1
|
Saha S, Huang SYN, Yang X, Saha LK, Sun Y, Khandagale P, Jenkins LM, Pommier Y. The TDRD3-USP9X complex and MIB1 regulate TOP3B homeostasis and prevent deleterious TOP3B cleavage complexes. Nat Commun 2023; 14:7524. [PMID: 37980342 PMCID: PMC10657456 DOI: 10.1038/s41467-023-43151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023] Open
Abstract
TOP3B is stabilized by TDRD3. Hypothesizing that TDRD3 recruits a deubiquitinase, we find that TOP3B interacts with USP9X via TDRD3. Inactivation of USP9X destabilizes TOP3B, and depletion of both TDRD3 and USP9X does not promote further TOP3B ubiquitylation. Additionally, we observe that MIB1 mediates the ubiquitylation and proteasomal degradation of TOP3B by directly interacting with TOP3B independently of TDRD3. Combined depletion of USP9X, TDRD3 and MIB1 causes no additional increase in TOP3B levels compared to MIB1 knockdown alone indicating that the TDRD3-USP9X complex works downstream of MIB1. To comprehend why cells degrade TOP3B in the absence of TDRD3, we measured TOP3Bccs. Lack of TDRD3 increases TOP3Bccs in DNA and RNA, and induced R-loops, γH2AX and growth defect. Biochemical experiments confirm that TDRD3 increases the turnover of TOP3B. Our work provides molecular insights into the mechanisms by which TDRD3 protect cells from deleterious TOP3Bccs which are otherwise removed by TRIM41.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Prashant Khandagale
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Saha S, Yang X, Huang SYN, Agama K, Baechler SA, Sun Y, Zhang H, Saha LK, Su S, Jenkins LM, Wang W, Pommier Y. Resolution of R-loops by topoisomerase III-β (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 2022; 40:111067. [PMID: 35830799 PMCID: PMC10575568 DOI: 10.1016/j.celrep.2022.111067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The present study demonstrates how TOP3B is involved in resolving R-loops. We observed elevated R-loops in TOP3B knockout cells (TOP3BKO), which are suppressed by TOP3B transfection. R-loop-inducing agents, the topoisomerase I inhibitor camptothecin, and the splicing inhibitor pladienolide-B also induce higher R-loops in TOP3BKO cells. Camptothecin- and pladienolide-B-induced R-loops are concurrent with the induction of TOP3B cleavage complexes (TOP3Bccs). RNA/DNA hybrid IP-western blotting show that TOP3B is physically associated with R-loops. Biochemical assays using recombinant TOP3B and oligonucleotides mimicking R-loops show that TOP3B cleaves the single-stranded DNA displaced by the R-loop RNA-DNA duplex. IP-mass spectrometry and IP-western experiments reveal that TOP3B interacts with the R-loop helicase DDX5 independently of TDRD3. Finally, we demonstrate that DDX5 and TOP3B are epistatic in resolving R-loops in a pathway parallel with senataxin. We propose a decatenation model for R-loop resolution by TOP3B-DDX5 protecting cells from R-loop-induced damage.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Cristini A, Géraud M, Sordet O. Transcription-associated DNA breaks and cancer: A matter of DNA topology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:195-240. [PMID: 34507784 DOI: 10.1016/bs.ircmb.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription is an essential cellular process but also a major threat to genome integrity. Transcription-associated DNA breaks are particularly detrimental as their defective repair can induce gene mutations and oncogenic chromosomal translocations, which are hallmarks of cancer. The past few years have revealed that transcriptional breaks mainly originate from DNA topological problems generated by the transcribing RNA polymerases. Defective removal of transcription-induced DNA torsional stress impacts on transcription itself and promotes secondary DNA structures, such as R-loops, which can induce DNA breaks and genome instability. Paradoxically, as they relax DNA during transcription, topoisomerase enzymes introduce DNA breaks that can also endanger genome integrity. Stabilization of topoisomerases on chromatin by various anticancer drugs or by DNA alterations, can interfere with transcription machinery and cause permanent DNA breaks and R-loops. Here, we review the role of transcription in mediating DNA breaks, and discuss how deregulation of topoisomerase activity can impact on transcription and DNA break formation, and its connection with cancer.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Mathéa Géraud
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
4
|
Abstract
The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.
Collapse
Affiliation(s)
- Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Zhang T, Wallis M, Petrovic V, Challis J, Kalitsis P, Hudson DF. Loss of TOP3B leads to increased R-loop formation and genome instability. Open Biol 2019; 9:190222. [PMID: 31795919 PMCID: PMC6936252 DOI: 10.1098/rsob.190222] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Topoisomerase III beta (TOP3B) is one of the least understood members of the topoisomerase family of proteins and remains enigmatic. Our recent data shed light on the function and relevance of TOP3B to disease. A homozygous deletion for the TOP3B gene was identified in a patient with bilateral renal cancer. Analyses in both patient and modelled human cells show the disruption of TOP3B causes genome instability with a rise in DNA damage and chromosome bridging (mis-segregation). The primary molecular defect underlying this pathology is a significant increase in R-loop formation. Our data show that TOP3B is necessary to prevent the accumulation of excessive R-loops and identify TOP3B as a putative cancer gene, and support recent data showing that R-loops are involved in cancer aetiology.
Collapse
Affiliation(s)
- Tao Zhang
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Services, Royal Hobart Hospital, Hobart, Tasmania 7001, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Vida Petrovic
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Jackie Challis
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Paul Kalitsis
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Cytogenetics Department, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Damien F. Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| |
Collapse
|
6
|
Boukadida K, Cachot J, Morin B, Clerandeau C, Banni M. Moderate temperature elevation increase susceptibility of early-life stage of the Mediterranean mussel, Mytilus galloprovincialis to metal-induced genotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:351-360. [PMID: 30716625 DOI: 10.1016/j.scitotenv.2019.01.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The present study aims to evaluate the effects of copper and silver alone or along with a moderate temperature increase on embryonic development, DNA integrity and target gene expression levels in early life stages of Mytilus galloprovincialis. For this purpose, upon fertilized embryos were exposed to a sub-lethal concentration of Cu (9.54 μg/L), Ag (2.55 μg/L) and to the mixture of the two metals (Cu (6.67 μg/L) + Ag (1.47 μg/L)) along with a temperature gradient (18, 20 and 22 °C). In all experiments, larvae were exposed to stressors for 48 h except for those designed to DNA damage analysis exposed only for 24 h (before shell formation).Our results showed a significant increase in the percentage of malformed D-larvae (p < 0.05) with increasing temperature and exposure to silver and copper alone or in a mixture. Moreover, metal toxicity increased significantly (p < 0.05) with the temperature rise. Genotoxicity was evaluated using classic and modified with Formamidopyrimidine DNA glycosylase (Fpg) Comet assay. Results suggest that co-exposure to metals and temperature significantly increased DNA damage on mussel larvae with a more accentuated oxidative damage. A significant transcription modulation was observed for genes involved in DNA repair and DNA replication (p53, DNA ligase II and topoisomerase II) when larvae are exposed to a single stressor. However, in the case of multiple stresses, caspase involved in the cell apoptosis pathway was overexpressed. Our study suggests that mussel larvae exposed to a moderate increase in temperature may have a compromised ability to defend against genotoxicity. This is particularly relevant in the context of global warming and thermal pollution.
Collapse
Affiliation(s)
- Khouloud Boukadida
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France; Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Jérôme Cachot
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France
| | - Bénédicte Morin
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France
| | - Christelle Clerandeau
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600 Pessac, France
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia.
| |
Collapse
|
7
|
Dorn A, Röhrig S, Papp K, Schröpfer S, Hartung F, Knoll A, Puchta H. The topoisomerase 3α zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates. PLoS Genet 2018; 14:e1007674. [PMID: 30222730 PMCID: PMC6160208 DOI: 10.1371/journal.pgen.1007674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/27/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Topoisomerase 3α, a class I topoisomerase, consists of a TOPRIM domain, an active centre and a variable number of zinc-finger domains (ZFDs) at the C-terminus, in multicellular organisms. Whereas the functions of the TOPRIM domain and the active centre are known, the specific role of the ZFDs is still obscure. In contrast to mammals where a knockout of TOP3α leads to lethality, we found that CRISPR/Cas induced mutants in Arabidopsis are viable but show growth retardation and meiotic defects, which can be reversed by the expression of the complete protein. However, complementation with AtTOP3α missing either the TOPRIM-domain or carrying a mutation of the catalytic tyrosine of the active centre leads to embryo lethality. Surprisingly, this phenotype can be overcome by the simultaneous removal of the ZFDs from the protein. In combination with a mutation of the nuclease AtMUS81, the TOP3α knockout proved to be also embryo lethal. Here, expression of TOP3α without ZFDs, and in particular without the conserved ZFD T1, leads to only a partly complementation in root growth-in contrast to the complete protein, that restores root length to mus81-1 mutant level. Expressing the E. coli resolvase RusA in this background, which is able to process Holliday junction (HJ)-like recombination intermediates, we could rescue this root growth defect. Considering all these results, we conclude that the ZFD T1 is specifically required for targeting the topoisomerase activity to HJ like recombination intermediates to enable their processing. In the case of an inactivated enzyme, this leads to cell death due to the masking of these intermediates, hindering their resolution by MUS81.
Collapse
Affiliation(s)
- Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Röhrig
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kristin Papp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Susan Schröpfer
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Frank Hartung
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
8
|
Lu S, Fan X, Chen L, Lu X. A novel method of using Deep Belief Networks and genetic perturbation data to search for yeast signaling pathways. PLoS One 2018; 13:e0203871. [PMID: 30208101 PMCID: PMC6135403 DOI: 10.1371/journal.pone.0203871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/29/2018] [Indexed: 01/25/2023] Open
Abstract
Perturbing a signaling system with a serial of single gene deletions and then observing corresponding expression changes in model organisms, such as yeast, is an important and widely used experimental technique for studying signaling pathways. People have developed different computational methods to analyze the perturbation data from gene deletion experiments for exploring the signaling pathways. The most popular methods/techniques include K-means clustering and hierarchical clustering techniques, or combining the expression data with knowledge, such as protein-protein interactions (PPIs) or gene ontology (GO), to search for new pathways. However, these methods neither consider nor fully utilize the intrinsic relation between the perturbation of a pathway and expression changes of genes regulated by the pathway, which served as the main motivation for developing a new computational method in this study. In our new model, we first find gene transcriptomic modules such that genes in each module are highly likely to be regulated by a common signal. We then use the expression status of those modules as readouts of pathway perturbations to search for up-stream pathways. Systematic evaluation, such as through gene ontology enrichment analysis, has provided evidence that genes in each transcriptomic module are highly likely to be regulated by a common signal. The PPI density analysis and literature search revealed that our new perturbation modules are functionally coherent. For example, the literature search revealed that 9 genes in one of our perturbation module are related to cell cycle and all 10 genes in another perturbation module are related by DNA damage, with much evidence from the literature coming from in vitro or/and in vivo verifications. Hence, utilizing the intrinsic relation between the perturbation of a pathway and the expression changes of genes regulated by the pathway is a useful method of searching for signaling pathways using genetic perturbation data. This model would also be suitable for analyzing drug experiment data, such as the CMap data, for finding drugs that perturb the same pathways.
Collapse
Affiliation(s)
- Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Xiaonan Fan
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Automation, Northwestern Polytechnical University, Shanxi, People’s Republic of China
| | - Lujia Chen
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Hou GX, Liu P, Yang J, Wen S. Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan-Meier plotter. PLoS One 2017; 12:e0174515. [PMID: 28355294 PMCID: PMC5371362 DOI: 10.1371/journal.pone.0174515] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/10/2017] [Indexed: 01/09/2023] Open
Abstract
DNA topoisomerases are essential to modulate DNA topology during various cellular genetic processes. The expression and distinct prognostic value of topoisomerase isoforms in non-small-cell lung cancer (NSCLC) is not well established. In the current study, we have examined the mRNA expression of topoisomerase isoforms by using Oncomine analysis and investigated their prognostic value via the Kaplan–Meier plotter database in NSCLC patients. Our analysis indicated that the expression level of topoisomerases in lung cancer was higher compared with normal tissues. Especially, high expression of two topoisomerase isoforms, TOP2A and TOP3A, was found to be correlated to worse overall survival (OS) in all NSCLC and lung adenocarcinoma (Ade) patients, but not in lung squamous cell carcinoma (SCC) patients. In a contrast, high expression of isoforms TOP1 and TOP2B indicated better OS in all NSCLC and Ade, but not in SCC patients. Meanwhile, high expression of TOP1MT and TOP3B was not correlated with OS in NSCLC patients. Furthermore, we also demonstrated a relationship between topoisomerase isoforms and the clinicopathological features for the NSCLC patients, such as grades, clinical stages, lymph node status, smoking status, gender, chemotherapy and radiotherapy. These results support that TOP2A and TOP3A are associated with worse prognosis in NSCLC patients. In addition, our study also shows that TOP1 and TOP2B contribute to favorable prognosis in NSCLC patients. The exact prognostic significance of TOP1MT and TOP3B need to be further elucidated. Comprehensive evaluation of expression and prognosis of topoisomerase isoforms will be a benefit for the better understanding of heterogeneity and complexity in the molecular biology of NSCLC, paving a way for more accurate prediction of prognosis and discovery of potential drug targets for NSCLC patients.
Collapse
Affiliation(s)
- Guo-Xin Hou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Panpan Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
10
|
Boughattas I, Hattab S, Boussetta H, Sappin-Didier V, Viarengo A, Banni M, Sforzini S. Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:530-541. [PMID: 27453356 DOI: 10.1016/j.envpol.2016.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Eisenia andrei earthworms were exposed for 7 and 14 days to six samples of soil taken from around an abandoned lead (Pb) mine and characterized by different levels of metal contamination (S6-S1, this latter being the most contaminated soil). The organisms were analyzed for metal bioaccumulation and for biological parameters as biomarkers of stress (lysosomal membrane stability; lipofuscin lysosomal content; lysosomal/cytoplasmic volume ratio) and genotoxicity (Micronucleus frequency). Chemical analysis showed the loads of Pb, Cd, Zn, and Cu in the worms following exposure. Among the stress biomarkers, lysosomal membrane stability was significantly affected in the coelomocytes of the earthworms exposed already 7 days to different contaminated soils. Organisms exposed for 14 days to S1 showed in the cells of the chloragogenous tissue, a particularly relevant increase in lipofuscin, a biomarker of oxidative stress, and an increase in the lysosome/cytoplasm volume ratio, indicating stressful condition at the tissue level. Moreover, in the same conditions, a decrease in total body weight was observed. At the longer exposure time, the coelomocytes of worms exposed to S1, S2, and S3 (soils with higher metal concentrations) showed a significant increase in micronuclei (MNi) frequency. Expressions of the P21 and topoisomerase genes, which are involved in DNA repair, showed significant up-regulation in the cells of worms exposed to S1, S2, S3, S4 and to a less extend S6. This may indicate that the worms were only able to successfully reduce the level of DNA damage in S4 and S5 if considering MN frequency data. The biomarker data was integrated by the Earthworm Expert System, allowing an objective interpretation of the complex biological data and clearly defining the areas in which the presence of chemicals is toxic for the edaphic organisms.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Sabrine Hattab
- Laboratory of Soil Sciences, Regional Center for Research in Horticulture and Organic Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | - Hamadi Boussetta
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Valérie Sappin-Didier
- UMR 1220 TCEM, INRA Bordeaux-Aquitaine, Av. E. Bourlaux, BP 81, 33883 Villenave d'Ornon, France
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy.
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
11
|
Bai Y, Li LD, Li J, Lu X. Targeting of topoisomerases for prognosis and drug resistance in ovarian cancer. J Ovarian Res 2016; 9:35. [PMID: 27315793 PMCID: PMC4912764 DOI: 10.1186/s13048-016-0244-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
Backgroud As magicians of the DNA world, topoisomerases resolve all of the topological problems in relation to DNA during a variety of genetic processes. While the prognostic value of topoisomerase isoenzymes in epithelial ovarian carcinoma (EOC) is still elusive. In current study, we investigated the prognostic value of topoisomerase isoenzymes in the EOC patients. Kaplan Meier plotter (KM plotter) database were used to assess the relevance of individual topoisomerase isoenzyme mRNA expression to EOC patients overall survival (OS), in which updated survival information and gene expression data were from a total of 1,648 EOC patients. Results High expression of TOP1 and TOP2A were found to be correlated to worse OS in all patients and serous patients, but not in endometrioid patients. Contrary to TOP1 and TOP2A, TOP3A and TOP3B expression were associated with better OS in all patients and serous patients, but not in endometrioid patients. While TOP2B were not found any significant prognostic value for EOC patients. From the Oncomine database, we also found widespread upregulation in the expression of TOP1 and TOP2A genes in primary tumor tissues. Albeit limited in number, all datasets exhibiting differential expression showed TOP3A and TOP3B under-regulated. Conclusion These results strongly supported that TOP1 and TOP2A were potential biomarkers for predicting poor survival of EOC patients, while TOP3A and TOP3B were expected to be further exploited as tumor suppressors. Comprehensive understanding of the topoisomerase isoforms may have guiding significance for the diagnosis treatment and prognosis in EOC patients. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0244-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Bai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Liang-Dong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China. .,Permanent address: Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, No.419, Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|
12
|
Balaña-Fouce R, Alvarez-Velilla R, Fernández-Prada C, García-Estrada C, Reguera RM. Trypanosomatids topoisomerase re-visited. New structural findings and role in drug discovery. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:326-37. [PMID: 25516844 PMCID: PMC4266802 DOI: 10.1016/j.ijpddr.2014.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an urgent need of new treatments against trypanosomatids-borne diseases. DNA topoisomerases are pointed as potential drug targets against unicellular parasites. Trypanosomatids have a full set of DNA topoisomerases in both nucleus and kinetoplast. TopII and TopIII are located in the kinetoplast and fully involved in kDNA replication. Tritryps TopIB differ in structure from mammalian’s pointing to an attractive target.
The Trypanosomatidae family, composed of unicellular parasites, causes severe vector-borne diseases that afflict human populations worldwide. Chagas disease, sleeping sickness, as well as different sorts of leishmaniases are amongst the most important infectious diseases produced by Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively. All these infections are closely related to weak health care services in low-income populations of less developed and least economically developed countries. Search for new therapeutic targets in order to hit these pathogens is of paramount priority, as no effective vaccine is currently in use against any of these parasites. Furthermore, present-day chemotherapy comprises old-fashioned drugs full of important side effects. Besides, they are prone to produce tolerance and resistance as a consequence of their continuous use for decades. DNA topoisomerases (Top) are ubiquitous enzymes responsible for solving the torsional tensions caused during replication and transcription processes, as well as in maintaining genomic stability during DNA recombination. As the inhibition of these enzymes produces cell arrest and triggers cell death, Top inhibitors are among the most effective and most widely used drugs in both cancer and antibacterial therapies. Top relaxation and decatenation activities, which are based on a common nicking–closing cycle involving one or both DNA strands, have been pointed as a promising drug target. Specific inhibitors that bind to the interface of DNA-Top complexes can stabilize Top-mediated transient DNA breaks. In addition, important structural differences have been found between Tops from the Trypanosomatidae family members and Tops from the host. Such dissimilarities make these proteins very interesting for drug design and molecular intervention. The present review is a critical update of the last findings regarding trypanosomatid’s Tops, their new structural features, their involvement both in the physiology and virulence of these parasites, as well as their use as promising targets for drug discovery.
Collapse
Affiliation(s)
- Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Raquel Alvarez-Velilla
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
13
|
Yang Y, McBride KM, Hensley S, Lu Y, Chedin F, Bedford MT. Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Mol Cell 2014; 53:484-97. [PMID: 24507716 DOI: 10.1016/j.molcel.2014.01.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/09/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
Tudor domain-containing protein 3 (TDRD3) is a major methylarginine effector molecule that reads methyl-histone marks and facilitates gene transcription. However, the underlying mechanism by which TDRD3 functions as a transcriptional coactivator is unknown. We identified topoisomerase IIIB (TOP3B) as a component of the TDRD3 complex. TDRD3 serves as a molecular bridge between TOP3B and arginine-methylated histones. The TDRD3-TOP3B complex is recruited to the c-MYC gene promoter primarily by the H4R3me2a mark, and the complex promotes c-MYC gene expression. TOP3B relaxes negative supercoiled DNA and reduces transcription-generated R loops in vitro. TDRD3 knockdown in cells increases R loop formation at the c-MYC locus, and Tdrd3 null mice exhibit elevated R loop formation at this locus in B cells. Tdrd3 null mice show significantly increased c-Myc/Igh translocation, a process driven by R loop structures. By reducing negative supercoiling and resolving R loops, TOP3B promotes transcription, protects against DNA damage, and reduces the frequency of chromosomal translocations.
Collapse
Affiliation(s)
- Yanzhong Yang
- The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA
| | - Kevin M McBride
- The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA
| | - Sean Hensley
- The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA
| | - Yue Lu
- The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA
| | - Frederic Chedin
- Department of Molecular & Cellular Biology, The University of California at Davis, Davis, CA 95616, USA
| | - Mark T Bedford
- The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA.
| |
Collapse
|
14
|
Hsieh MY, Fan JR, Chang HW, Chen HC, Shen TL, Teng SC, Yeh YH, Li TK. DNA topoisomerase III alpha regulates p53-mediated tumor suppression. Clin Cancer Res 2014; 20:1489-501. [PMID: 24526736 DOI: 10.1158/1078-0432.ccr-13-1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human DNA topoisomerase III alpha (hTOP3α) is involved in DNA repair surveillance and cell-cycle checkpoints possibly through formatting complex with tumor suppressors. However, its role in cancer development remained unsolved. EXPERIMENTAL DESIGN Coimmunoprecipitation, sucrose gradient, chromatin immunoprecipitation (ChIP), real time PCR, and immunoblotting analyses were performed to determine interactions of hTOP3α with p53. Paired cell lines with different hTOP3α levels were generated via ectopic expression and short hairpin RNA (shRNA)-mediated knockdown approaches. Cellular tumorigenic properties were analyzed using cell counting, colony formation, senescence, soft agar assays, and mouse xenograft models. RESULTS The hTOP3α isozyme binds to p53 and cofractionizes with p53 in gradients differing from fractions containing hTOP3α and BLM. Knockdown of hTOP3α expression (sh-hTOP3α) caused a higher anchorage-independent growth of nontumorigenic RHEK-1 cells. Similarly, sh-hTOP3α and ectopic expression of hTOP3α in cancer cell lines caused increased and reduced tumorigenic abilities, respectively. Genetic and mutation experiments revealed that functional hTOP3α, p53, and p21 are required for this tumor-suppressive activity. Mechanism-wise, ChIP data revealed that hTOP3α binds to the p53 and p21 promoters and positively regulates their expression. Two proteins affect promoter recruitments of each other and collaborate in p21 expression. Moreover, sh-hTOP3α and sh-p53 in AGS cells caused a similar reduction in senescence and hTOP3α mRNA levels were lower in gastric and renal tumor samples. CONCLUSION We concluded that hTOP3α interacts with p53, regulates p53 and p21 expression, and contributes to the p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Mei-Yi Hsieh
- Authors' Affiliations: Department and Graduate Institute of Microbiology, College of Medicine, Department of Plan Pathology and Microbiology, College of Bioresources and Agriculture, and Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Top3β is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation. Nat Neurosci 2013; 16:1238-47. [PMID: 23912945 PMCID: PMC3853347 DOI: 10.1038/nn.3479] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022]
Abstract
Topoisomerases are crucial to solve DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3β (Top3β) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein deficient in Fragile X syndrome and known to regulate translation of mRNAs important for neuronal function and autism. Notably, the FMRP-Top3β interaction is abolished by a disease-associated FMRP mutation, suggesting that Top3β may contribute to pathogenesis of mental disorders. Top3β binds multiple mRNAs encoded by genes with neuronal functions related to schizophrenia and autism. Expression of one such gene, ptk2/FAK, is reduced in neuromuscular junctions of Top3β mutant flies. Synapse formation is defective in Top3β mutant flies and mice, as observed in FMRP mutant animals. Our findings suggest that Top3β acts as an RNA topoisomerase and works with FMRP to promote expression of mRNAs critical for neurodevelopment and mental health.
Collapse
|
16
|
Chen SH, Chan NL, Hsieh TS. New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 2013; 82:139-70. [PMID: 23495937 DOI: 10.1146/annurev-biochem-061809-100002] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA topoisomerases are nature's tools for resolving the unique problems of DNA entanglement that occur owing to unwinding and rewinding of the DNA helix during replication, transcription, recombination, repair, and chromatin remodeling. These enzymes perform topological transformations by providing a transient DNA break, formed by a covalent adduct with the enzyme, through which strand passage can occur. The active site tyrosine is responsible for initiating two transesterifications to cleave and then religate the DNA backbone. The cleavage reaction intermediate is exploited by cytotoxic agents, which have important applications as antibiotics and anticancer drugs. The reactions mediated by these enzymes can also be regulated by their binding partners; one example is a DNA helicase capable of modulating the directionality of strand passage, enabling important functions like reannealing denatured DNA and resolving recombination intermediates. In this review, we cover recent advances in mechanistic insights into topoisomerases and their various cellular functions.
Collapse
Affiliation(s)
- Stefanie Hartman Chen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
17
|
Lourenço J, Pereira R, Gonçalves F, Mendo S. SSH gene expression profile of Eisenia andrei exposed in situ to a naturally contaminated soil from an abandoned uranium mine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 88:16-25. [PMID: 23164450 DOI: 10.1016/j.ecoenv.2012.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/12/2012] [Accepted: 10/13/2012] [Indexed: 06/01/2023]
Abstract
The effects of the exposure of earthworms (Eisenia andrei) to contaminated soil from an abandoned uranium mine, were assessed through gene expression profile evaluation by Suppression Subtractive Hybridization (SSH). Organisms were exposed in situ for 56 days, in containers placed both in a contaminated and in a non-contaminated site (reference). Organisms were sampled after 14 and 56 days of exposure. Results showed that the main physiological functions affected by the exposure to metals and radionuclides were: metabolism, oxireductase activity, redox homeostasis and response to chemical stimulus and stress. The relative expression of NADH dehydrogenase subunit 1 and elongation factor 1 alpha was also affected, since the genes encoding these enzymes were significantly up and down-regulated, after 14 and 56 days of exposure, respectively. Also, an EST with homology for SET oncogene was found to be up-regulated. To the best of our knowledge, this is the first time that this gene was identified in earthworms and thus, further studies are required, to clarify its involvement in the toxicity of metals and radionuclides. Considering the results herein presented, gene expression profiling proved to be a very useful tool to detect earthworms underlying responses to metals and radionuclides exposure, pointing out for the detection and development of potential new biomarkers.
Collapse
Affiliation(s)
- Joana Lourenço
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
18
|
Jolliffe AK, Derry WB. The TP53 signaling network in mammals and worms. Brief Funct Genomics 2012; 12:129-41. [PMID: 23165352 DOI: 10.1093/bfgp/els047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nematode worm Caenorhabditis elegans has been an invaluable model organism for studying the molecular mechanisms that govern cell fate, from fundamental aspects of multicellular development to programmed cell death (apoptosis). The transparency of this organism permits visualization of cells in living animals at high resolution. The powerful genetics and functional genomics tools available in C. elegans allow for detailed analysis of gene function, including genes that are frequently deregulated in human diseases such as cancer. The TP53 protein is a critical suppressor of tumor formation in vertebrates, and the TP53 gene is mutated in over 50% of human cancers. TP53 suppresses malignancy by integrating a variety of cellular stresses that direct it to activate transcription of genes that help to repair the damage or trigger apoptotic death if the damage is beyond repair. The TP53 paralogs, TP63 and TP73, have distinct roles in development as well as overlapping functions with TP53 in apoptosis and repair, which complicates their analysis in vertebrates. C. elegans contains a single TP53 family member, cep-1, that shares properties of all three vertebrate genes and thus offers a simple system in which to study the biological functions of this important gene family. This review summarizes major advances in our understanding of the TP53 family using C. elegans as a model organism.
Collapse
|
19
|
Significance of topoisomerase IIIβ expression in breast ductal carcinomas: strong associations with disease-specific survival and metastasis. Hum Pathol 2010; 41:1624-30. [PMID: 20950730 DOI: 10.1016/j.humpath.2010.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/22/2010] [Accepted: 01/27/2010] [Indexed: 11/23/2022]
Abstract
Topoisomerases are ubiquitous nuclear enzymes that regulate DNA structure in eukaryotic cells. The role of topoisomerase IIIβ, the newest member of the topoisomerase family, in the clinical outcome of breast cancer is still poorly understood. This study aims to investigate the immunoexpression of topoisomerase IIIβ in breast cancer and its relationships with clinicopathologic features and immunohistochemical markers of prognostic significance in breast pathology. Using tissue microarrays containing 171 cases of primary invasive breast cancer, we analyzed the immunoexpression of topoisomerase IIIβ, estrogen receptor, progesterone receptor, HER-2, BRCA-1, p53, and Ki67. Immunostaining for topoisomerase IIIβ was found in 33.9% of breast carcinomas, and immunopositivity was correlated with distant metastasis (P = .036) and death (P = .006). Decreased expression of topoisomerase IIIβ correlated with low expression of Ki67 (P < .001) and negativity for HER-2 (P < .001), BRCA-1 (P = .001), and p53 (P < .001). In the multivariate analysis, topoisomerase IIIβ expression was a significant predictor of survival (hazard ratio, 3.006 [95% confidence interval, 1.582-5.715]; P = .001). In conclusion, topoisomerase IIIβ expression can be a useful marker in assessing the prognosis of patients with breast cancer and is an independent predictor of survival.
Collapse
|