single primary tissue sample. We also explored the non-protein-coding portion of the breast cancer transcriptome, identifying thousands of novel non-coding transcripts and more than three hundred reads corresponding to the non-coding RNA MALAT1, which is highly expressed in many human carcinomas. Conclusion Our results demonstrate that combining 454 deep sequencing with a normalization step and careful bioinformatic analysis facilitates the discovery and quantification of rare transcripts or ncRNAs, and can be used as a qualitative tool to characterize transcriptome complexity, revealing many hitherto unknown transcripts, splice isoforms, gene fusion events and ncRNAs, even at a relatively low sequence sampling.
Collapse
Affiliation(s)
- Alessandro Guffanti
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|