1
|
Teng X, Yau E, Sing C, Hardwick JM. Whi2 signals low leucine availability to halt yeast growth and cell death. FEMS Yeast Res 2018; 18:5083179. [PMID: 30165592 PMCID: PMC6149368 DOI: 10.1093/femsyr/foy095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cells are exquisitely tuned to environmental ques. Amino acid availability is rapidly sensed, allowing cells to adjust molecular processes and implement short or long-term metabolic shifts accordingly. How levels of most individual amino acids may be sensed and subsequently signaled to inform cells of their nutrient status is largely unknown. We made the unexpected observation that small changes in the levels of specific amino acids can have a profound effect on yeast cell growth, leading to the identification of yeast Whi2 as a negative regulator of cell growth in low amino acids. Although Whi2 was originally thought to be fungi-specific, Whi2 appears to share a conserved structural domain found in a family of 25 largely uncharacterized human genes encoding the KCTD (potassium channel tetramerization domain) protein family. Insights gained from yeast Whi2 are likely to be revealing about human KCTDs, many of which have been implicated or demonstrated to cause disease when mutated. Here we report new evidence that Whi2 responds to specific amino acids in the medium, particularly low leucine levels. We also discuss the known pathways of amino acid signaling and potential points of regulation by Whi2 in nutrient signaling in yeast and mammals.
Collapse
Affiliation(s)
- Xinchen Teng
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu Province, People's Republic of China
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| | - Eric Yau
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - Cierra Sing
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| |
Collapse
|
2
|
Ghidini M, Braconi C. Non-Coding RNAs in Primary Liver Cancer. Front Med (Lausanne) 2015; 2:36. [PMID: 26131450 PMCID: PMC4469108 DOI: 10.3389/fmed.2015.00036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver with poor prognosis and limited therapeutic options. Over the past few years, many studies have evaluated the role of non-coding RNAs (ncRNAs) in hepatocarcinogenesis and tumor progression. ncRNAs were shown to have diagnostic, prognostic, and therapeutic potential in HCC. In this manuscript, we review the latest major discoveries concerning microRNAs and long ncRNAs in HCC pathogenesis, and discuss the potentials and the limitations for their use in clinical practice.
Collapse
Affiliation(s)
- Michele Ghidini
- Division of Cancer Therapeutics, The Institute of Cancer Research , London , UK ; Cancer Center, Humanitas Clinical and Research Center , Milano , Italy
| | - Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research , London , UK ; The Royal Marsden NHS Foundation Trust , London , UK
| |
Collapse
|
3
|
Chinnici JL, Fu C, Caccamise LM, Arnold JW, Free SJ. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy. PLoS One 2014; 9:e110603. [PMID: 25333968 PMCID: PMC4204872 DOI: 10.1371/journal.pone.0110603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023] Open
Abstract
Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.
Collapse
Affiliation(s)
- Jennifer L. Chinnici
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Ci Fu
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Lauren M. Caccamise
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Jason W. Arnold
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
cis- and trans-acting localization determinants of pH response regulator Rim13 in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:1201-9. [PMID: 22865500 DOI: 10.1128/ec.00158-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Rim101/PacC pathway governs adaptation to alkaline pH in many fungi. Output of the pathway is mediated by transcription factors of the Rim101/PacC family, which are activated by proteolytic cleavage. The proteolytic complex includes scaffold protein Rim20 and endosome-associated subunits of the endosomal sorting complex required for transport (ESCRT). We provide here evidence that Saccharomyces cerevisiae Rim13, the protease that is implicated in Rim101 cleavage, is associated with the Rim20-ESCRT complex, and we investigate its regulation. Rim13-GFP is dispersed in cells grown in acidic medium but forms punctate foci when cells encounter alkaline conditions. A vps4Δ mutant, which accumulates elevated levels of endosomal ESCRT, also accumulates elevated levels of Rim13-GFP foci, independently of external pH. In the vps4Δ background, mutation of ESCRT subunit Snf7 or of Rim20 blocks the formation of Rim13 foci, and we found that Rim13 and Rim20 are colocalized. The Rim13 ortholog PalB of Aspergillus nidulans has been shown to undergo ESCRT and membrane association through an N-terminal MIT domain, but Rim13 orthologs in the Saccharomyces clade lack homology to this N-terminal region. Instead, there is a clade-limited C-terminal region, and we show that point mutations in this region prevent punctate localization and impair Rim13 function. We suggest that RIM13 arose from its ancestral gene through two genome rearrangements. The ancestor lost the coding region for its MIT domain through a 5' rearrangement and acquired the coding region for the Saccharomyces-specific functional equivalent through a 3' rearrangement.
Collapse
|
5
|
Galindo A, Calcagno-Pizarelli AM, Arst HN, Peñalva MÁ. An ordered pathway for the assembly of fungal ESCRT-containing ambient pH signalling complexes at the plasma membrane. J Cell Sci 2012; 125:1784-95. [PMID: 22344261 PMCID: PMC3346829 DOI: 10.1242/jcs.098897] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The fungal pal/RIM signalling pathway, which regulates gene expression in response to environmental pH involves, in addition to dedicated proteins, several components of ESCRT complexes, which suggested that pH signalling proteins assemble on endosomal platforms. In Aspergillus nidulans, dedicated Pal proteins include the plasma membrane receptor PalH and its coupled arrestin, PalF, which becomes ubiquitylated in alkaline pH conditions, and three potentially endosomal ESCRT-III associates, including Vps32 interactors PalA and PalC and Vps24 interactor calpain-like PalB. We studied the subcellular locations at which signalling takes place after activating the pathway by shifting ambient pH to alkalinity. Rather than localising to endosomes, Vps32 interactors PalA and PalC transiently colocalise at alkaline-pH-induced cortical structures in a PalH-, Vps23- and Vps32-dependent but Vps27-independent manner. These cortical structures are much more stable when Vps4 is deficient, indicating that their half-life depends on ESCRT-III disassembly. Pull-down studies revealed that Vps23 interacts strongly with PalF, but co-immunoprecipitates exclusively with ubiquitylated PalF forms from extracts. We demonstrate that Vps23-GFP, expressed at physiological levels, is also recruited to cortical structures, very conspicuous in vps27Δ cells in which the prominent signal of Vps23-GFP on endosomes is eliminated, in a PalF- and alkaline pH-dependent manner. Dual-channel epifluorescence microscopy showed that PalC arrives at cortical complexes before PalA. As PalC recruitment is PalA independent and PalA recruitment is PalC dependent but PalB independent, these data complete the participation order of Pal proteins in the pathway and strongly support a model in which pH signalling takes place in ESCRT-containing, plasma-membrane-associated, rather than endosome-associated, complexes.
Collapse
Affiliation(s)
- Antonio Galindo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Calcagno-Pizarelli AM, Hervás-Aguilar A, Galindo A, Abenza JF, Peñalva MA, Arst HN. Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of a salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling. J Cell Sci 2011; 124:4064-76. [PMID: 22135362 PMCID: PMC3244986 DOI: 10.1242/jcs.088344] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Aspergillus pal pathway hijacks ESCRT proteins into ambient pH signalling complexes. We show that components of ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III are nearly essential for growth, precluding assessment of null mutants for pH signalling or trafficking. This severely debilitating effect is rescued by loss-of-function mutations in two cation tolerance genes, one of which, sltA, encodes a transcription factor whose inactivation promotes hypervacuolation. Exploiting a conditional expression sltA allele, we demonstrate that deletion of vps27 (ESCRT-0), vps23 (ESCRT-I), vps36 (ESCRT-II), or vps20 or vps32 (both ESCRT-III) leads to numerous small vacuoles, a phenotype also suppressed by SltA downregulation. This situation contrasts with normal vacuoles and vacuole-associated class E compartments seen in Saccharomyces cerevisiae ESCRT null mutants. Exploiting the suppressor phenotype of sltA− mutations, we establish that Vps23, Vps36, Vps20 and Vps32 are essential for pH signalling. Phosphatidylinositol 3-phosphate-recognising protein Vps27 (ESCRT-0) is not, consistent with normal pH signalling in rabB null mutants unable to recruit Vps34 kinase to early endosomes. In contrast to the lack of pH signalling in the absence of Vps20 or Vps32, detectable signalling occurs in the absence of ESCRT-III subunit Vps24. Our data support a model in which certain ESCRT proteins are recruited to the plasma membrane to mediate pH signalling.
Collapse
Affiliation(s)
- Ana M Calcagno-Pizarelli
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
7
|
Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K, Youn JY, Ou J, San Luis BJ, Bandyopadhyay S, Hibbs M, Hess D, Gingras AC, Bader GD, Troyanskaya OG, Brown GW, Andrews B, Boone C, Myers CL. Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 2010; 7:1017-24. [PMID: 21076421 PMCID: PMC3117325 DOI: 10.1038/nmeth.1534] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/14/2010] [Indexed: 12/27/2022]
Abstract
Global quantitative analysis of genetic interactions is a powerful approach for deciphering the roles of genes and mapping functional relationships among pathways. Using colony size as a proxy for fitness, we developed a method for measuring fitness-based genetic interactions from high-density arrays of yeast double mutants generated by synthetic genetic array (SGA) analysis. We identified several experimental sources of systematic variation and developed normalization strategies to obtain accurate single- and double-mutant fitness measurements, which rival the accuracy of other high-resolution studies. We applied the SGA score to examine the relationship between physical and genetic interaction networks, and we found that positive genetic interactions connect across functionally distinct protein complexes revealing a network of genetic suppression among loss-of-function alleles.
Collapse
Affiliation(s)
- Anastasia Baryshnikova
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hervás-Aguilar A, Rodríguez-Galán O, Galindo A, Abenza JF, Arst HN, Peñalva MA. Characterization of Aspergillus nidulans DidB Did2, a non-essential component of the multivesicular body pathway. Fungal Genet Biol 2010; 47:636-46. [PMID: 20362686 PMCID: PMC2884189 DOI: 10.1016/j.fgb.2010.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/18/2010] [Accepted: 03/28/2010] [Indexed: 12/18/2022]
Abstract
ESCRT-III heteropolymers mediate membrane protein cargo sorting into multivesicular endosomes for subsequent vacuolar degradation. We studied the localization of largely uncharacterized Aspergillus nidulans ESCRT-III using its key structural component Vps32 and the ‘associated’ component DidBDid2. Vps32-GFP localizes to motile early endosomes as reported, but predominates in aggregates often associated with vacuoles due to inability to dissociate from endosomes. DidBDid2 regulating Vps4 (the ATPase disassembling ESCRT-III) is not essential. Consistent with this accessory role, didBΔ is unable to block the MVB sorting of the glutamate transporter AgtA, but increases its steady-state level and mislocalizes a fraction of the permease to the plasma membrane under conditions promoting its vacuolar targeting. didBΔ exacerbates the dominant-negative growth defect resulting from Vps32-GFP over-expression. A proportion of DidB-GFP is detectable in early endosomes colocalizing with RabARab5 and accumulating in nudA1 tips, suggesting that ESCRT-III assembles on endosomes from the early steps of the endocytic pathway.
Collapse
Affiliation(s)
- América Hervás-Aguilar
- Department of Molecular and Cellular Medicine, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Rodríguez-Galán O, Galindo A, Hervás-Aguilar A, Arst HN, Peñalva MA. Physiological involvement in pH signaling of Vps24-mediated recruitment of Aspergillus PalB cysteine protease to ESCRT-III. J Biol Chem 2009; 284:4404-12. [PMID: 19056728 PMCID: PMC2640967 DOI: 10.1074/jbc.m808645200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/03/2008] [Indexed: 11/06/2022] Open
Abstract
Activation of the Aspergillus nidulans transcription factor PacC, which mediates ambient pH regulation of gene expression and is recruited to ESCRT-III by the Vps32-interacting scaffold PalA, involves its ambient pH-dependent C-terminal proteolysis. This reaction is almost certainly catalyzed by the PalB calpain-like protease. Here we show that PalB associates with membranes and interacts specifically and directly with ESCRT-III Vps24. The PalB N-terminal MIT domain and the Vps24 C-terminal MIM motif are necessary and sufficient for this interaction. PalB(DeltaMIT), a mutant PalB lacking the MIT domain is inefficiently recruited to membranes and impaired in PacC proteolytic processing. Notably, membrane recruitment is promoted and PacC processing largely restored by covalent attachment of Vps24 to mutant PalB(DeltaMIT). This is the first reported evidence that calpain-like recruitment to ESCRT-III lattices plays a physiological role. It unambiguously positions the calpain-like protease PalB within the ESCRT-III-associated pH signaling complex, underlines the positive role of ESCRT-III in ambient pH signal transduction, and suggests a possible mechanism for PalB activation.
Collapse
|
10
|
Puria R, Cardenas ME. Rapamycin bypasses vesicle-mediated signaling events to activate Gln3 in Saccharomyces cerevisiae. Commun Integr Biol 2008; 1:23-25. [PMID: 19430540 PMCID: PMC2633790 DOI: 10.4161/cib.1.1.6527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 11/19/2022] Open
Abstract
Growth of Saccharomyces cerevisiae in poor nitrogen sources or exposure to the Tor inhibitor rapamycin results in expression of the nitrogen catabolite repressed (NCR) genes whose products are involved in scavenging and metabolizing nitrogen. The NCR genes are regulated by the GATA-like transactivators Gln3 and Gat1, which are thought to be under control of the rapamycin-sensitive Tor complex 1 (TORC1). We have recently shown that Gln3 nuclear translocation in response to nitrogen source quality but not in response to rapamycin requires Golgi to endosome trafficking. These and previous findings that several TORC1 components localize to low density endomembranes are discussed in a model that underscores a prominent role for the vesicular trafficking system in facilitating molecular interactions in response to nitrogen source. In addition, these findings have important implications for Tor signaling and rapamycin mechanism of action, both in yeast and in metazoans.
Collapse
Affiliation(s)
- Rekha Puria
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | | |
Collapse
|