1
|
Gopalswamy M, Zheng C, Gaussmann S, Kooshapur H, Hambruch E, Schliebs W, Erdmann R, Antes I, Sattler M. Distinct conformational and energetic features define the specific recognition of (di)aromatic peptide motifs by PEX14. Biol Chem 2023; 404:179-194. [PMID: 36437542 DOI: 10.1515/hsz-2022-0177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
The cycling import receptor PEX5 and its membrane-located binding partner PEX14 are key constituents of the peroxisomal import machinery. Upon recognition of newly synthesized cargo proteins carrying a peroxisomal targeting signal type 1 (PTS1) in the cytosol, the PEX5/cargo complex docks at the peroxisomal membrane by binding to PEX14. The PEX14 N-terminal domain (NTD) recognizes (di)aromatic peptides, mostly corresponding to Wxxx(F/Y)-motifs, with nano-to micromolar affinity. Human PEX5 possesses eight of these conserved motifs distributed within its 320-residue disordered N-terminal region. Here, we combine biophysical (ITC, NMR, CD), biochemical and computational methods to characterize the recognition of these (di)aromatic peptides motifs and identify key features that are recognized by PEX14. Notably, the eight motifs present in human PEX5 exhibit distinct affinities and energetic contributions for the interaction with the PEX14 NTD. Computational docking and analysis of the interactions of the (di)aromatic motifs identify the specific amino acids features that stabilize a helical conformation of the peptide ligands and mediate interactions with PEX14 NTD. We propose a refined consensus motif ExWΦxE(F/Y)Φ for high affinity binding to the PEX14 NTD and discuss conservation of the (di)aromatic peptide recognition by PEX14 in other species.
Collapse
Affiliation(s)
- Mohanraj Gopalswamy
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Chen Zheng
- TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany.,TUM Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, D-85748 Garching, Germany
| | - Stefan Gaussmann
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Hamed Kooshapur
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eva Hambruch
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Iris Antes
- TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 8, D-85354 Freising, Germany.,TUM Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, D-85748 Garching, Germany
| | - Michael Sattler
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany.,Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
2
|
Rüttermann M, Gatsogiannis C. Good things come to those who bait: the peroxisomal docking complex. Biol Chem 2023; 404:107-119. [PMID: 36117327 DOI: 10.1515/hsz-2022-0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Peroxisomal integrity and function are highly dependent on its membrane and soluble (matrix) components. Matrix enzymes are imported post-translationally in a folded or even oligomeric state, via a still mysterious protein translocation mechanism. They are guided to peroxisomes via the Peroxisomal Targeting Signal (PTS) sequences which are recognized by specific cytosolic receptors, Pex5, Pex7 and Pex9. Subsequently, cargo-loaded receptors bind to the docking complex in an initial step, followed by channel formation, cargo-release, receptor-recycling and -quality control. The docking complexes of different species share Pex14 as their core component but differ in composition and oligomeric state of Pex14. Here we review and highlight the latest insights on the structure and function of the peroxisomal docking complex. We summarize differences between yeast and mammals and then we integrate this knowledge into our current understanding of the import machinery.
Collapse
Affiliation(s)
- Maximilian Rüttermann
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| |
Collapse
|
3
|
Ast J, Bäcker N, Bittner E, Martorana D, Ahmad H, Bölker M, Freitag J. Two Pex5 Proteins With Different Cargo Specificity Are Critical for Peroxisome Function in Ustilago maydis. Front Cell Dev Biol 2022; 10:858084. [PMID: 35646929 PMCID: PMC9133605 DOI: 10.3389/fcell.2022.858084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are dynamic multipurpose organelles with a major function in fatty acid oxidation and breakdown of hydrogen peroxide. Many proteins destined for the peroxisomal matrix contain a C-terminal peroxisomal targeting signal type 1 (PTS1), which is recognized by tetratricopeptide repeat (TPR) proteins of the Pex5 family. Various species express at least two different Pex5 proteins, but how this contributes to protein import and organelle function is not fully understood. Here, we analyzed truncated and chimeric variants of two Pex5 proteins, Pex5a and Pex5b, from the fungus Ustilago maydis. Both proteins are required for optimal growth on oleic acid-containing medium. The N-terminal domain (NTD) of Pex5b is critical for import of all investigated peroxisomal matrix proteins including PTS2 proteins and at least one protein without a canonical PTS. In contrast, the NTD of Pex5a is not sufficient for translocation of peroxisomal matrix proteins. In the presence of Pex5b, however, specific cargo can be imported via this domain of Pex5a. The TPR domains of Pex5a and Pex5b differ in their affinity to variations of the PTS1 motif and thus can mediate import of different subsets of matrix proteins. Together, our data reveal that U. maydis employs versatile targeting modules to control peroxisome function. These findings will promote our understanding of peroxisomal protein import also in other biological systems.
Collapse
Affiliation(s)
- Julia Ast
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Nils Bäcker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | | - Humda Ahmad
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Yamashita K, Tamura S, Honsho M, Yada H, Yagita Y, Kosako H, Fujiki Y. Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery. J Cell Biol 2021; 219:152047. [PMID: 32854114 PMCID: PMC7659713 DOI: 10.1083/jcb.202001003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 01/27/2023] Open
Abstract
Peroxisomal matrix proteins are imported into peroxisomes via membrane-bound docking/translocation machinery. One central component of this machinery is Pex14p, a peroxisomal membrane protein involved in the docking of Pex5p, the receptor for peroxisome targeting signal type 1 (PTS1). Studies in several yeast species have shown that Pex14p is phosphorylated in vivo, whereas no function has been assigned to Pex14p phosphorylation in yeast and mammalian cells. Here, we investigated peroxisomal protein import and its dynamics in mitotic mammalian cells. In mitotically arrested cells, Pex14p is phosphorylated at Ser-232, resulting in a lower import efficiency of catalase, but not the majority of proteins including canonical PTS1 proteins. Conformational change induced by the mitotic phosphorylation of Pex14p more likely increases homomeric interacting affinity and suppresses topological change of its N-terminal part, thereby giving rise to the retardation of Pex5p export in mitotic cells. Taken together, these data show that mitotic phosphorylation of Pex14p and consequent suppression of catalase import are a mechanism of protecting DNA upon nuclear envelope breakdown at mitosis.
Collapse
Affiliation(s)
- Koichiro Yamashita
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Hiroto Yada
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yagita
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
5
|
Bürgi J, Ekal L, Wilmanns M. Versatile allosteric properties in Pex5-like tetratricopeptide repeat proteins to induce diverse downstream function. Traffic 2021; 22:140-152. [PMID: 33580581 DOI: 10.1111/tra.12785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 01/11/2023]
Abstract
Proteins composed of tetratricopeptide repeat (TPR) arrays belong to the α-solenoid tandem-repeat family that have unique properties in terms of their overall conformational flexibility and ability to bind to multiple protein ligands. The peroxisomal matrix protein import receptor Pex5 comprises two TPR triplets that recognize protein cargos with a specific C-terminal Peroxisomal Targeting Signal (PTS) 1 motif. Import of PTS1-containing protein cargos into peroxisomes through a transient pore is mainly driven by allosteric binding, coupling and release mechanisms, without a need for external energy. A very similar TPR architecture is found in the functionally unrelated TRIP8b, a regulator of the hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel. TRIP8b binds to the HCN ion channel via a C-terminal sequence motif that is nearly identical to the PTS1 motif of Pex5 receptor cargos. Pex5, Pex5-related Pex9, and TRIP8b also share a less conserved N-terminal domain. This domain provides a second protein cargo-binding site and plays a distinct role in allosteric coupling of initial cargo loading by PTS1 motif-mediated interactions and different downstream functional readouts. The data reviewed here highlight the overarching role of molecular allostery in driving the diverse functions of TPR array proteins, which could form a model for other α-solenoid tandem-repeat proteins involved in translocation processes across membranes.
Collapse
Affiliation(s)
- Jérôme Bürgi
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Lakhan Ekal
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany.,University Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Towards the molecular architecture of the peroxisomal receptor docking complex. Proc Natl Acad Sci U S A 2020; 117:33216-33224. [PMID: 33323485 DOI: 10.1073/pnas.2009502117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Import of yeast peroxisomal matrix proteins is initiated by cytosolic receptors, which specifically recognize and bind the respective cargo proteins. At the peroxisomal membrane, the cargo-loaded receptor interacts with the docking protein Pex14p that is tightly associated with Pex17p. Previous data suggest that this interaction triggers the formation of an import pore for further translocation of the cargo. The mechanistic principles, however, are unclear, mainly because structures of higher-order assemblies are still lacking. Here, using an integrative approach, we provide the structural characterization of the major components of the peroxisomal docking complex Pex14p/Pex17p, in a native bilayer environment, and reveal its subunit organization. Our data show that three copies of Pex14p and a single copy of Pex17p assemble to form a 20-nm rod-like particle. The different subunits are arranged in a parallel manner, showing interactions along their complete sequences and providing receptor binding sites on both membrane sides. The long rod facing the cytosol is mainly formed by the predicted coiled-coil domains of Pex14p and Pex17p, possibly providing the necessary structural support for the formation of the import pore. Further implications of Pex14p/Pex17p for formation of the peroxisomal translocon are discussed.
Collapse
|
7
|
Dawidowski M, Kalel VC, Napolitano V, Fino R, Schorpp K, Emmanouilidis L, Lenhart D, Ostertag M, Kaiser M, Kolonko M, Tippler B, Schliebs W, Dubin G, Mäser P, Tetko IV, Hadian K, Plettenburg O, Erdmann R, Sattler M, Popowicz GM. Structure-Activity Relationship in Pyrazolo[4,3- c]pyridines, First Inhibitors of PEX14-PEX5 Protein-Protein Interaction with Trypanocidal Activity. J Med Chem 2020; 63:847-879. [PMID: 31860309 DOI: 10.1021/acs.jmedchem.9b01876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trypanosoma protists are pathogens leading to a spectrum of devastating infectious diseases. The range of available chemotherapeutics against Trypanosoma is limited, and the existing therapies are partially ineffective and cause serious adverse effects. Formation of the PEX14-PEX5 complex is essential for protein import into the parasites' glycosomes. This transport is critical for parasite metabolism and failure leads to mislocalization of glycosomal enzymes, with fatal consequences for the parasite. Hence, inhibiting the PEX14-PEX5 protein-protein interaction (PPI) is an attractive way to affect multiple metabolic pathways. Herein, we have used structure-guided computational screening and optimization to develop the first line of compounds that inhibit PEX14-PEX5 PPI. The optimization was driven by several X-ray structures, NMR binding data, and molecular dynamics simulations. Importantly, the developed compounds show significant cellular activity against Trypanosoma, including the human pathogen Trypanosoma brucei gambiense and Trypanosoma cruzi parasites.
Collapse
Affiliation(s)
- Maciej Dawidowski
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany.,Department of Drug Technology and Pharmaceutical Biotechnology , Medical University of Warsaw , Banacha 1 , 02-097 Warszawa , Poland
| | - Vishal C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine , Ruhr-University Bochum , 44780 Bochum , Germany
| | - Valeria Napolitano
- Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , Gronostajowa 7 , Krakow 30-387 , Poland.,Małopolska Center of Biotechnology , Jagiellonian University in Kraków , Gronostajowa 7 , Kraków 30-387 , Poland
| | - Roberto Fino
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | | | - Leonidas Emmanouilidis
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Dominik Lenhart
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Michael Ostertag
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4051 Basel , Switzerland.,University of Basel , 4001 Basel , Switzerland
| | - Marta Kolonko
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , Wybrzeże Wyspiańskiego 27 , 50-370 Wrocław , Poland
| | - Bettina Tippler
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine , Ruhr-University Bochum , 44780 Bochum , Germany
| | - Wolfgang Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine , Ruhr-University Bochum , 44780 Bochum , Germany
| | - Grzegorz Dubin
- Małopolska Center of Biotechnology , Jagiellonian University in Kraków , Gronostajowa 7 , Kraków 30-387 , Poland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4051 Basel , Switzerland.,University of Basel , 4001 Basel , Switzerland
| | | | | | - Oliver Plettenburg
- Institute of Organic Chemistry , Leibniz Universität Hannover , Schneiderberg 1b , Hannover 30167 , Germany
| | - Ralf Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine , Ruhr-University Bochum , 44780 Bochum , Germany
| | - Michael Sattler
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Grzegorz M Popowicz
- Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| |
Collapse
|
8
|
Dawidowski M, Emmanouilidis L, Kalel VC, Tripsianes K, Schorpp K, Hadian K, Kaiser M, Mäser P, Kolonko M, Tanghe S, Rodriguez A, Schliebs W, Erdmann R, Sattler M, Popowicz GM. Inhibitors of PEX14 disrupt protein import into glycosomes and kill Trypanosoma parasites. Science 2017; 355:1416-1420. [PMID: 28360328 DOI: 10.1126/science.aal1807] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022]
Abstract
The parasitic protists of the Trypanosoma genus infect humans and domestic mammals, causing severe mortality and huge economic losses. The most threatening trypanosomiasis is Chagas disease, affecting up to 12 million people in the Americas. We report a way to selectively kill Trypanosoma by blocking glycosomal/peroxisomal import that depends on the PEX14-PEX5 protein-protein interaction. We developed small molecules that efficiently disrupt the PEX14-PEX5 interaction. This results in mislocalization of glycosomal enzymes, causing metabolic catastrophe, and it kills the parasite. High-resolution x-ray structures and nuclear magnetic resonance data enabled the efficient design of inhibitors with trypanocidal activities comparable to approved medications. These results identify PEX14 as an "Achilles' heel" of the Trypanosoma suitable for the development of new therapies against trypanosomiases and provide the structural basis for their development.
Collapse
Affiliation(s)
- M Dawidowski
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - L Emmanouilidis
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - V C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - K Tripsianes
- CEITEC, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - K Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - K Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - M Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - P Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - M Kolonko
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - S Tanghe
- New York University School of Medicine, Department of Microbiology, 341 East 25th Street, Room 513, New York, NY 10010, USA
| | - A Rodriguez
- New York University School of Medicine, Department of Microbiology, 341 East 25th Street, Room 513, New York, NY 10010, USA
| | - W Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - R Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany.
| | - M Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany. .,Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - G M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany. .,Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
9
|
Abstract
The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor-cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes.
Collapse
Affiliation(s)
- Alison Baker
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology and Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Thomas Lanyon-Hogg
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Stuart L Warriner
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
10
|
Watanabe Y, Kawaguchi K, Saito S, Okabe T, Yonesu K, Egashira S, Kameya M, Morita M, Kashiwayama Y, Imanaka T. An HTRF based high-throughput screening for discovering chemical compounds that inhibit the interaction between Trypanosoma brucei Pex5p and Pex14p. Biochem Biophys Rep 2016; 6:260-265. [PMID: 28955883 PMCID: PMC5600434 DOI: 10.1016/j.bbrep.2016.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022] Open
Abstract
The glycosome, a peroxisome-related organelle, is essential for the growth and survival of trypanosomatid protozoa. In glycosome biogenesis, Pex5p recognizes newly synthesized glycosomal matrix proteins via peroxisome-targeting signal type-1 (PTS-1) and transports them into glycosomes through an interaction with Pex14p, a component of the matrix protein import machinery on the glycosomal membrane. Knockdown of the PEX5 or PEX14 with RNAi has been shown to inhibit the growth of Trypanosoma brucei. Thus, compounds that inhibit the interaction of TbPex5p–TbPex14p are expected to become lead compounds in the development of anti-trypanosomal drugs. Here, we report a homogenous time-resolved fluorescence (HTRF) assay for the screening of compounds that inhibit the TbPex5p–TbPex14p interaction. The binding of GST-TbPex14p and TbPex5p-His with or without additional compounds was evaluated by measuring the energy transfer of the HTRF pair, using a terbium-labeled anti GST antibody as the donor and an FITC-labeled anti His antibody as the acceptor. The assay was performed in a 384-well plate platform and exhibits a Z’-factor of 0.85–0.91, while the coefficiency of variation is 1.1–7.7%, suggesting it can be readily adapted to a high-throughput format for the automated screening of chemical libraries. We screened 20,800 compounds and found 11 compounds that inhibited energy transfer. Among them, in a pull-down assay one compound exhibited selective inhibition of TbPex5p–TbPex14p without any HsPex5p–HsPex14p interaction. An HTRF-based TbPex5p–TbPex14p interaction assay system was established. A compound was found that selectively inhibits the TbPex5p–TbPex14p interaction. This system is applicable for drug discovery against other glycosomal proteins.
Collapse
Affiliation(s)
- Yuichi Watanabe
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kosuke Kawaguchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Syuken Saito
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyoaki Yonesu
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinichiro Egashira
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masafumi Kameya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshinori Kashiwayama
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
11
|
Emmanouilidis L, Gopalswamy M, Passon DM, Wilmanns M, Sattler M. Structural biology of the import pathways of peroxisomal matrix proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:804-13. [DOI: 10.1016/j.bbamcr.2015.09.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022]
|
12
|
Watanabe Y, Kawaguchi K, Okuyama N, Sugawara Y, Obita T, Mizuguchi M, Morita M, Imanaka T. Characterization of the interaction betweenTrypanosoma bruceiPex5p and its receptor Pex14p. FEBS Lett 2016; 590:242-50. [DOI: 10.1002/1873-3468.12044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Yuichi Watanabe
- Department of Biological Chemistry; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani Japan
| | - Kosuke Kawaguchi
- Department of Biological Chemistry; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani Japan
| | - Naoki Okuyama
- Department of Biological Chemistry; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani Japan
| | - Yuri Sugawara
- Department of Structural Biology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani Japan
| | - Takayuki Obita
- Department of Structural Biology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani Japan
| | - Mineyuki Mizuguchi
- Department of Structural Biology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani Japan
| | - Masashi Morita
- Department of Biological Chemistry; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani Japan
| | - Tsuneo Imanaka
- Department of Biological Chemistry; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Sugitani Japan
| |
Collapse
|
13
|
Hojjat H, Jardim A. The Leishmania donovani peroxin 14 binding domain accommodates a high degeneracy in the pentapeptide motifs present on peroxin 5. Biochim Biophys Acta Gen Subj 2015; 1850:2203-12. [DOI: 10.1016/j.bbagen.2015.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/22/2015] [Accepted: 07/21/2015] [Indexed: 12/12/2022]
|
14
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
15
|
Identification of Leishmania donovani peroxin 14 residues required for binding the peroxin 5 receptor proteins. Biochem J 2015; 465:247-57. [DOI: 10.1042/bj20141133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Trafficking of peroxisomal targeting signal 1 (PTS1) proteins to the Leishmania glycosome is dependent on the docking of the LdPEX5 receptor to LdPEX14 on the glycosomal membrane. A combination of deletion and random mutagenesis was used to identify residues in the LdPEX14 N-terminal region that are critical for mediating the LdPEX5–LdPEX14 interaction. These studies highlighted residues 35–75 on ldpex14 as the core domain required for binding LdPEX5. Single point mutation within this core domain generally did not affect the ldpex5-(203–391)–ldpex14-(1–120) interaction; notable exceptions were substitutions at Phe40, Val46 or Phe57 which completely abolished or increased the apparent Kd value for ldpex5-(203–391) binding 30-fold. Biochemical studies revealed that these point mutations did not alter either the secondary or quaternary structure of LdPEX14 and indicated that the latter residues were critical for stabilizing the LdPEX5–LdPEX14 interaction.
Collapse
|
16
|
Jiang L, Hara-Kuge S, Yamashita SI, Fujiki Y. Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II. Genes Cells 2014; 20:36-49. [PMID: 25358256 DOI: 10.1111/gtc.12198] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/01/2014] [Indexed: 01/04/2023]
Abstract
Pexophagy can be experimentally induced in mammalian cells by removing the culture serum. Pex14p, a peroxisomal membrane protein essential for matrix protein import in docking of soluble receptor Pex5p, is involved in the mammalian autophagic degradation of peroxisomes and interacts with the lipidated form of LC3, termed LC3-II, an essential factor for autophagosome formation, under the starvation condition in CHO-K1 cells. However, molecular mechanisms underlying the Pex14p-LC3-II interaction remain largely unknown. To verify whether Pex14p directly binds LC3-II, we reconstituted an in vitro conjugation system for synthesis of LC3-II. We show here that Pex14p directly interacts with LC3-II via the transmembrane domain of Pex14p. Pex5p competitively inhibited this interaction, implying that Pex14p preferentially binds to Pex5p under the nutrient-rich condition. Moreover, a Pex5p mutant defective in PTS1-protein import lost its affinity for Pex14p under the condition of nutrient deprivation, thereby more likely explaining why Pex14p prefers to interact with LC3-II under the starvation condition in vivo. Together, these results suggest that Pex14p is a unique factor that functions in the dual processes in peroxisomal biogenesis and degradation with the coordination of Pex5p in response to the environmental changes.
Collapse
Affiliation(s)
- Li Jiang
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | |
Collapse
|
17
|
Neuhaus A, Kooshapur H, Wolf J, Meyer NH, Madl T, Saidowsky J, Hambruch E, Lazam A, Jung M, Sattler M, Schliebs W, Erdmann R. A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes. J Biol Chem 2013; 289:437-48. [PMID: 24235149 DOI: 10.1074/jbc.m113.499707] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57-71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar α-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.
Collapse
Affiliation(s)
- Alexander Neuhaus
- From the Institut für Physiologische Chemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4:261. [PMID: 24069002 PMCID: PMC3781343 DOI: 10.3389/fphys.2013.00261] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.
Collapse
Affiliation(s)
- Sohel Hasan
- Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
| | | | | |
Collapse
|
19
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
20
|
Pex5p stabilizes Pex14p: a study using a newly isolated pex5 CHO cell mutant, ZPEG101. Biochem J 2013; 449:195-207. [PMID: 23009329 DOI: 10.1042/bj20120911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pex5p [PTS (peroxisome-targeting signal) type 1 receptor] plays an essential role in peroxisomal matrix protein import. In the present study, we isolated a novel PEX5-deficient CHO (Chinese-hamster ovary) cell mutant, termed ZPEG101, showing typical peroxisomal import defects of both PTS1 and PTS2 proteins. ZPEG101 is distinct from other known pex5 CHO mutants in its Pex5p expression. An undetectable level of Pex5p in ZPEG101 results in unstable Pex14p, which is due to inefficient translocation to the peroxisomal membrane. All of the mutant phenotypes of ZPEG101 are restored by expression of wild-type Pex5pL, a longer form of Pex5p, suggesting a role for Pex5p in sustaining the levels of Pex14p in addition to peroxisomal matrix protein import. Complementation analysis using various Pex5p mutants revealed that in the seven pentapeptide WXXXF/Y motifs in Pex5pL, known as the multiple binding sites for Pex14p, the fifth motif is an auxiliary binding site for Pex14p and is required for Pex14p stability. Furthermore, we found that Pex5p-Pex13p interaction is essential for the import of PTS1 proteins as well as catalase, but not for that of PTS2 proteins. Therefore ZPEG101 with no Pex5p would be a useful tool for investigating Pex5p function and delineating the mechanisms underlying peroxisomal matrix protein import.
Collapse
|
21
|
TubStain: a universal peptide-tool to label microtubules. Histochem Cell Biol 2012; 138:531-40. [DOI: 10.1007/s00418-012-0992-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
22
|
Molecular basis of peroxisomal biogenesis disorders caused by defects in peroxisomal matrix protein import. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1326-36. [PMID: 22617146 DOI: 10.1016/j.bbadis.2012.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/26/2012] [Accepted: 05/09/2012] [Indexed: 12/28/2022]
Abstract
Peroxisomal biogenesis disorders (PBDs) represent a spectrum of autosomal recessive metabolic disorders that are collectively characterized by abnormal peroxisome assembly and impaired peroxisomal function. The importance of this ubiquitous organelle for human health is highlighted by the fact that PBDs are multisystemic disorders that often cause death in early infancy. Peroxisomes contribute to central metabolic pathways. Most enzymes in the peroxisomal matrix are linked to lipid metabolism and detoxification of reactive oxygen species. Proper assembly of peroxisomes and thus also import of their enzymes relies on specific peroxisomal biogenesis factors, so called peroxins with PEX being the gene acronym. To date, 13 PEX genes are known to cause PBDs when mutated. Studies of the cellular and molecular defects in cells derived from PBD patients have significantly contributed to the understanding of the functional role of the corresponding peroxins in peroxisome assembly. In this review, we discuss recent data derived from both human cell culture as well as model organisms like yeasts and present an overview on the molecular mechanism underlying peroxisomal biogenesis disorders with emphasis on disorders caused by defects in the peroxisomal matrix protein import machinery.
Collapse
|
23
|
Galland N, Michels PAM. Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. Eur J Cell Biol 2010; 89:621-37. [PMID: 20435370 DOI: 10.1016/j.ejcb.2010.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/28/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022] Open
Abstract
In recent decades, research on peroxisome biogenesis has been particularly boosted since the role of these organelles in metabolism became unraveled. Indeed in plants, yeasts and fungi, peroxisomes play an important role in the adaptation of metabolism during developmental processes and/or altered environmental conditions. In mammals their importance is illustrated by the fact that several severe human inherited diseases have been identified as peroxisome biogenesis disorders (PBD). Particularly interesting are the glycosomes - peroxisome-like organelles in trypanosomatids where the major part of the glycolytic pathway is sequestered - because it was demonstrated that proper compartmentalization of matrix proteins inside glycosomes is essential for the parasite. Although the overall process of peroxisome biogenesis seems well conserved between species, careful study of the literature reveals nonetheless many differences at various steps. In this review, we present a comparison of the first two steps of peroxisome biogenesis - receptor loading and docking at the peroxisomal membrane - in yeasts, mammals, plants and trypanosomatids and highlight major differences in the import process between species despite the conservation of (some of) the proteins involved. Some of the unique features of the process as it occurs in trypanosomatids will be discussed with regard to the possibilities for exploiting them for the development of compounds that could specifically disturb interactions between trypanosomatid peroxins. This strategy could eventually lead to the discovery of drugs against the diseases caused by these parasites.
Collapse
Affiliation(s)
- Nathalie Galland
- Research Unit for Tropical Diseases, de Duve Institute, Brussels, Belgium
| | | |
Collapse
|
24
|
Su JR, Takeda K, Tamura S, Fujiki Y, Miki K. Monomer-dimer transition of the conserved N-terminal domain of the mammalian peroxisomal matrix protein import receptor, Pex14p. Biochem Biophys Res Commun 2010; 394:217-21. [PMID: 20193661 DOI: 10.1016/j.bbrc.2010.02.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 11/16/2022]
Abstract
Pex14p is a central component of the peroxisomal matrix protein import machinery. In the recently determined crystal structure, a characteristic face consisting of conserved residues was found on a side of the conserved N-terminal domain of the protein. The face is highly hydrophobic, and is also the binding site for the WXXXF/Y motif of Pex5p. We report herein the dimerization of the domain in the isolated state. The homo-dimers are in equilibrium with the monomers. The homo-dimers are completely dissociated into monomers by complex formation with the WXXXF/Y motif peptide of Pex5p. A putative dimer model shows the interaction between the conserved face and the PXXP motif of another protomer. The model allows us to discuss the mechanism of the oligomeric transition of the full-length Pex14p modulated by the binding of other peroxins.
Collapse
Affiliation(s)
- Jian-Rong Su
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
25
|
Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Biol Cell 2010; 102:245-63. [PMID: 20146669 DOI: 10.1042/bc20090159] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peroxisomes are a family of organelles which have many unusual features. They can arise de novo from the endoplasmic reticulum by a still poorly characterized process, yet possess a unique machinery for the import of their matrix proteins. As peroxisomes lack DNA, their function, which is highly variable and dependent on developmental and/or environmental conditions, is determined by the post-translational import of specific metabolic enzymes in folded or oligomeric states. The two classes of matrix targeting signals for peroxisomal proteins [PTS1 (peroxisomal targeting signal 1) and PTS2] are recognized by cytosolic receptors [PEX5 (peroxin 5) and PEX7 respectively] which escort their cargo proteins to, or possibly across, the peroxisome membrane. Although the membrane translocation mechanism remains unclear, it appears to be driven by thermodynamically favourable binding interactions. Recycling of the receptors from the peroxisome membrane requires ATP hydrolysis for two linked processes: ubiquitination of PEX5 (and the PEX7 co-receptors in yeast) and the function of two peroxisome-associated AAA (ATPase associated with various cellular activities) ATPases, which play a role in recycling or turnover of the ubiquitinated receptors. This review summarizes and integrates recent findings on peroxisome matrix protein import from yeast, plant and mammalian model systems, and discusses some of the gaps in our understanding of this remarkable protein transport system.
Collapse
|
26
|
Girzalsky W, Platta HW, Erdmann R. Protein transport across the peroxisomal membrane. Biol Chem 2009; 390:745-51. [PMID: 19558328 DOI: 10.1515/bc.2009.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The maintenance of peroxisome function depends on the formation of the peroxisomal membrane and the subsequent import of both membrane and matrix proteins. Without exception, peroxisomal matrix proteins are nuclear encoded, synthesized on free ribosomes and subsequently imported post-translationally. In contrast to other translocation systems that transport unfolded polypeptide chains, the peroxisomal import apparatus can facilitate the transport of folded and oligomeric proteins across the peroxisomal membrane. The peroxisomal protein import is mediated by cycling receptors that shuttle between the cytosol and peroxisomal lumen and depends on ATP and ubiquitin. In this brief review, we will summarize our current knowledge on the import of soluble proteins into the peroxisomal matrix.
Collapse
Affiliation(s)
- Wolfgang Girzalsky
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | |
Collapse
|