1
|
Bientz L, Guyet U, Guiraud J, Metifiot M, Moulieras M, Aillerie S, Coulange-Mayonnove L, Boureima-Abdou B, Groppi A, Nikolski M, Bébéar C, Pereyre S, Dubois V. Mobilization of an ICEclc-Like Element as a Potential Mechanism for the Spread of IMP-13 Carbapenemase in Pseudomonas aeruginosa. J Glob Antimicrob Resist 2025; 41:44-51. [PMID: 39706477 DOI: 10.1016/j.jgar.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is a global public health concern. IMP-13 is a carbapenemase that was described for the first time in 2001 but is often underestimated due to poor hydrolysis of carbapenems and a lack of molecular detection. The aim of this study was to characterize the genetic support of blaIMP-13 in P. aeruginosa and to assess the ability of mobile genetic elements to disseminate this resistance. A retrospective analysis conducted between 2010 and 2020 revealed eight multiresistant P. aeruginosa isolates by their production of the carbapenemase IMP-13 in Bordeaux. Additionally, three of the studied isolates exhibited high-level resistance to imipenem and imipenem-relebactam that was linked to an insertion sequence in the oprD gene. Successful mating was achieved, and transconjugants and parental clinical isolate genomes were sequenced. All clinical isolates were found to be ST621 strains. The data revealed that blaIMP-13 was carried on an Integrative and Conjugative Element (ICEclc-like) of 88,589 bp with a 62% GC content harboring 85 CDSs, and was inserted at the tRNAGly locus PA0729.1. The ICE was identical in the eight studied clinical isolates and in all the ST621 strains found in the databases. The conjugation rate was low, at approximately 10-8 transconjugants per donor and ICE transfer appeared to mobilize some adjacent parental genes located immediately downstream of the ICE. In conclusion, these results suggest that even if the spread of blaIMP-13 is mainly due to an epidemic ST621 clone, the mobilization of a blaIMP-13-carrying ICEclc-like element is possible and should not be underestimated.
Collapse
Affiliation(s)
- Léa Bientz
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - Ulysse Guyet
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, Bordeaux, CEDEX, France; IBGC (CNRS-UMR 5095), University of Bordeaux, Bordeaux, CEDEX, France
| | - Jennifer Guiraud
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - Mathieu Metifiot
- ANDEVIR Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Bordeaux, France
| | - Mikeldi Moulieras
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Sabine Aillerie
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Laure Coulange-Mayonnove
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Bachir Boureima-Abdou
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Alexis Groppi
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, Bordeaux, CEDEX, France; IBGC (CNRS-UMR 5095), University of Bordeaux, Bordeaux, CEDEX, France
| | - Macha Nikolski
- Centre de Bioinformatique de Bordeaux (CBiB), University of Bordeaux, Bordeaux, CEDEX, France; IBGC (CNRS-UMR 5095), University of Bordeaux, Bordeaux, CEDEX, France
| | - Cécile Bébéar
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - Sabine Pereyre
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - Véronique Dubois
- ARMYNE Team, UMR 5234, Microbiologie Fondamentale et Pathogénicité (MFP), University of Bordeaux, Centre National de la Recherche Scientifique (CNRS), Bordeaux, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France.
| |
Collapse
|
2
|
Benigno V, Carraro N, Sarton-Lohéac G, Romano-Bertrand S, Blanc DS, van der Meer JR. Diversity and evolution of an abundant ICE clc family of integrative and conjugative elements in Pseudomonas aeruginosa. mSphere 2023; 8:e0051723. [PMID: 37902330 PMCID: PMC10732049 DOI: 10.1128/msphere.00517-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Microbial populations swiftly adapt to changing environments through horizontal gene transfer. While the mechanisms of gene transfer are well known, the impact of environmental conditions on the selection of transferred gene functions remains less clear. We investigated ICEs, specifically the ICEclc-type, in Pseudomonas aeruginosa clinical isolates. Our findings revealed co-evolution between ICEs and their hosts, with ICE transfers occurring within strains. Gene functions carried by ICEs are positively selected, including potential virulence factors and heavy metal resistance. Comparison to publicly available P. aeruginosa genomes unveiled widespread antibiotic-resistance determinants within ICEclc clades. Thus, the ubiquitous ICEclc family significantly contributes to P. aeruginosa's adaptation and fitness in diverse environments.
Collapse
Affiliation(s)
- Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Garance Sarton-Lohéac
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sara Romano-Bertrand
- Hydrosciences Montpellier, IRD, CNRS, University of Montpellier, Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, Montpellier, France
| | - Dominique S. Blanc
- Prevention and Infection Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Hirose J. Diversity and Evolution of Integrative and Conjugative Elements Involved in Bacterial Aromatic Compound Degradation and Their Utility in Environmental Remediation. Microorganisms 2023; 11:microorganisms11020438. [PMID: 36838403 PMCID: PMC9960961 DOI: 10.3390/microorganisms11020438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are mobile DNA molecules that can be transferred through excision, conjugation, and integration into chromosomes. They contribute to the horizontal transfer of genomic islands across bacterial species. ICEs carrying genes encoding aromatic compound degradation pathways are of interest because of their contribution to environmental remediation. Recent advances in DNA sequencing technology have increased the number of newly discovered ICEs in bacterial genomes and have enabled comparative analysis of their evolution. The two different families of ICEs carry various aromatic compound degradation pathway genes. ICEclc and its related ICEs contain a number of members with diverse catabolic capabilities. In addition, the Tn4371 family, which includes ICEs that carry the chlorinated biphenyl catabolic pathway, has been identified. It is apparent that they underwent evolution through the acquisition, deletion, or exchange of modules to adapt to an environmental niche. ICEs have the property of both stability and mobility in the chromosome. Perspectives on the use of ICEs in environmental remediation are also discussed.
Collapse
Affiliation(s)
- Jun Hirose
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
4
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|
5
|
Phale PS, Mohapatra B, Malhotra H, Shah BA. Eco-physiological portrait of a novel Pseudomonas sp. CSV86: an ideal host/candidate for metabolic engineering and bioremediation. Environ Microbiol 2021; 24:2797-2816. [PMID: 34347343 DOI: 10.1111/1462-2920.15694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Pseudomonas sp. CSV86, an Indian soil isolate, degrades wide range of aromatic compounds like naphthalene, benzoate and phenylpropanoids, amongst others. Isolate displays the unique and novel property of preferential utilization of aromatics over glucose and co-metabolizes them with organic acids. Interestingly, as compared to other Pseudomonads, strain CSV86 harbours only high-affinity glucokinase pathway (and absence of low-affinity oxidative route) for glucose metabolism. Such lack of gluconate loop might be responsible for the novel phenotype of preferential utilization of aromatics. The genome analysis and comparative functional mining indicated a large genome (6.79 Mb) with significant enrichment of regulators, transporters as well as presence of various secondary metabolite production clusters, suggesting its eco-physiological and metabolic versatility. Strain harbours various integrative conjugative elements (ICEs) and genomic islands, probably acquired through horizontal gene transfer events, leading to genome mosaicity and plasticity. Naphthalene degradation genes are arranged as regulonic clusters and found to be part of ICECSV86nah . Various eco-physiological properties and absence of major pathogenicity and virulence factors (risk group-1) in CSV86 suggest it to be an ideal candidate for bioremediation. Further, strain can serve as an ideal chassis for metabolic engineering to degrade various xenobiotics preferentially over simple carbon sources for efficient remediation.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
6
|
Lee C, Klockgether J, Fischer S, Trcek J, Tümmler B, Römling U. Why? - Successful Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiol Rev 2021; 44:740-762. [PMID: 32990729 PMCID: PMC7685784 DOI: 10.1093/femsre/fuaa029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
The environmental species Pseudomonas aeruginosa thrives in a variety of habitats. Within the epidemic population structure of P. aeruginosa, occassionally highly successful clones that are equally capable to succeed in the environment and the human host arise. Framed by a highly conserved core genome, individual members of successful clones are characterized by a high variability in their accessory genome. The abundance of successful clones might be funded in specific features of the core genome or, although not mutually exclusive, in the variability of the accessory genome. In clone C, one of the most predominant clones, the plasmid pKLC102 and the PACGI-1 genomic island are two ubiquitous accessory genetic elements. The conserved transmissible locus of protein quality control (TLPQC) at the border of PACGI-1 is a unique horizontally transferred compository element, which codes predominantly for stress-related cargo gene products such as involved in protein homeostasis. As a hallmark, most TLPQC xenologues possess a core genome equivalent. With elevated temperature tolerance as a characteristic of clone C strains, the unique P. aeruginosa and clone C specific disaggregase ClpG is a major contributor to tolerance. As other successful clones, such as PA14, do not encode the TLPQC locus, ubiquitous denominators of success, if existing, need to be identified.
Collapse
Affiliation(s)
- Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jens Klockgether
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Sebastian Fischer
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Janja Trcek
- Faculty of Natural Sciences and Mathematics, Department of Biology, University of Maribor, Maribor, 2000, Slovenia
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
7
|
Maucourt B, Vuilleumier S, Bringel F. Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 2020; 44:189-207. [PMID: 32011697 DOI: 10.1093/femsre/fuaa002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Collapse
Affiliation(s)
- Bruno Maucourt
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Françoise Bringel
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
8
|
Carraro N, Richard X, Sulser S, Delavat F, Mazza C, van der Meer JR. An analog to digital converter controls bistable transfer competence development of a widespread bacterial integrative and conjugative element. eLife 2020; 9:57915. [PMID: 32720896 PMCID: PMC7423338 DOI: 10.7554/elife.57915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Conjugative transfer of the integrative and conjugative element ICEclc in Pseudomonas requires development of a transfer competence state in stationary phase, which arises only in 3–5% of individual cells. The mechanisms controlling this bistable switch between non-active and transfer competent cells have long remained enigmatic. Using a variety of genetic tools and epistasis experiments in P. putida, we uncovered an ‘upstream’ cascade of three consecutive transcription factor-nodes, which controls transfer competence initiation. One of the uncovered transcription factors (named BisR) is representative for a new regulator family. Initiation activates a feedback loop, controlled by a second hitherto unrecognized heteromeric transcription factor named BisDC. Stochastic modelling and experimental data demonstrated the feedback loop to act as a scalable converter of unimodal (population-wide or ‘analog’) input to bistable (subpopulation-specific or ‘digital’) output. The feedback loop further enables prolonged production of BisDC, which ensures expression of the ‘downstream’ functions mediating ICE transfer competence in activated cells. Phylogenetic analyses showed that the ICEclc regulatory constellation with BisR and BisDC is widespread among Gamma- and Beta-proteobacteria, including various pathogenic strains, highlighting its evolutionary conservation and prime importance to control the behaviour of this wide family of conjugative elements. Mobile DNA elements are pieces of genetic material that can jump from one bacterium to another, and even across species. They are often useful to their host, for example carrying genes that allow bacteria to resist antibiotics. One example of bacterial mobile DNA is the ICEclc element. Usually, ICEclc sits passively within the bacterium’s own DNA, but in a small number of cells, it takes over, hijacking its host to multiply and to get transferred to other bacteria. Cells that can pass on the elements cannot divide, and so this ability is ultimately harmful to individual bacteria. Carrying ICEclc can therefore be positive for a bacterium but passing it on is not in the cell’s best interest. On the other hand, mobile DNAs like ICEclc have evolved to be disseminated as efficiently as possible. To shed more light on this tense relationship, Carraro et al. set out to identify the molecular mechanisms ICEclc deploys to control its host. Experiments using mutant bacteria revealed that for ICEclc to successfully take over the cell, a number of proteins needed to be produced in the correct order. In particular, a protein called BisDC triggers a mechanism to make more of itself, creating a self-reinforcing ‘feedback loop’. Mathematical simulations of the feedback loop showed that it could result in two potential outcomes for the cell. In most of the ‘virtual cells’, ICEclc ultimately remained passive; however, in a few, ICEclc managed to take over its hosts. In this case, the feedback loop ensured that there was always enough BisDC to maintain ICEclc’s control over the cell. Further analyses suggested that this feedback mechanism is also common in many other mobile DNA elements, including some that help bacteria to resist drugs. These results are an important contribution to understand how mobile DNAs manipulate their bacterial host in order to propagate and disperse. In the future, this knowledge could help develop new strategies to combat the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Xavier Richard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,UMR CNRS 6286 UFIP, University of Nantes, Nantes, France
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
9
|
Botelho J, Schulenburg H. The Role of Integrative and Conjugative Elements in Antibiotic Resistance Evolution. Trends Microbiol 2020; 29:8-18. [PMID: 32536522 DOI: 10.1016/j.tim.2020.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Mobile genetic elements (MGEs), such as plasmids and integrative and conjugative elements (ICEs), are main drivers for the spread of antibiotic resistance (AR). Coevolution between bacteria and plasmids shapes the transfer and stability of plasmids across bacteria. Although ICEs outnumber conjugative plasmids, the dynamics of ICE-bacterium coevolution, ICE transfer rates, and fitness costs are as yet largely unexplored. Conjugative plasmids and ICEs are both transferred by type IV secretion systems, but ICEs are typically immune to segregational loss, suggesting that the evolution of ICE-bacterium associations varies from that of plasmid-bacterium associations. Considering the high abundance of ICEs among bacteria, ICE-bacterium dynamics represent a promising challenge for future research that will enhance our understanding of AR spread in human pathogens.
Collapse
Affiliation(s)
- João Botelho
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany.
| | - Hinrich Schulenburg
- Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
10
|
Redfern J, Enright MC. Further understanding of Pseudomonas aeruginosa’s ability to horizontally acquire virulence: possible intervention strategies. Expert Rev Anti Infect Ther 2020; 18:539-549. [DOI: 10.1080/14787210.2020.1751610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- James Redfern
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
11
|
Takano S, Fukuda K, Koto A, Miyazaki R. A novel system of bacterial cell division arrest implicated in horizontal transmission of an integrative and conjugative element. PLoS Genet 2019; 15:e1008445. [PMID: 31609967 PMCID: PMC6812849 DOI: 10.1371/journal.pgen.1008445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/24/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA elements in the prokaryotic world. ICEs are usually retained within the bacterial chromosome, but can be excised and transferred from a donor to a new recipient cell, even of another species. Horizontal transmission of ICEclc, a prevalent ICE in proteobacteria, only occurs from developed specialized transfer competent (tc) cells in the donor population. tc cells become entirely dedicated to the ICE transmission at the cost of cell proliferation. The cell growth impairment is mediated by two ICEclc located genes, parA and shi, but the mechanistic and dynamic details of this process are unknown. To better understand the function of ParA and Shi, we followed their intracellular behavior from fluorescent protein fusions, and studied host cell division at single-cell level. Superresolution imaging revealed that ParA-mCherry colocalized with the host nucleoid while Shi-GFP was enriched at the membrane during the growth impairment. Despite being enriched at different cellular locations, the two proteins showed in vivo interactions, and mutations in the Walker A motif of ParA dislocalized both ParA and Shi. In addition, ParA mutations in the ATPase motif abolished the growth arrest on the host cell. Time-lapse microscopy revealed that ParA and Shi initially delay cell division, suggesting an extension of the S phase of cells, but eventually completely inhibit cell elongation. The parA-shi locus is highly conserved in other ICEclc-related elements, and expressing ParA-Shi from ICEclc in other proteobacterial species caused similar growth arrest, suggesting that the system functions similarly across hosts. The results of our study provide mechanistic insight into the novel and unique system on ICEs and help to understand such epistatic interaction between ICE genes and host physiology that entails efficient horizontal gene transfer.
Collapse
Affiliation(s)
- Sotaro Takano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kohei Fukuda
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
12
|
Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640. [PMID: 31492517 DOI: 10.1016/j.drup.2019.07.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics are powerful drugs used in the treatment of bacterial infections. The inappropriate use of these medicines has driven the dissemination of antibiotic resistance (AR) in most bacteria. Pseudomonas aeruginosa is an opportunistic pathogen commonly involved in environmental- and difficult-to-treat hospital-acquired infections. This species is frequently resistant to several antibiotics, being in the "critical" category of the WHO's priority pathogens list for research and development of new antibiotics. In addition to a remarkable intrinsic resistance to several antibiotics, P. aeruginosa can acquire resistance through chromosomal mutations and acquisition of AR genes. P. aeruginosa has one of the largest bacterial genomes and possesses a significant assortment of genes acquired by horizontal gene transfer (HGT), which are frequently localized within integrons and mobile genetic elements (MGEs), such as transposons, insertion sequences, genomic islands, phages, plasmids and integrative and conjugative elements (ICEs). This genomic diversity results in a non-clonal population structure, punctuated by specific clones that are associated with significant morbidity and mortality worldwide, the so-called high-risk clones. Acquisition of MGEs produces a fitness cost in the host, that can be eased over time by compensatory mutations during MGE-host coevolution. Even though plasmids and ICEs are important drivers of AR, the underlying evolutionary traits that promote this dissemination are poorly understood. In this review, we provide a comprehensive description of the main strategies involved in AR in P. aeruginosa and the leading drivers of HGT in this species. The most recently developed genomic tools that allowed a better understanding of the features contributing for the success of P. aeruginosa are discussed.
Collapse
|
13
|
Botelho J, Grosso F, Peixe L. WITHDRAWN: Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 2019. [DOI: 10.1016/j.drup.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Paul D, Chakraborty R, Mandal SM. Biocides and health-care agents are more than just antibiotics: Inducing cross to co-resistance in microbes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:601-610. [PMID: 30875553 DOI: 10.1016/j.ecoenv.2019.02.083] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Health-care chemicals are used worldwide as important components of different industries as consumer products, food industry, animal husbandry and agribusiness. There are innumerable reports on the effect of these chemicals (biocides) impacting the development of cross to co-resistance in pathogenic bacteria. However, reports are limited on the concurrent use of agricides (pesticides, herbicides, fungicides and insecticides) which influence the microbial activities in soils and contribute to the increase in incidences of co-resistance. Undoubtedly, indiscriminate use of biocides and agricides has contaminated both water and soil environments. This review describes the onset of cross and co-resistance to biocides and antibiotics which is increasingly being exhibited by specific bacteria under a persistent selective pressure. It also re-examines the significance of mobile genetic platforms and horizontal gene transfer from one to another bacterial species, for understanding the kinetics and efficiency of genetic exchange in stressed environments leading to natural selection of tolerant strains over susceptible ones. The investigation is much warranted, particularly with respect to agricides that commonly occur in recalcitrant states in soil and water ecosystem, livestock, etc and is transmitted either directly or via the food-chain to human beings, facilitating the switch from cross to co-resistance.
Collapse
Affiliation(s)
- Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida 201313, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri 734013, WB, India
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| |
Collapse
|
15
|
Transient Replication in Specialized Cells Favors Transfer of an Integrative and Conjugative Element. mBio 2019; 10:mBio.01133-19. [PMID: 31186329 PMCID: PMC6561031 DOI: 10.1128/mbio.01133-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial evolution is driven to a large extent by horizontal gene transfer (HGT)—the processes that distribute genetic material between species rather than by vertical descent. The different elements and processes mediating HGT have been characterized in great molecular detail. In contrast, very little is known on adaptive features selecting HGT evolvability and fitness optimization. By studying the molecular behavior of an integrated mobile DNA of the class of integrative and conjugative elements in individual Pseudomonas putida donor bacteria, we report here how transient replication of the element after its excision from the chromosome is favorable for its transfer success. Since successful transfer into a new recipient is a measure of the element’s fitness, transient replication may have been selected as an adaptive benefit for more-optimal transfer. Integrative and conjugative elements (ICEs) are widespread mobile DNA within bacterial genomes, whose lifestyle is relatively poorly understood. ICEs transmit vertically through donor cell chromosome replication, but in order to transfer, they have to excise from the chromosome. The excision step makes ICEs prone to loss, in case the donor cell divides and the ICE is not replicated. By adapting the system of LacI-cyan fluorescent protein (CFP) binding to lacO operator arrays, we analyze here the process of excision and transfer of the ICE for 3-chlorobenzoate degradation (ICEclc) in individual cells of the bacterium Pseudomonas putida. We provide evidence that ICEclc excises exclusively in a subset of specialized transfer-competent cells. ICEclc copy numbers in transfer-competent cells were higher than in regular nontransferring cells but were reduced in mutants lacking the ICE oriT1 origin of transfer, the ICE DNA relaxase, or the excision recombination sites. Consistently, transfer-competent cells showed a higher proportion without any observable LacI-CFP foci, suggesting ICEclc loss, but this proportion was independent of the ICE relaxase or the ICE origins of transfer. Our results thus indicated that the excised ICE becomes transiently replicated in transfer-competent cells, with up to six observable copies from LacI-CFP fluorescent focus measurements. Most of the observed ICEclc transfer to ICE-free P. putida recipients occurred from donors displaying 3 to 4 ICE copies, which constitute a minority among all transfer-competent cells. This finding suggests, therefore, that replication of the excised ICEclc in donors is beneficial for transfer fitness to recipient cells.
Collapse
|
16
|
Shi Y, Tian Z, Leclercq SO, Zhang H, Yang M, Zhang Y. Genetic characterization and potential molecular dissemination mechanism of tet(31) gene in Aeromonas caviae from an oxytetracycline wastewater treatment system. J Environ Sci (China) 2019; 76:259-266. [PMID: 30528016 DOI: 10.1016/j.jes.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/09/2023]
Abstract
Recently, the rarely reported tet(31) tetracycline resistance determinant was commonly found in Aeromonas salmonicida, Gallibacterium anatis, and Oblitimonas alkaliphila isolated from farming animals and related environment. However, its distribution in other bacteria and potential molecular dissemination mechanism in environment are still unknown. The purpose of this study was to investigate the potential mechanism underlying dissemination of tet(31) by analysing the tet(31)-carrying fragments in A. caviae strains isolated from an aerobic biofilm reactor treating oxytetracycline bearing wastewater. Twenty-three A. caviae strains were screened for the tet(31) gene by polymerase chain reaction (PCR). Three strains (two harbouring tet(31), one not) were subjected to whole genome sequencing using the PacBio RSII platform. Seventeen A. caviae strains carried the tet(31) gene and exhibited high resistance levels to oxytetracycline with minimum inhibitory concentrations (MICs) ranging from 256 to 512 mg/L. tet(31) was comprised of the transposon Tn6432 on the chromosome of A. caviae, and Tn6432 was also found in 15 additional tet(31)-positive A. caviae isolates by PCR. More important, Tn6432 was located on an integrative conjugative element (ICE)-like element, which could mediate the dissemination of the tet(31)-carrying transposon Tn6432 between bacteria. Comparative analysis demonstrated that Tn6432 homologs with the structure ISCR2-∆phzF-tetR(31)-tet(31)-∆glmM-sul2 were also carried by A. salmonicida, G. anatis, and O. alkaliphila, suggesting that this transposon can be transferred between species and even genera. This work provides the first report on the identification of the tet(31) gene in A. caviae, and will be helpful in exploring the dissemination mechanisms of tet(31) in water environment.
Collapse
Affiliation(s)
- Yanhong Shi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sébastien Olivier Leclercq
- INRA, UMR1282 Infectiology and Public Health, F-37380 Nouzilly, France; François Rabelais University, UMR1282 Infectiology and Public Health, F-37000 Tours, France
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Liu Q, Liu Y, Kang Z, Xiao D, Gao C, Xu P, Ma C. 2,3-Butanediol catabolism in Pseudomonas aeruginosa PAO1. Environ Microbiol 2018; 20:3927-3940. [PMID: 30058099 DOI: 10.1111/1462-2920.14332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/18/2018] [Indexed: 11/28/2022]
Abstract
2,3-Butanediol (2,3-BD) is a primary microbial metabolite that enhances the virulence of Pseudomonas aeruginosa and alters the lung microbiome. 2,3-BD exists in three stereoisomeric forms: (2R,3R)-2,3-BD, meso-2,3-BD and (2S,3S)-2,3-BD. In this study, we investigated whether and how P. aeruginosa PAO1 utilizes these 2,3-BD stereoisomers and showed that all three stereoisomers were transformed into acetoin by (2R,3R)-2,3-butanediol dehydrogenase (BDH) or (2S,3S)-2,3-BDH. Acetoin was cleaved to form acetyl-CoA and acetaldehyde by acetoin dehydrogenase enzyme system (AoDH ES). Genes encoding (2R,3R)-2,3-BDH, (2S,3S)-2,3-BDH and the E1 and E2 components of AoDH ES were identified as part of a new 2,3-BD utilization operon. In addition, the regulatory protein AcoR promoted the expression of this operon using acetaldehyde, a cleavage product of acetoin, as its direct effector. The results of this study elucidate the integrated catabolic role of 2,3-BD and may provide new insights in P. aeruginosa-related infections.
Collapse
Affiliation(s)
- Qiuyuan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Dan Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
18
|
Physiological and transcriptome changes induced by Pseudomonas putida acquisition of an integrative and conjugative element. Sci Rep 2018; 8:5550. [PMID: 29615803 PMCID: PMC5882942 DOI: 10.1038/s41598-018-23858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Integrative and conjugative elements (ICEs) comprise ubiquitous large mobile regions in prokaryotic chromosomes that transmit vertically to daughter cells and transfer horizontally to distantly related lineages. Their evolutionary success originates in maximized combined ICE-host fitness trade-offs, but how the ICE impacts on the host metabolism and physiology is poorly understood. Here we investigate global changes in the host genetic network and physiology of Pseudomonas putida with or without an integrated ICEclc, a model ICE widely distributed in proteobacterial genomes. Genome-wide gene expression differences were analyzed by RNA-seq using exponentially growing or stationary phase-restimulated cultures on 3-chlorobenzoate, an aromatic compound metabolizable thanks to specific ICEclc-located genes. We found that the presence of ICEclc imposes a variety of changes in global pathways such as cell cycle and amino acid metabolism, which were more numerous in stationary-restimulated than exponential phase cells. Unexpectedly, ICEclc stimulates cellular motility and leads to more rapid growth on 3-chlorobenzoate than cells carrying only the integrated clc genes. ICEclc also concomitantly activates the P. putida Pspu28-prophage, but this in itself did not provoke measurable fitness effects. ICEclc thus interferes in a number of cellular pathways, inducing both direct benefits as well as indirect costs in P. putida.
Collapse
|
19
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
20
|
Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel. Appl Environ Microbiol 2017; 83:AEM.03249-16. [PMID: 28314727 DOI: 10.1128/aem.03249-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/06/2017] [Indexed: 02/03/2023] Open
Abstract
Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n-C8 and n-C10 The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation.IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival, growth, and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic differences between strains and helpful information that may be applied in the improvement of bacterial strains for resistance to biotic and abiotic factors encountered during bioremediation and industrial biotechnological processes.
Collapse
|
21
|
Zamarro MT, Martín-Moldes Z, Díaz E. The ICE XTD of Azoarcus sp. CIB, an integrative and conjugative element with aerobic and anaerobic catabolic properties. Environ Microbiol 2016; 18:5018-5031. [PMID: 27450529 DOI: 10.1111/1462-2920.13465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
Abstract
Integrative and conjugative elements (ICE) play a major role in aerobic degradation of aromatic compounds, but they have not yet been shown to be involved in anaerobic degradation. We have characterized here the ICEXTD element which endows to the beta-proteobacterium Azoarcus sp. CIB with the ability to utilize aromatic hydrocarbons. The core region of ICEXTD , which shows a remarkable synteny with that of ICEclc-like elements, allows its own intracellular and intercellular mobility. ICEXTD integrates at the tRNAGly of the host chromosome, but it can also excise to produce a ready to transfer circular form. The adaptation modules of ICEXTD represent a unique combination of gene clusters for aerobic (tod genes) and anaerobic (bss-bbs and mbd genes) degradation of certain aromatic hydrocarbons, e.g., toluene, m-xylene and cumene. Transfer of ICEXTD to other Azoarcus strains, e.g., A. evansii, confers them the ability to degrade aromatic hydrocarbons both aerobically and anaerobically. Interestingly, ICEXTD allows Cupriavidus pinatubonensis, a bacterium unable to degrade anaerobically aromatic compounds, to grow with m-xylene under anoxic conditions. Thus, ICEXTD constitutes the first mobile genetic element able to expand the catabolic abilities of certain bacteria for the removal of aromatic hydrocarbons either in the presence or absence of oxygen.
Collapse
Affiliation(s)
- María Teresa Zamarro
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Zaira Martín-Moldes
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Eduardo Díaz
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
22
|
Abstract
Horizontal gene transfer plays a major role in microbial evolution, allowing microbes to acquire new genes and phenotypes. Integrative and conjugative elements (ICEs, a.k.a. conjugative transposons) are modular mobile genetic elements integrated into a host genome and are passively propagated during chromosomal replication and cell division. Induction of ICE gene expression leads to excision, production of the conserved conjugation machinery (a type IV secretion system), and the potential to transfer DNA to appropriate recipients. ICEs typically contain cargo genes that are not usually related to the ICE life cycle and that confer phenotypes to host cells. We summarize the life cycle and discovery of ICEs, some of the regulatory mechanisms, and how the types of cargo have influenced our view of ICEs. We discuss how ICEs can acquire new cargo genes and describe challenges to the field and various perspectives on ICE biology.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; ,
| | | |
Collapse
|
23
|
Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nat Commun 2015; 6:6845. [PMID: 25897488 PMCID: PMC4410645 DOI: 10.1038/ncomms7845] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/04/2015] [Indexed: 12/17/2022] Open
Abstract
Horizontal gene transfer (HGT) plays a key role in bacterial evolution, especially with respect to antibiotic resistance. Fitness costs associated with mobile genetic elements (MGEs) are thought to constrain HGT, but our understanding of these costs remains fragmentary, making it difficult to predict the success of HGT events. Here we use the interaction between P. aeruginosa and a costly plasmid (pNUK73) to investigate the molecular basis of the cost of HGT. Using RNA-Seq, we show that the acquisition of pNUK73 results in a profound alteration of the transcriptional profile of chromosomal genes. Mutations that inactivate two genes encoded on chromosomally integrated MGEs recover these fitness costs and transcriptional changes by decreasing the expression of the pNUK73 replication gene. Our study demonstrates that interactions between MGEs can compromise bacterial fitness via altered gene expression, and we argue that conflicts between mobile elements impose a general constraint on evolution by HGT.
Collapse
|
24
|
Dougherty K, Smith BA, Moore AF, Maitland S, Fanger C, Murillo R, Baltrus DA. Multiple phenotypic changes associated with large-scale horizontal gene transfer. PLoS One 2014; 9:e102170. [PMID: 25048697 PMCID: PMC4105467 DOI: 10.1371/journal.pone.0102170] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.
Collapse
Affiliation(s)
- Kevin Dougherty
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Brian A. Smith
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Autumn F. Moore
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Shannon Maitland
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Chris Fanger
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Rachel Murillo
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
25
|
Juhas M. Type IV secretion systems and genomic islands-mediated horizontal gene transfer in Pseudomonas and Haemophilus. Microbiol Res 2014; 170:10-7. [PMID: 25183653 DOI: 10.1016/j.micres.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022]
Abstract
Bacterial secretion systems, such as type IV secretion systems (T4SSs) are multi-subunit machines transferring macromolecules across membranes. Besides proteins, T4SSs also transfer nucleoprotein complexes, thus having a significant impact on the evolution of bacterial species. By T4SS-mediated horizontal gene transfer bacteria can acquire a broad spectrum of fitness genes allowing them to thrive in the wide variety of environments. Furthermore, acquisition of antibiotic-resistance and virulence genes can lead to the emergence of novel 'superbugs'. This review provides an update on the investigation of T4SSs. It highlights the role T4SSs play in the horizontal gene transfer, particularly in the evolution of catabolic pathways, antibiotic-resistance and virulence in Haemophilus and Pseudomonas.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK.
| |
Collapse
|
26
|
Takahashi Y, Shintani M, Takase N, Kazo Y, Kawamura F, Hara H, Nishida H, Okada K, Yamane H, Nojiri H. Modulation of primary cell function of host Pseudomonas bacteria by the conjugative plasmid pCAR1. Environ Microbiol 2014; 17:134-55. [PMID: 24889869 DOI: 10.1111/1462-2920.12515] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/20/2014] [Indexed: 11/28/2022]
Abstract
The impacts of plasmid carriage on the host cell were comprehensively analysed using the conjugative plasmid pCAR1 in three different Pseudomonas hosts, P. putida KT2440, P. aeruginosa PAO1 and P. fluorescens Pf0-1. Plasmid carriage reduced host fitness, swimming motility, and resistance to osmotic or pH stress. Plasmid carriage brought about alterations in primary metabolic capacities in the TCA cycle of the hosts. Differentially transcribed genes in the three hosts associated with plasmid carriage were identified by growth phase-dependent transcriptome analyses. Plasmid carriage commonly showed a greater effect on the host transcriptome at the transition and early stationary phases. The transcriptome alterations were similar between KT2440 and PAO1. Transcriptions of numbers of genes encoding ribosomal proteins, F-type ATPase, and RNAP core in both strains were not suppressed enough in the early stationary phase by plasmid carriage. These responses may have been responsible for the reduction in host fitness, motility and stress resistances. Host-specific responses to plasmid carriage were transcriptional changes of genes on putative prophage or foreign DNA regions. The extents of the impacts on host phenotypes and transcriptomes were similarly greatest in KT2440 and lowest in Pf0-1. These findings suggest that host cell function was actively regulated by plasmid carriage.
Collapse
Affiliation(s)
- Yurika Takahashi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Frangipani E, Pérez-Martínez I, Williams HD, Cherbuin G, Haas D. A novel cyanide-inducible gene cluster helps protect Pseudomonas aeruginosa from cyanide. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:28-34. [PMID: 24596260 DOI: 10.1111/1758-2229.12105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/03/2013] [Accepted: 09/13/2013] [Indexed: 06/03/2023]
Abstract
Pseudomonas aeruginosa produces the toxic secondary metabolite hydrogen cyanide (HCN) at high cell population densities and low aeration. Here, we investigated the impact of HCN as a signal in cell-cell communication by comparing the transcriptome of the wild-type strain PAO1 to that of an HCN-negative mutant under cyanogenic conditions. HCN repressed four genes and induced 12 genes. While the individual functions of these genes are unknown, with one exception (i.e. a ferredoxin-dependent reductase), a highly inducible six-gene cluster (PA4129-PA4134) was found to be crucial for protection of P. aeruginosa from external HCN intoxication. A double mutant deleted for PA4129-PA4134 and cioAB (encoding cyanide-insensitive oxidase) did not grow with 100 μM KCN, whereas the corresponding single mutants were essentially unaffected, suggesting a synergistic action of the PA4129-PA4134 gene products and cyanide-insensitive oxidase.
Collapse
Affiliation(s)
- Emanuela Frangipani
- Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Dy RL, Pitman AR, Fineran PC. Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria. Mob Genet Elements 2013; 3:e26831. [PMID: 24251073 PMCID: PMC3827097 DOI: 10.4161/mge.26831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated (Cas) proteins form adaptive immune systems in bacteria to combat phage and other foreign genetic elements. Typically, short spacer sequences are acquired from the invader DNA and incorporated into CRISPR arrays in the bacterial genome. Small RNAs are generated that contain these spacer sequences and enable sequence-specific destruction of the foreign nucleic acids. Occasionally, spacers are acquired from the chromosome, which instead leads to targeting of the host genome. Chromosomal targeting is highly toxic to the bacterium, providing a strong selective pressure for a variety of evolutionary routes that enable host cell survival. Mutations that inactivate the CRISPR-Cas functionality, such as within the cas genes, CRISPR repeat, protospacer adjacent motifs (PAM), and target sequence, mediate escape from toxicity. This self-targeting might provide some explanation for the incomplete distribution of CRISPR-Cas systems in less than half of sequenced bacterial genomes. More importantly, self-genome targeting can cause large-scale genomic alterations, including remodeling or deletion of pathogenicity islands and other non-mobile chromosomal regions. While control of horizontal gene transfer is perceived as their main function, our recent work illuminates an alternative role of CRISPR-Cas systems in causing host genomic changes and influencing bacterial evolution.
Collapse
Affiliation(s)
- Ron L Dy
- Department of Microbiology and Immunology; University of Otago; Dunedin, New Zealand
| | - Andrew R Pitman
- The New Zealand Institute for Plant & Food Research Limited; Christchurch, New Zealand
- Bio-Protection Research Centre; Lincoln University; Canterbury, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology; University of Otago; Dunedin, New Zealand
| |
Collapse
|
30
|
Exploring the costs of horizontal gene transfer. Trends Ecol Evol 2013; 28:489-95. [DOI: 10.1016/j.tree.2013.04.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 11/20/2022]
|
31
|
Juhas M, Dimopoulou I, Robinson E, Elamin A, Harding R, Hood D, Crook D. Identification of another module involved in the horizontal transfer of the Haemophilus genomic island ICEHin1056. Plasmid 2013; 70:277-83. [PMID: 23764277 PMCID: PMC3739013 DOI: 10.1016/j.plasmid.2013.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 12/04/2022]
Abstract
The investigated module on the 5′ extremity of ICEHin1056 consists of 15 genes. Genes of this module are homologues of DNA replication and stabilization genes. This module is well conserved in a number of genomic islands. This module is important for the conjugal transfer of ICEHin1056.
A significant part of horizontal gene transfer is facilitated by genomic islands. Haemophilus influenzae genomic island ICEHin1056 is an archetype of a genomic island that accounts for pandemic spread of antibiotics resistance. ICEHin1056 has modular structure and harbors modules involved in type IV secretion and integration. Previous studies have shown that ICEHin1056 encodes a functional type IV secretion system; however, other modules have not been characterized yet. Here we show that the module on the 5′ extremity of ICEHin1056 consists of 15 genes that are well conserved in a number of related genomic islands. Furthermore by disrupting six genes of the investigated module of ICEHin1056 by site-specific mutagenesis we demonstrate that in addition to type IV secretion system module, the investigated module is also important for the successful conjugal transfer of ICEHin1056 from donor to recipient cells.
Collapse
Affiliation(s)
- Mario Juhas
- Clinical Microbiology and Infectious Diseases, NDCLS, University of Oxford, OX3 9DU, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
A new large-DNA-fragment delivery system based on integrase activity from an integrative and conjugative element. Appl Environ Microbiol 2013; 79:4440-7. [PMID: 23686268 DOI: 10.1128/aem.00711-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.
Collapse
|
33
|
Identification of genes and pathways related to phenol degradation in metagenomic libraries from petroleum refinery wastewater. PLoS One 2013; 8:e61811. [PMID: 23637911 PMCID: PMC3630121 DOI: 10.1371/journal.pone.0061811] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system.
Collapse
|
34
|
Reinhard F, Miyazaki R, Pradervand N, van der Meer J. Cell Differentiation to “Mating Bodies” Induced by an Integrating and Conjugative Element in Free-Living Bacteria. Curr Biol 2013; 23:255-9. [DOI: 10.1016/j.cub.2012.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/18/2022]
|
35
|
Nojiri H. Impact of catabolic plasmids on host cell physiology. Curr Opin Biotechnol 2012; 24:423-30. [PMID: 23083971 DOI: 10.1016/j.copbio.2012.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/10/2012] [Accepted: 09/23/2012] [Indexed: 11/18/2022]
Abstract
It is difficult to know the exact extent to which catabolic plasmids influence the metabolism of different hosts, but this information is crucial for improving the use of xenobiotic degraders possessing conjugative catabolic plasmids. To determine the molecular mechanisms by which catabolic plasmids affect host-cell physiology and host responses, comprehensive molecular surveys have examined host responses to plasmid carriage. These studies have clarified the various interactions between catabolic plasmids and host cells and the importance of the effects on host-cell physiology and metabolic pathways. It has been suggested that catabolic plasmid-borne nucleoid-associated proteins play key roles in the adaptation of catabolic plasmids to the host-cell regulatory network.
Collapse
Affiliation(s)
- Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
36
|
Cellular variability of RpoS expression underlies subpopulation activation of an integrative and conjugative element. PLoS Genet 2012; 8:e1002818. [PMID: 22807690 PMCID: PMC3395598 DOI: 10.1371/journal.pgen.1002818] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 05/23/2012] [Indexed: 01/12/2023] Open
Abstract
Conjugative transfer of the integrative and conjugative element ICEclc in the bacterium Pseudomonas knackmussii is the consequence of a bistable decision taken in some 3% of cells in a population during stationary phase. Here we study the possible control exerted by the stationary phase sigma factor RpoS on the bistability decision. The gene for RpoS in P. knackmussii B13 was characterized, and a loss-of-function mutant was produced and complemented. We found that, in absence of RpoS, ICEclc transfer rates and activation of two key ICEclc promoters (Pint and PinR) decrease significantly in cells during stationary phase. Microarray and gene reporter analysis indicated that the most direct effect of RpoS is on PinR, whereas one of the gene products from the PinR-controlled operon (InrR) transmits activation to Pint and other ICEclc core genes. Addition of a second rpoS copy under control of its native promoter resulted in an increase of the proportion of cells expressing the Pint and PinR promoters to 18%. Strains in which rpoS was replaced by an rpoS-mcherry fusion showed high mCherry fluorescence of individual cells that had activated Pint and PinR, whereas a double-copy rpoS-mcherry–containing strain displayed twice as much mCherry fluorescence. This suggested that high RpoS levels are a prerequisite for an individual cell to activate PinR and thus ICEclc transfer. Double promoter–reporter fusions confirmed that expression of PinR is dominated by extrinsic noise, such as being the result of cellular variability in RpoS. In contrast, expression from Pint is dominated by intrinsic noise, indicating it is specific to the ICEclc transmission cascade. Our results demonstrate how stochastic noise levels of global transcription factors can be transduced to a precise signaling cascade in a subpopulation of cells leading to ICE activation. Horizontal gene transfer is one of the amazing phenomena in the prokaryotic world, by which DNA can be moved between species with means of a variety of specialized “elements” and/or specific host cell mechanisms. In particular the molecular decisions that have to be made in order to transfer DNA from one cell to another are fascinating, but very little is known about this at a cellular basis. Here we study a member of a widely distributed type of mobile DNA called “integrative and conjugative elements” or ICE. ICEclc normally resides in the chromosome of its bacterial host, but can excise from the chromosome and prepare for conjugation. Interestingly, the decision to excise ICEclc is made in only 3%–5% of cells in a clonal population in stationary phase. We focus specifically on the question of which mechanism may be responsible for setting this threshold level of ICEclc activation. We find that ICEclc activation is dependent on the individual cell level of the stationary phase sigma factor RpoS. The noise in RpoS expression across a population of cells thus sets the “threshold” for ICEclc to excise and prepare transfer.
Collapse
|
37
|
Liang B, Jiang J, Zhang J, Zhao Y, Li S. Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Crit Rev Microbiol 2011; 38:95-110. [DOI: 10.3109/1040841x.2011.618114] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B. Pseudomonas aeruginosa Genomic Structure and Diversity. Front Microbiol 2011; 2:150. [PMID: 21808635 PMCID: PMC3139241 DOI: 10.3389/fmicb.2011.00150] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/27/2011] [Indexed: 12/23/2022] Open
Abstract
The Pseudomonas aeruginosa genome (G + C content 65–67%, size 5.5–7 Mbp) is made up of a single circular chromosome and a variable number of plasmids. Sequencing of complete genomes or blocks of the accessory genome has revealed that the genome encodes a large repertoire of transporters, transcriptional regulators, and two-component regulatory systems which reflects its metabolic diversity to utilize a broad range of nutrients. The conserved core component of the genome is largely collinear among P. aeruginosa strains and exhibits an interclonal sequence diversity of 0.5–0.7%. Only a few loci of the core genome are subject to diversifying selection. Genome diversity is mainly caused by accessory DNA elements located in 79 regions of genome plasticity that are scattered around the genome and show an anomalous usage of mono- to tetradecanucleotides. Genomic islands of the pKLC102/PAGI-2 family that integrate into tRNALys or tRNAGly genes represent hotspots of inter- and intraclonal genomic diversity. The individual islands differ in their repertoire of metabolic genes that make a large contribution to the pangenome. In order to unravel intraclonal diversity of P. aeruginosa, the genomes of two members of the PA14 clonal complex from diverse habitats and geographic origin were compared. The genome sequences differed by less than 0.01% from each other. One hundred ninety-eight of the 231 single nucleotide substitutions (SNPs) were non-randomly distributed in the genome. Non-synonymous SNPs were mainly found in an integrated Pf1-like phage and in genes involved in transcriptional regulation, membrane and extracellular constituents, transport, and secretion. In summary, P. aeruginosa is endowed with a highly conserved core genome of low sequence diversity and a highly variable accessory genome that communicates with other pseudomonads and genera via horizontal gene transfer.
Collapse
Affiliation(s)
- Jens Klockgether
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Klinische Forschergruppe Hannover, Germany
| | | | | | | | | |
Collapse
|
39
|
Self-transmissibility of the integrative and conjugative element ICEPm1 between clinical isolates requires a functional integrase, relaxase, and type IV secretion system. J Bacteriol 2011; 193:4104-12. [PMID: 21665966 DOI: 10.1128/jb.05119-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrative and conjugative elements (ICEs), which are chromosomal mobile elements, can conjugatively transfer between bacteria. Recently, we identified a genomic island of Proteus mirabilis, a common agent of catheter-associated urinary tract infection (UTI), that possesses all the properties consistent with an ICE. This element, designated ICEPm1, is highly conserved in other causative agents of UTI, suggesting its mobility. We demonstrate that ICEPm1 can actively excise from the chromosome in a clonal population of bacteria and that this excision is integrase dependent. Although in P. mirabilis HI4320, ICEPm1 is annotated as integrated into the phenylalanine tRNA gene pheV, we show that ICEPm1 can integrate into either pheV or pheU. We determined that ICEPm1 transfers at a frequency of 1.35 × 10(-5) transconjugants/donor to ICEPm1-deficient P. mirabilis using plate mating assays with clinical isolates. Insertional inactivation of a putative integrase gene on ICEPm1 decreased transfer frequencies of ICEPm1 to below the limit of detection. Mutation of the relaxase of ICEPm1 also eliminates transfer and demonstrates that this element is indeed self-transmissible and not transferred in trans, as are some mobilizable genomic islands. Together, these findings clearly demonstrate that ICEPm1 can actively excise from the chromosome in an integrase-dependent manner, dynamically integrate into both phenylalanine tRNA genes, and transfer into clinical strains using its own conjugation machinery.
Collapse
|
40
|
Abstract
Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable "core genome" and a highly variable "accessory genome." Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.
Collapse
|
41
|
Miyazaki R, van der Meer JR. A dual functional origin of transfer in the ICEclc genomic island of Pseudomonas knackmussii B13. Mol Microbiol 2010; 79:743-58. [DOI: 10.1111/j.1365-2958.2010.07484.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
ICEEc2, a new integrative and conjugative element belonging to the pKLC102/PAGI-2 family, identified in Escherichia coli strain BEN374. J Bacteriol 2010; 192:5026-36. [PMID: 20675467 DOI: 10.1128/jb.00609-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of the Escherichia coli species is in part due to the large number of mobile genetic elements that are exchanged between strains. We report here the identification of a new integrative and conjugative element (ICE) of the pKLC102/PAGI-2 family located downstream of the tRNA gene pheU in the E. coli strain BEN374. Indeed, this new region, which we called ICEEc2, can be transferred by conjugation from strain BEN374 to the E. coli strain C600. We were also able to transfer this region into a Salmonella enterica serovar Typhimurium strain and into a Yersinia pseudotuberculosis strain. This transfer was then followed by the integration of ICEEc2 into the host chromosome downstream of a phe tRNA gene. Our data indicated that this transfer involved a set of three genes encoding DNA mobility enzymes and a type IV pilus encoded by genes present on ICEEc2. Given the wide distribution of members of this family, these mobile genetic elements are likely to play an important role in the diversification of bacteria.
Collapse
|
43
|
Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8:552-63. [PMID: 20601965 DOI: 10.1038/nrmicro2382] [Citation(s) in RCA: 552] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative and conjugative elements (ICEs) are a diverse group of mobile genetic elements found in both Gram-positive and Gram-negative bacteria. These elements primarily reside in a host chromosome but retain the ability to excise and to transfer by conjugation. Although ICEs use a range of mechanisms to promote their core functions of integration, excision, transfer and regulation, there are common features that unify the group. This Review compares and contrasts the core functions for some of the well-studied ICEs and discusses them in the broader context of mobile-element and genome evolution.
Collapse
|
44
|
Gaillard M, Pradervand N, Minoia M, Sentchilo V, Johnson DR, van der Meer JR. Transcriptome analysis of the mobile genome ICEclc in Pseudomonas knackmussii B13. BMC Microbiol 2010; 10:153. [PMID: 20504315 PMCID: PMC2892462 DOI: 10.1186/1471-2180-10-153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/26/2010] [Indexed: 11/28/2022] Open
Abstract
Background Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol. Results Here we study the transcriptional organization of the ICEclc core region. By northern hybridizations, reverse-transcriptase polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends (5'-RACE) fifteen transcripts were mapped in the core region. The occurrence and location of those transcripts were further confirmed by hybridizing labeled cDNA to a semi-tiling micro-array probing both strands of the ICEclc core region. Dot blot and semi-tiling array hybridizations demonstrated most of the core transcripts to be upregulated during stationary phase on 3-chlorobenzoate, but not on succinate or glucose. Conclusions The transcription analysis of the ICEclc core region provides detailed insights in the mode of regulatory organization and will help to further understand the complex mode of behavior of this class of mobile elements. We conclude that ICEclc core transcription is concerted at a global level, more reminiscent of a phage program than of plasmid conjugation.
Collapse
Affiliation(s)
- Muriel Gaillard
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
The Pseudomonas aeruginosa pathogenicity island PAPI-1 is transferred via a novel type IV pilus. J Bacteriol 2010; 192:3249-58. [PMID: 20363934 DOI: 10.1128/jb.00041-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments, including humans, is in part due to its large and diverse genomic repertoire. The genomes of most strains contain a significant number of large and small genomic islands, including those carrying virulence determinants (pathogenicity islands). The pathogenicity island PAPI-1 of strain PA14 is a cluster of 115 genes, and some have been shown to be responsible for virulence phenotypes in a number of infection models. We have previously demonstrated that PAPI-1 can be transferred to other P. aeruginosa strains following excision from the chromosome of the donor. Here we show that PAPI-1 is transferred into recipient P. aeruginosa by a conjugative mechanism, via a type IV pilus, encoded in PAPI-1 by a 10-gene cluster which is closely related to the genes in the enterobacterial plasmid R64. We also demonstrate that the precursor of the major pilus subunit, PilS2, is processed by the chromosomally encoded prepillin peptidase PilD but not its paralog FppA. Our results suggest that the pathogenicity island PAPI-1 may have evolved by acquisition of a conjugation system but that because of its dependence on an essential chromosomal determinant, its transfer is restricted to P. aeruginosa or other species capable of providing a functional prepilin peptidase.
Collapse
|
46
|
Shintani M, Takahashi Y, Tokumaru H, Kadota K, Hara H, Miyakoshi M, Naito K, Yamane H, Nishida H, Nojiri H. Response of thePseudomonashost chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ Microbiol 2009; 12:1413-26. [DOI: 10.1111/j.1462-2920.2009.02110.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Lechner M, Schmitt K, Bauer S, Hot D, Hubans C, Levillain E, Locht C, Lemoine Y, Gross R. Genomic island excisions in Bordetella petrii. BMC Microbiol 2009; 9:141. [PMID: 19615092 PMCID: PMC2717098 DOI: 10.1186/1471-2180-9-141] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 07/18/2009] [Indexed: 11/23/2022] Open
Abstract
Background Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs). These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds. Results During in vitro culture of Bordetella petrii colony variants appear frequently. We show that this variability can be attributed to the presence of a large number of metastable mobile genetic elements on its chromosome. In fact, the genome sequence of B. petrii revealed the presence of at least seven large genomic islands mostly encoding accessory metabolic functions involved in the degradation of aromatic compounds and detoxification of heavy metals. Four of these islands (termed GI1 to GI3 and GI6) are highly related to ICEclc of Pseudomonas knackmussii sp. strain B13. Here we present first data about the molecular characterization of these islands. We defined the exact borders of each island and we show that during standard culture of the bacteria these islands get excised from the chromosome. For all but one of these islands (GI5) we could detect circular intermediates. For the clc-like elements GI1 to GI3 of B. petrii we provide evidence that tandem insertion of these islands which all encode highly related integrases and attachment sites may also lead to incorporation of genomic DNA which originally was not part of the island and to the formation of huge composite islands. By integration of a tetracycline resistance cassette into GI3 we found this island to be rather unstable and to be lost from the bacterial population within about 100 consecutive generations. Furthermore, we show that GI3 is self transmissible and by conjugation can be transferred to B. bronchiseptica thus proving it to be an active integrative and conjugative element Conclusion The results show that phenotypic variation of B. petrii is correlated with the presence of genomic islands. Tandem integration of related islands may contribute to island evolution by the acquisition of genes originally belonging to the bacterial core genome. In conclusion, B. petrii appears to be the first member of the genus in which horizontal gene transfer events have massively shaped its genome structure.
Collapse
Affiliation(s)
- Melanie Lechner
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Am Hubland, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sentchilo V, Czechowska K, Pradervand N, Minoia M, Miyazaki R, van der Meer JR. Intracellular excision and reintegration dynamics of the ICEclcgenomic island ofPseudomonas knackmussiisp. strain B13. Mol Microbiol 2009; 72:1293-306. [DOI: 10.1111/j.1365-2958.2009.06726.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2009; 33:376-93. [PMID: 19178566 PMCID: PMC2704930 DOI: 10.1111/j.1574-6976.2008.00136.x] [Citation(s) in RCA: 616] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 12/11/2022] Open
Abstract
Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital 'superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria.
Collapse
Affiliation(s)
- Mario Juhas
- Clinical Microbiology and Infectious Diseases, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Stochasticity and bistability in horizontal transfer control of a genomic island in Pseudomonas. Proc Natl Acad Sci U S A 2008; 105:20792-7. [PMID: 19098098 DOI: 10.1073/pnas.0806164106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Genomic islands (GEI) comprise a recently recognized large family of potentially mobile DNA elements and play an important role in the rapid differentiation and adaptation of bacteria. Most importantly, GEIs have been implicated in the acquisition of virulence factors, antibiotic resistances or toxic compound metabolism. Despite detailed information on coding capacities of GEIs, little is known about the regulatory decisions in individual cells controlling GEI transfer. Here, we show how self-transfer of ICEclc, a GEI in Pseudomonas knackmussii B13 is controlled by a series of stochastic processes, the result of which is that only a few percent of cells in a population will excise ICEclc and launch transfer. Stochastic processes have been implicated before in producing bistable phenotypic transitions, such as sporulation and competence development, but never before in horizontal gene transfer (HGT). Bistability is instigated during stationary phase at the level of expression of an activator protein InrR that lays encoded on ICEclc, and then faithfully propagated to a bistable expression of the IntB13 integrase, the enzyme responsible for excision and integration of the ICEclc. Our results demonstrate how GEI of a very widespread family are likely to control their transfer rates. Furthermore, they help to explain why HGT is typically confined to few members within a population of cells. The finding that, despite apparent stochasticity, HGT rates can be modulated by external environmental conditions provides an explanation as to why selective conditions can promote DNA exchange.
Collapse
|