1
|
Sharma Y, Vo K, Shila S, Paul A, Dahiya V, Fields PE, Rumi MAK. mRNA Transcript Variants Expressed in Mammalian Cells. Int J Mol Sci 2025; 26:1052. [PMID: 39940824 PMCID: PMC11817330 DOI: 10.3390/ijms26031052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Gene expression or gene regulation studies often assume one gene expresses one mRNA. However, contrary to the conventional idea, a single gene in mammalian cells can express multiple transcript variants translated into several different proteins. The transcript variants are generated through transcription from alternative start sites and alternative post-transcriptional processing of the precursor mRNA (pre-mRNA). In addition, gene mutations and RNA editing further enhance the diversity of the transcript variants. The transcript variants can encode proteins with various domains, expanding the functional repertoire of a single gene. Some transcript variants may not encode proteins but function as non-coding RNAs and regulate gene expression. The expression level of the transcript variants may vary between cell types or within the same cells under different biological conditions. Transcript variants are characteristic of cell differentiation in a particular tissue, and the variants may play a key role in normal development and aging. Studies also reported that some transcript variants may have roles in disease pathogenesis. The biological significances urge studying the complexity of gene expression at the transcript level. This article updates the molecular basis of transcript variants in mammalian cells, including the formation mechanisms and potential roles in host biology. Gaining insight into the transcript variants will not only identify novel mechanisms of gene regulation but also unravel the role of the variants in health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.S.); (K.V.); (S.S.); (A.P.); (V.D.); (P.E.F.)
| |
Collapse
|
2
|
Theme 5 Human Cell Biology and Pathology. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:158-184. [PMID: 39508672 DOI: 10.1080/21678421.2024.2403302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
3
|
Powell-Rodgers G, Pirzada MUR, Richee J, Jungers CF, Colijn S, Stratman AN, Djuranovic S. Role of U11/U12 minor spliceosome gene ZCRB1 in Ciliogenesis and WNT Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607392. [PMID: 39149385 PMCID: PMC11326282 DOI: 10.1101/2024.08.09.607392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Despite the fact that 0.5% of human introns are processed by the U11/U12 minor spliceosome, the latter influences gene expression across multiple cellular processes. The ZCRB1 protein is a recently described core component of the U12 mono-snRNP minor spliceosome, but its functional significance to minor splicing, gene regulation, and biological signaling cascades is poorly understood. Using CRISPR-Cas9 and siRNA targeted knockout and knockdown strategies, we show that human cell lines with a partial reduction in ZCRB1 expression exhibit significant dysregulation of the splicing and expression of U12-type genes, primarily due to dysregulation of U12 mono-snRNA. RNA-Seq and targeted analyses of minor intron-containing genes indicate a downregulation in the expression of genes involved in ciliogenesis, and consequentially an upregulation in WNT signaling. Additionally, zcrb1 CRISPR-Cas12a knockdown in zebrafish embryos led to gross developmental and body axis abnormalities, disrupted ciliogenesis, and upregulated WNT signaling, complementing our human cell studies. This work highlights a conserved and essential biological role of the minor spliceosome in general, and the ZCRB1 protein specifically in cellular and developmental processes across species, shedding light on the multifaceted relationship between splicing regulation, ciliogenesis, and WNT signaling.
Collapse
Affiliation(s)
- Geralle Powell-Rodgers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Mujeeb Ur Rehman Pirzada
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Jahmiera Richee
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Courtney F. Jungers
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sarah Colijn
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Amber N. Stratman
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| | - Sergej Djuranovic
- Washington University in St. Louis, School of Medicine, Cell Biology and Physiology, St. Louis, MO
| |
Collapse
|
4
|
Cerulo L, Pezzella N, Caruso FP, Parente P, Remo A, Giordano G, Forte N, Busselez J, Boschi F, Galiè M, Franco B, Pancione M. Single-cell proteo-genomic reveals a comprehensive map of centrosome-associated spliceosome components. iScience 2023; 26:106602. [PMID: 37250316 PMCID: PMC10214398 DOI: 10.1016/j.isci.2023.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 01/16/2023] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
Ribonucleoprotein (RNP) condensates are crucial for controlling RNA metabolism and splicing events in animal cells. We used spatial proteomics and transcriptomic to elucidate RNP interaction networks at the centrosome, the main microtubule-organizing center in animal cells. We found a number of cell-type specific centrosome-associated spliceosome interactions localized in subcellular structures involved in nuclear division and ciliogenesis. A component of the nuclear spliceosome BUD31 was validated as an interactor of the centriolar satellite protein OFD1. Analysis of normal and disease cohorts identified the cholangiocarcinoma as target of centrosome-associated spliceosome alterations. Multiplexed single-cell fluorescent microscopy for the centriole linker CEP250 and spliceosome components including BCAS2, BUD31, SRSF2 and DHX35 recapitulated bioinformatic predictions on the centrosome-associated spliceosome components tissue-type specific composition. Collectively, centrosomes and cilia act as anchor for cell-type specific spliceosome components, and provide a helpful reference for explore cytoplasmic condensates functions in defining cell identity and in the origin of rare diseases.
Collapse
Affiliation(s)
- Luigi Cerulo
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, Naples, Italy
| | - Francesca Pia Caruso
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Andrea Remo
- Pathology Unit, Mater Salutis Hospital AULSS9, “Scaligera”, 37122 Verona, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy
| | - Nicola Forte
- Department of Clinical Pathology, Fatebenefratelli Hospital, 82100 Benevento, Italy
| | - Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 8, Verona, Italy
| | - Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, Naples, Italy
- Medical Genetics, Department of Translational Medicine, University of Naples “Federico II”, Via Sergio Pansini, 80131 Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
6
|
Kumar R, Mondal R, Lahiri T, Pal MK. Application of sequence semantic and integrated cellular geography approach to study alternative biogenesis of exonic circular RNA. BMC Bioinformatics 2023; 24:148. [PMID: 37069509 PMCID: PMC10108499 DOI: 10.1186/s12859-023-05279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Concurrent existence of lncRNA and circular RNA at both nucleus and cytosol within a cell at different proportions is well reported. Previous studies showed that circular RNAs are synthesized in nucleus followed by transportation across the nuclear membrane and the export is primarily defined by their length. lncRNAs primarily originated through inefficient splicing and seem to use NXF1 for cytoplasm export. However, it is not clear whether circularization of lncRNA happens only in nucleus or it also occurs in cytoplasm. Studies indicate that circular RNAs arise when the splicing apparatus undergoes a phenomenon of back splicing. Minor spliceosome (U12 type) mediated splicing occurs in cytoplasm and is responsible for the splicing of 0.5% of introns of human cells. Therefore, possibility of cRNA biogenesis mediated by minor spliceosome at cytoplasm cannot be ruled out. Secondly, information on genes transcribing both circular and lncRNAs along with total number of RBP binding sites for both of these RNA types is extractable from databases. This study showed how these apparently unconnected pieces of reports could be put together to build a model for exploring biogenesis of circular RNA. RESULTS As a result of this study, a model was built under the premises that, sequences with special semantics were molecular precursors in biogenesis of circular RNA which occurred through catalytic role of some specific RBPs. The model outcome was further strengthened by fulfillment of three logical lemmas which were extracted and assimilated in this work using a novel data analytic approach, Integrated Cellular Geography. Result of the study was found to be in well agreement with proposed model. Furthermore this study also indicated that biogenesis of circular RNA was a post-transcriptional event. CONCLUSIONS Overall, this study provides a novel systems biology based model under the paradigm of Integrated Cellular Geography which can assimilate independently performed experimental results and data published by global researchers on RNA biology to provide important information on biogenesis of circular RNAs considering lncRNAs as precursor molecule. This study also suggests the possible RBP-mediated circularization of RNA in the cytoplasm through back-splicing using minor spliceosome.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Pathology and Laboratory Medicine, Medical Center, University of Kansas, Kansas City, 66160, USA
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland, 797112, India
| | - Tapobrata Lahiri
- Room No. 4302, Department of Applied Sciences, Computer Centre - II, Indian Institute of Information Technology-Allahabad, Allahabad, 211015, India.
| | - Manoj Kumar Pal
- Faculty of Engineering and Technology, United University Prayagraj, Prayagraj, UP, 211012, India
| |
Collapse
|
7
|
Saini H, Bicknell AA, Eddy SR, Moore MJ. Free circular introns with an unusual branchpoint in neuronal projections. eLife 2019; 8:e47809. [PMID: 31697236 PMCID: PMC6879206 DOI: 10.7554/elife.47809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
The polarized structure of axons and dendrites in neuronal cells depends in part on RNA localization. Previous studies have looked at which polyadenylated RNAs are enriched in neuronal projections or at synapses, but less is known about the distribution of non-adenylated RNAs. By physically dissecting projections from cell bodies of primary rat hippocampal neurons and sequencing total RNA, we found an unexpected set of free circular introns with a non-canonical branchpoint enriched in neuronal projections. These introns appear to be tailless lariats that escape debranching. They lack ribosome occupancy, sequence conservation, and known localization signals, and their function, if any, is not known. Nonetheless, their enrichment in projections has important implications for our understanding of the mechanisms by which RNAs reach distal compartments of asymmetric cells.
Collapse
Affiliation(s)
- Harleen Saini
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterUnited States
- Department of Molecular and Cellular BiologyHoward Hughes Medical Institute, Harvard UniversityCambridgeUnited States
| | - Alicia A Bicknell
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Sean R Eddy
- Department of Molecular and Cellular BiologyHoward Hughes Medical Institute, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUnited States
| | - Melissa J Moore
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
8
|
Soemedi R, Vega H, Belmont JM, Ramachandran S, Fairbrother WG. Genetic variation and RNA binding proteins: tools and techniques to detect functional polymorphisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:227-66. [PMID: 25201108 DOI: 10.1007/978-1-4939-1221-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At its most fundamental level the goal of genetics is to connect genotype to phenotype. This question is asked at a basic level evaluating the role of genes and pathways in genetic model organism. Increasingly, this question is being asked in the clinic. Genomes of individuals and populations are being sequenced and compared. The challenge often comes at the stage of analysis. The variant positions are analyzed with the hope of understanding human disease. However after a genome or exome has been sequenced, the researcher is often deluged with hundreds of potentially relevant variations. Traditionally, amino-acid changing mutations were considered the tractable class of disease-causing mutations; however, mutations that disrupt noncoding elements are the subject of growing interest. These noncoding changes are a major avenue of disease (e.g., one in three hereditary disease alleles are predicted to affect splicing). Here, we review some current practices of medical genetics, the basic theory behind biochemical binding and functional assays, and then explore technical advances in how variations that alter RNA protein recognition events are detected and studied. These advances are advances in scale-high-throughput implementations of traditional biochemical assays that are feasible to perform in any molecular biology laboratory. This chapter utilizes a case study approach to illustrate some methods for analyzing polymorphisms. The first characterizes a functional intronic SNP that deletes a high affinity PTB site using traditional low-throughput biochemical and functional assays. From here we demonstrate the utility of high-throughput splicing and spliceosome assembly assays for screening large sets of SNPs and disease alleles for allelic differences in gene expression. Finally we perform three pilot drug screens with small molecules (G418, tetracycline, and valproic acid) that illustrate how compounds that rescue specific instances of differential pre-mRNA processing can be discovered.
Collapse
Affiliation(s)
- Rachel Soemedi
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
9
|
Li W, Kuzoff R, Wong CK, Tucker A, Lynch M. Characterization of newly gained introns in Daphnia populations. Genome Biol Evol 2014; 6:2218-34. [PMID: 25123113 PMCID: PMC4202315 DOI: 10.1093/gbe/evu174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As one of the few known species in an active phase of intron proliferation, the microcrustacean Daphnia pulex is an especially attractive system for interrogating the gain and loss of introns in natural populations. In this study, we used a comparative population-genomic approach to identify and characterize 90 recently gained introns in this species. Molecular clock analyses indicate that these introns arose between 3.9 × 10(5) and 1.45 × 10(4) years ago, with a spike in intron proliferation approximately 5.2 × 10(4) to 1.22 × 10(5) years ago. Parallel gains at homologous positions contribute to 47.8% (43/90) of discovered new introns. A disproportionally large number of new introns were found in historically isolated populations in Oregon. Nonetheless, derived, intron-bearing alleles were also identified in a wide range of geographic locations, suggesting intron gain and, to a lesser degree, intron loss are important sources of genetic variation in natural populations of Daphnia. A majority (55/90 or 61.1%) of the identified neointrons have associated internal direct repeats with lengths and compositions that are unlikely to occur by chance, suggesting repeated bouts of staggered double-strand breaks (DSBs) during their evolution. Accordingly, internal, staggered DSBs may contribute to a passive trend toward increased length and sequence diversity in nascent introns.
Collapse
Affiliation(s)
- Wenli Li
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin
| | - Robert Kuzoff
- Department of Biology, University of Wisconsin-Whitewater
| | - Chen Khuan Wong
- Genetics and Genomics Program, Department of Medicine, Boston University
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington
| |
Collapse
|
10
|
Reddy AS, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. THE PLANT CELL 2013; 25:3657-83. [PMID: 24179125 PMCID: PMC3877793 DOI: 10.1105/tpc.113.117523] [Citation(s) in RCA: 558] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation.
Collapse
Affiliation(s)
- Anireddy S.N. Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
- Address correspondence to
| | - Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Maria Kalyna
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
11
|
Turunen JJ, Niemelä EH, Verma B, Frilander MJ. The significant other: splicing by the minor spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:61-76. [PMID: 23074130 PMCID: PMC3584512 DOI: 10.1002/wrna.1141] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The removal of non-coding sequences, introns, from the mRNA precursors is an essential step in eukaryotic gene expression. U12-type introns are a minor subgroup of introns, distinct from the major or U2-type introns. U12-type introns are present in most eukaryotes but only account for less than 0.5% of all introns in any given genome. They are processed by a specific U12-dependent spliceosome, which is similar to, but distinct from, the major spliceosome. U12-type introns are spliced somewhat less efficiently than the major introns, and it is believed that this limits the expression of the genes containing such introns. Recent findings on the role of U12-dependent splicing in development and human disease have shown that it can also affect multiple cellular processes not directly related to the functions of the host genes of U12-type introns. At the same time, advances in understanding the regulation and phylogenetic distribution of the minor spliceosome are starting to shed light on how the U12-type introns and the minor spliceosome may have evolved. © 2012 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Janne J Turunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
12
|
Hoskins AA, Moore MJ. The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 2012; 37:179-88. [PMID: 22480731 DOI: 10.1016/j.tibs.2012.02.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/22/2023]
Abstract
With more than a hundred individual RNA and protein parts and a highly dynamic assembly and disassembly pathway, the spliceosome is arguably the most complicated macromolecular machine in the eukaryotic cell. This complexity has made kinetic and mechanistic analysis of splicing incredibly challenging. Yet, recent technological advances are now providing tools for understanding this process in much greater detail. Ranging from genome-wide analyses of splicing and creation of an orthogonal spliceosome in vivo, to purification of active spliceosomes and observation of single molecules in vitro, such new experimental approaches are yielding significant insight into the inner workings of this remarkable machine. These experiments are rewriting the textbooks, with a new picture emerging of a dynamic, malleable machine heavily influenced by the identity of its pre-mRNA substrate.
Collapse
Affiliation(s)
- Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
13
|
Xiao PJ, Peng ZY, Huang L, Li Y, Chen XH. Dephosphorylated NSSR1 is induced by androgen in mouse epididymis and phosphorylated NSSR1 is increased during sperm maturation. PLoS One 2011; 6:e25667. [PMID: 21980524 PMCID: PMC3183062 DOI: 10.1371/journal.pone.0025667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022] Open
Abstract
NSSR1 (Neural salient serine/arginine rich protein 1, alternatively SRp38) is a newly identified RNA splicing factor and predominantly expressed in neural tissues. Here, by Western blot analysis and immunofluorescent staining, we showed that the expression of dephosphorylated NSSR1 increased significantly during development of the caput epididymis. In adult mice, phosphorylated NSSR1 was mainly expressed in the apical side of epithelial cells, and dephosphorylated NSSR1 in caput epididymis was upregulated in a testosterone dependent manner. In addition, subcellular immunoreactive distribution of NSSR1 varied in different regions of the epididymis. With respect to the sperm, phosphorylated NSSR1 was detected in the mid-piece of the tail as well as the acrosome. Furthermore, NSSR1 was released from the sperm head during the capacitation and acrosome reaction. These findings for the first time provide the evidence for the potential roles of NSSR1 in sperm maturation and fertilization.
Collapse
Affiliation(s)
- Ping-Jie Xiao
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zheng-Yu Peng
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lu Huang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ya Li
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xian-Hua Chen
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
A screen for regulators of survival of motor neuron protein levels. Nat Chem Biol 2011; 7:544-52. [PMID: 21685895 DOI: 10.1038/nchembio.595] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/15/2011] [Indexed: 01/15/2023]
Abstract
The motor neuron disease spinal muscular atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein survival of motor neuron (SMN). An ever-increasing collection of data suggests that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered several classes of compounds that were able to increase cellular SMN. Among the most important was the RTK-PI3K-AKT-GSK-3 signaling cascade. Chemical inhibitors of glycogen synthase kinase 3 (GSK-3) and short hairpin RNAs (shRNAs) directed against this target elevated SMN levels primarily by stabilizing the protein. It was particularly notable that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by an SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change underlying SMA.
Collapse
|
15
|
Poulos MG, Batra R, Charizanis K, Swanson MS. Developments in RNA splicing and disease. Cold Spring Harb Perspect Biol 2011; 3:a000778. [PMID: 21084389 DOI: 10.1101/cshperspect.a000778] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pre-mRNA processing, including 5'-end capping, splicing, editing, and polyadenylation, consists of a series of orchestrated and primarily cotranscriptional steps that ensure both the high fidelity and extreme diversity characteristic of eukaryotic gene expression. Alternative splicing and editing allow relatively small genomes to encode vast proteomic arrays while alternative 3'-end formation enables variations in mRNA localization, translation, and stability. Of course, this mechanistic complexity comes at a high price. Mutations in the myriad of RNA sequence elements that regulate mRNA biogenesis, as well as the trans-acting factors that act upon these sequences, underlie a number of human diseases. In this review, we focus on one of these key RNA processing steps, splicing, to highlight recent studies that describe both conventional and novel pathogenic mechanisms that underlie muscle and neurological diseases.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
16
|
Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009; 16:1128-33. [PMID: 19820712 PMCID: PMC2783620 DOI: 10.1038/nsmb.1666] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 08/11/2009] [Indexed: 12/26/2022]
Abstract
Transcription and splicing must proceed over genomic distances of hundreds of kilobases in many human genes. However, the rates and mechanisms of these processes are poorly understood. We have used the compound 5,6-Dichlorobenzimidazole 1-b-D-ribofuranoside (DRB) that reversibly blocks gene transcription in vivo combined with quantitative RT-PCR to analyze the transcription and RNA processing of several long human genes. We found that the rate of RNA polymerase II transcription over long genomic distances is about 3.8 kb per minute and is nearly the same whether transcribing long introns or exon rich regions. We also determined that co-transcriptional pre-mRNA splicing of U2-dependent introns occurs within 5–10 minutes of synthesis irrespective of intron length between 1 kb and 240 kb. Similarly, U12-dependent introns were co-transcriptionally spliced within 10 minutes of synthesis confirming that these introns are spliced within the nuclear compartment. These results show that the expression of large genes is surprisingly rapid and efficient.
Collapse
|
17
|
|