1
|
Chao Y, Qin Y, Zou X, Wang X, Hu C, Xia F, Zou C. Promising therapeutic aspects in human genetic imprinting disorders. Clin Epigenetics 2022; 14:146. [PMID: 36371218 PMCID: PMC9655922 DOI: 10.1186/s13148-022-01369-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon of monoallelic gene expression pattern depending on parental origin. In humans, congenital imprinting disruptions resulting from genetic or epigenetic mechanisms can cause a group of diseases known as genetic imprinting disorders (IDs). Genetic IDs involve several distinct syndromes sharing homologies in terms of genetic etiologies and phenotypic features. However, the molecular pathogenesis of genetic IDs is complex and remains largely uncharacterized, resulting in a lack of effective therapeutic approaches for patients. In this review, we begin with an overview of the genomic and epigenomic molecular basis of human genetic IDs. Notably, we address ethical aspects as a priority of employing emerging techniques for therapeutic applications in human IDs. With a particular focus, we delineate the current field of emerging therapeutics for genetic IDs. We briefly summarize novel symptomatic drugs and highlight the key milestones of new techniques and therapeutic programs as they stand today which can offer highly promising disease-modifying interventions for genetic IDs accompanied by various challenges.
Collapse
Affiliation(s)
- Yunqi Chao
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Yifang Qin
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Xinyi Zou
- grid.13402.340000 0004 1759 700XZhejiang University City College, Hangzhou, 310015 Zhejiang China
| | - Xiangzhi Wang
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Chenxi Hu
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Fangling Xia
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Chaochun Zou
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| |
Collapse
|
2
|
Li QN, Ma JY, Liu WB, Meng TG, Wang F, Hou Y, Schatten H, Sun QY, Ou XH. DNA methylation establishment of CpG islands near maternally imprinted genes on chromosome 7 during mouse oocyte growth. Mol Reprod Dev 2020; 87:800-807. [PMID: 32558133 DOI: 10.1002/mrd.23395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
The genome methylation is globally erased in early fetal germ cells, and it is gradually re-established during gametogenesis. The expression of some imprinted genes is regulated by the methylation status of CpG islands, while the exact time of DNA methylation establishment near maternal imprinted genes during oocyte growth is not well known. Here, growing oocytes were divided into three groups based on follicle diameters including the S-group (60-100 μm), M-group (100-140 μm), and L-group (140-180 μm). The fully grown germinal vesicle (GV)-stage and metaphase II (M2)-stage mature oocytes were also collected. These oocytes were used for single-cell bisulfite sequencing to detect the methylation status of CpG islands near imprinted genes on chromosome 7. The results showed that the CpG islands near Ndn, Magel2, Mkrn3, Peg12, and Igf2 were completely unmethylated, but those of Peg3, Snrpn, and Kcnq1ot1 were hypermethylated in MII-stage oocytes. The methylation of CpG islands near different maternal imprinted genes occurred asynchronously, being completed in later-stage growing oocytes, fully grown GV oocytes, and mature MII-stage oocytes, respectively. These results show that CpG islands near some maternally imprinted genes are not necessarily methylated, and that the establishment of methylation of other maternally imprinted genes is completed at different stages of oocyte growth, providing a novel understanding of the establishment of maternally imprinted genes in oocytes.
Collapse
Affiliation(s)
- Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wen-Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Ferring Institute of Reproductive Biology, FIRM, Beijing, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
3
|
Common genetic variation in the Angelman syndrome imprinting centre affects the imprinting of chromosome 15. Eur J Hum Genet 2020; 28:835-839. [PMID: 32152487 PMCID: PMC7253442 DOI: 10.1038/s41431-020-0595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Angelman syndrome (AS) is a rare neurogenetic imprinting disorder caused by the loss of function of UBE3A. In ~3–5% of AS patients, the disease is due to an imprinting defect (ID). These patients lack DNA methylation of the maternal SNRPN promotor so that a large SNRPN sense/UBE3A antisense transcript (SNHG14) is expressed, which silences UBE3A. In very rare cases, the ID is caused by a deletion of the AS imprinting centre (AS-IC). To search for sequence alterations, we sequenced this region in 168 patients without an AS-IC deletion, but did not detect any sequence alteration. However, the AS-IC harbours six common variants (five single nucleotide variants and one TATG insertion/deletion variant), which constitute five common haplotypes. To determine if any of these haplotypes is associated with an increased risk for an ID, we investigated 119 informative AS-ID trios with the transmission disequilibrium test, which is a family-based association test that measures the over-transmission of an allele or haplotype from heterozygous parents to affected offspring. By this we observed maternal over-transmission of haplotype H-AS3 (p = 0.0073). Interestingly, H-AS3 is the only haplotype that includes the TATG deletion allele. We conclude that this haplotype and possibly the TATG deletion, which removes a SOX2 binding site, increases the risk for a maternal ID and AS. Our data strengthen the notion that the AS-IC is important for establishing and/or maintaining DNA methylation at the SNRPN promotor and show that common genetic variation can affect genomic imprinting.
Collapse
|
4
|
Farhadova S, Gomez-Velazquez M, Feil R. Stability and Lability of Parental Methylation Imprints in Development and Disease. Genes (Basel) 2019; 10:genes10120999. [PMID: 31810366 PMCID: PMC6947649 DOI: 10.3390/genes10120999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
DNA methylation plays essential roles in mammals. Of particular interest are parental methylation marks that originate from the oocyte or the sperm, and bring about mono-allelic gene expression at defined chromosomal regions. The remarkable somatic stability of these parental imprints in the pre-implantation embryo—where they resist global waves of DNA demethylation—is not fully understood despite the importance of this phenomenon. After implantation, some methylation imprints persist in the placenta only, a tissue in which many genes are imprinted. Again here, the underlying epigenetic mechanisms are not clear. Mouse studies have pinpointed the involvement of transcription factors, covalent histone modifications, and histone variants. These and other features linked to the stability of methylation imprints are instructive as concerns their conservation in humans, in which different congenital disorders are caused by perturbed parental imprints. Here, we discuss DNA and histone methylation imprints, and why unravelling maintenance mechanisms is important for understanding imprinting disorders in humans.
Collapse
|
5
|
Girardot M, Feil R, Llères D. Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 2013; 5:715-28. [DOI: 10.2217/epi.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian genes controlled by genomic imprinting play important roles in development and diverse postnatal processes. A growing number of congenital disorders have been linked to genomic imprinting. Each of these is caused by perturbed gene expression at one principal imprinted domain. Some imprinting disorders, including the Prader–Willi and Angelman syndromes, are caused almost exclusively by genetic mutations. In several others, including the Beckwith–Wiedemann and Silver–Russell growth syndromes, and transient neonatal diabetes mellitus, imprinted expression is perturbed mostly by epigenetic alterations at ‘imprinting control regions’ and at other specific regulatory sequences. In a minority of these patients, DNA methylation is altered at multiple imprinted loci, suggesting that common trans-acting factors are affected. Here, we review the epimutations involved in congenital imprinting disorders and the associated clinical features. Trans-acting factors known to be causally involved are discussed and other trans-acting factors that are potentially implicated are also presented.
Collapse
Affiliation(s)
- Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
| | - David Llères
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| |
Collapse
|
6
|
Zimmerman DL, Boddy CS, Schoenherr CS. Aberrant methylation of the H19 imprinting control region may increase the risk of spontaneous abortion. Epigenomics 2013; 8:e81962. [PMID: 24324735 PMCID: PMC3855764 DOI: 10.1371/journal.pone.0081962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022] Open
Abstract
A central question in genomic imprinting is how parental-specific DNA methylation of imprinting control regions (ICR) is established during gametogenesis and maintained after fertilization. At the imprinted Igf2/H19 locus, CTCF binding maintains the unmethylated state of the maternal ICR after the blastocyst stage. In addition, evidence from Beckwith-Wiedemann patients and cultured mouse cells suggests that two Sox-Oct binding motifs within the Igf2/H19 ICR also participate in maintaining hypomethylation of the maternal allele. We found that the Sox and octamer elements from both Sox-Oct motifs were required to drive hypomethylation of integrated transgenes in mouse embryonic carcinoma cells. Oct4 and Sox2 showed cooperative binding to the Sox-Oct motifs, and both were present at the endogenous ICR. Using a mouse with mutations in the Oct4 binding sites, we found that maternally transmitted mutant ICRs acquired partial methylation in somatic tissues, but there was little effect on imprinted expression of H19 and Igf2. A subset of mature oocytes also showed partial methylation of the mutant ICR, which suggested that the Sox-Oct motifs provide some protection from methylation during oogenesis. The Sox-Oct motifs, however, were not required for erasure of paternal methylation in primordial germ cells, which indicated that the oocyte methylation was acquired post-natally. Maternally inherited mutant ICRs were unmethylated in blastocysts, which suggested that at least a portion of the methylation in somatic tissues occurred after implantation. These findings provide evidence that Sox-Oct motifs contribute to ICR hypomethylation in post-implantation embryos and maturing oocytes and link imprinted DNA methylation with key stem cell/germline transcription factors.
Collapse
Affiliation(s)
- David L. Zimmerman
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Biology Department, College of the Ozarks, Point Lookout, Missouri, United States of America
- * E-mail:
| | - Craig S. Boddy
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Division of Medical Education, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Christopher S. Schoenherr
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
7
|
Evidence for anticipation in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2013; 21:1344-8. [PMID: 23572028 PMCID: PMC3831082 DOI: 10.1038/ejhg.2013.71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/02/2013] [Accepted: 03/12/2013] [Indexed: 12/16/2022] Open
Abstract
Classical Beckwith-Wiedemann syndrome (BWS) was diagnosed in two sisters and their male cousin. The children's mothers and a third sister were tall statured (178, 185 and 187 cm) and one had mild BWS features as a child. Their parents had average heights of 173 cm (mother) and 180 cm (father). This second generation tall stature and third generation BWS correlated with increased methylation of the maternal H19/IGF2-locus. The results were obtained by bisulphite treatment and subclone Sanger sequencing or next generation sequencing to quantitate the degree of CpG-methylation on three locations: the H19 promoter region and two CTCF binding sites in the H19 imprinting control region (ICR1), specifically in ICR1 repeats B1 and B7. Upon ICR1 copy number analysis and sequencing, the same maternal point variant NCBI36:11:g.1979595T>C that had been described previously as a cause of BWS in three brothers, was found. As expected, this point variant was on the paternal allele in the non-affected grandmother. This nucleotide variant has been shown to affect OCTamer-binding transcription factor-4 (OCT4) binding, which may be necessary for maintaining the unmethylated state of the maternal allele. Our data extend these findings by showing that the OCT4 binding site mutation caused incomplete switching from paternal to maternal ICR1 methylation imprint, and that upon further maternal transmission, methylation of the incompletely demethylated variant ICR1 allele was further increased. This suggests that maternal and paternal ICR1 alleles are treated differentially in the female germline, and only the paternal allele appears to be capable of demethylation.
Collapse
|
8
|
Plagge A. Non-Coding RNAs at the Gnas and Snrpn-Ube3a Imprinted Gene Loci and Their Involvement in Hereditary Disorders. Front Genet 2012; 3:264. [PMID: 23226156 PMCID: PMC3509947 DOI: 10.3389/fgene.2012.00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/05/2012] [Indexed: 12/02/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have long been recognized at imprinted gene loci and provided early paradigms to investigate their functions and molecular mechanisms of action. The characteristic feature of imprinted genes, their monoallelic, parental-origin-dependent expression, is achieved through complex epigenetic regulation, which is modulated by ncRNAs. This minireview focuses on two imprinted gene clusters, in which changes in ncRNA expression contribute to human disorders. At the GNAS locus loss of NESP RNA can cause autosomal dominant Pseudohypoparathyroidism type 1b (AD-PHP-Ib), while at the SNRPN-UBE3A locus a long ncRNA and processed snoRNAs play a role in Angelman-Syndrome (AS) and Prader–Willi-Syndrome (PWS). The ncRNAs silence overlapping protein-coding transcripts in sense or anti-sense orientation through changes in histone modifications as well as DNA methylation at CpG-rich sequence motifs. Their epigenetic modulatory functions are required in early development in the pre-implantation embryo or already in the parental germ cells. However, it remains unclear whether the sequence homology-carrying ncRNA itself is required, or whether the process of its transcription through other promoters causes the silencing effect.
Collapse
Affiliation(s)
- Antonius Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, UK
| |
Collapse
|
9
|
Wöhrmann HJP, Gagliardini V, Raissig MT, Wehrle W, Arand J, Schmidt A, Tierling S, Page DR, Schöb H, Walter J, Grossniklaus U. Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus. Genes Dev 2012; 26:1837-50. [PMID: 22855791 DOI: 10.1101/gad.195123.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genomic imprinting is exclusive to mammals and seed plants and refers to parent-of-origin-dependent, differential transcription. As previously shown in mammals, studies in Arabidopsis have implicated DNA methylation as an important hallmark of imprinting. The current model suggests that maternally expressed imprinted genes, such as MEDEA (MEA), are activated by the DNA glycosylase DEMETER (DME), which removes DNA methylation established by the DNA methyltransferase MET1. We report the systematic functional dissection of the MEA cis-regulatory region, resulting in the identification of a 200-bp fragment that is necessary and sufficient to mediate MEA activation and imprinted expression, thus containing the imprinting control region (ICR). Notably, imprinted MEA expression mediated by this ICR is independent of DME and MET1, consistent with the lack of any significant DNA methylation in this region. This is the first example of an ICR without differential DNA methylation, suggesting that factors other than DME and MET1 are required for imprinting at the MEA locus.
Collapse
Affiliation(s)
- Heike J P Wöhrmann
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Transgenic epigenetics: using transgenic organisms to examine epigenetic phenomena. GENETICS RESEARCH INTERNATIONAL 2012; 2012:689819. [PMID: 22567397 PMCID: PMC3335706 DOI: 10.1155/2012/689819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/19/2011] [Accepted: 01/02/2012] [Indexed: 01/21/2023]
Abstract
Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.
Collapse
|
11
|
Eggermann T, Leisten I, Binder G, Begemann M, Spengler S. Disturbed methylation at multiple imprinted loci: an increasing observation in imprinting disorders. Epigenomics 2012; 3:625-37. [PMID: 22126250 DOI: 10.2217/epi.11.84] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The widely accepted association between aberrant methylation at specific imprinted loci and distinct imprinting disorders has recently been brought into question by the identification of methylation defects at multiple loci (multilocus methylation defect [MLMD]). Strikingly, in different imprinting disorders, the same MLMD patterns can be observed. The cause for this ambiguous epigenotype-phenotype correlation is currently unknown. Future strategies to solve this enigma have to include all levels of imprinting regulation, ranging from DNA methylation to chromatin organization, as any disturbance of the balanced interaction between the different players in imprinting regulation might cause disturbed expression of imprinted factors. The molecular analysis of MLMD will help in discovering these interactions and contribute to the understanding of genomic imprinting and its disturbances.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
12
|
Demars J, Gicquel C. Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith-Wiedemann and Silver-Russell syndromes. Clin Genet 2012; 81:350-61. [PMID: 22150955 DOI: 10.1111/j.1399-0004.2011.01822.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Genomic imprinting is a particularly attractive example of epigenetic regulation leading to the parental-origin-specific expression of genes. In several ways, the 11p15 imprinted region is an exemplary model for regulation of genomic imprinting. The two imprinted domains are controlled by imprinting control regions (ICRs) which carry opposite germ line imprints and they are regulated by two major mechanisms of imprinting control. Dysregulation of 11p15 genomic imprinting results in two fetal growth disorders [Silver-Russell (SRS) and Beckwith-Wiedemann (BWS) syndromes], with opposite growth phenotypes. BWS and SRS result from abnormal imprinting involving either, both domains or only one of them, with ICR1 and ICR2 more often involved in SRS and BWS respectively. DNA methylation defects affecting ICR1 or ICR2 account for approximately 60% of SRS and BWS patients. Recent studies have identified new cis-acting regulatory elements, as well as new trans-acting factors involved in the regulation of 11p15 imprinting, therefore establishing new mechanisms of BWS and SRS. Those studies also showed that, apart of CTCF, other transcription factors, including factors of the pluripotency network, play a crucial role in the regulation of 11p15 genomic imprinting. Those new findings have direct consequences in molecular testing, risk assessment and genetic counseling of BWS and SRS patients.
Collapse
Affiliation(s)
- J Demars
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | | |
Collapse
|
13
|
Abstract
Germ cell development is controlled by unique gene expression programs and involves epigenetic reprogramming of histone modifications and DNA methylation. The central event is meiosis, during which homologous chromosomes pair and recombine, processes that involve histone alterations. At unpaired regions, chromatin is repressed by meiotic silencing. After meiosis, male germ cells undergo chromatin remodeling, including histone-to-protamine replacement. Male and female germ cells are also differentially marked by parental imprints, which contribute to sex determination in insects and mediate genomic imprinting in mammals. Here, we review epigenetic transitions during gametogenesis and discuss novel insights from animal and human studies.
Collapse
Affiliation(s)
- Satya K Kota
- Institute of Molecular Genetics, CNRS UMR5535 and University of Montpellier I & II, 1919 route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
14
|
Abstract
In many epigenetic phenomena, covalent modifications on DNA and chromatin mediate somatically heritable patterns of gene expression. Genomic imprinting is a classical example of epigenetic regulation in mammals. To date, more than 100 imprinted genes have been identified in humans and mice. Many of these are involved in foetal growth and deve lopment, others control behaviour. Mono-allelic expression of imprinted genes depends on whether the gene is inherited from the mother or the father. This remarkable pattern of expression is controlled by specialized sequence elements called ICRs (imprinting control regions). ICRs are marked by DNA methylation on one of the two parental alleles. These allelic marks originate from either the maternal or the paternal germ line. Perturbation of the allelic DNA methylation at ICRs is causally involved in several human diseases, including the Beckwith-Wiedemann and Silver-Russell syndromes, associated with aberrant foetal growth. Perturbed imprinted gene expression is also implicated in the neuro-developmental disorders Prader-Willi syndrome and Angelman syndrome. Embryo culture and human-assisted reproduction procedures can increase the occurrence of imprinting-related disorders. Recent research shows that, besides DNA methylation, covalent histone modifications and non-histone proteins also contribute to imprinting regulation. The involvement of imprinting in specific human pathologies (and in cancer) emphasizes the need to further explore the underlying molecular mechanisms.
Collapse
|
15
|
Abstract
Zusammenfassung
Genomisches Imprinting ist ein epigenetischer Prozess, bei dem die männliche und die weibliche Keimbahn bestimmte Genregionen durch Histonmodifikationen und DNA-Methylierung so prägen, dass nur das väterliche oder nur das mütterliche Allel eines Gens aktiv ist. Genomische Imprints werden in primordialen Keimzellen gelöscht, während späterer Phasen der Keimzellentwicklung neu etabliert und bei den somatischen Zellteilungen während der postzygotischen Entwicklung stabil weitergegeben. Fehler in der Entfernung der Imprints, ihrer Etablierung oder ihrer Erhaltung führen zu falschen epigenetischen Mustern und Expressionsprofilen, die spezifische Erkrankungen verursachen können. Imprintingfehler können spontan, ohne jegliche Änderungen in der DNA-Sequenz, auftreten (primäre Imprintingfehler) oder als Folge einer Mutation in einem cis
-regulatorischen Element oder einem trans
-aktiven Faktor (sekundäre Imprintingfehler). Die Unterscheidung zwischen primären und sekundären Imprintingfehlern ist für die Abschätzung des Wiederholungsrisikos in betroffenen Familien wesentlich.
Collapse
|
16
|
Horsthemke B. Mechanisms of imprint dysregulation. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:321-8. [PMID: 20803654 DOI: 10.1002/ajmg.c.30269] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Genomic imprinting is an epigenetic process by which the male and the female germ line confer specific marks (imprints) onto certain gene regions, so that one allele of an imprinted gene is active and the other allele is silent. Genomic imprints are erased in primordial germ cells, newly established during later stages of germ cell development, and stably inherited through somatic cell divisions during postzygotic development. Defects in imprint erasure, establishment, or maintenance result in a paternal chromosome carrying a maternal imprint or in a maternal chromosome carrying a paternal imprint. A wrong imprint leads to activation of an allele that should be silent or silencing of an allele that should be active. Since the dosage of imprinted genes is very important for development and growth, imprinting defects lead to specific diseases. Imprinting defects can occur spontaneously without any DNA sequence change (primary imprinting defect) or as the result of a mutation in a cis-regulatory element or a trans-acting factor (secondary imprinting defect). The distinction between primary and secondary imprinting defects is important for assessing the recurrence risk in affected families.
Collapse
|
17
|
Abstract
The cis-acting regulatory sequences of imprinted gene loci, called imprinting control regions (ICRs), acquire specific imprint marks in germ cells, including DNA methylation. These epigenetic imprints ensure that imprinted genes are expressed exclusively from either the paternal or the maternal allele in offspring. The last few years have witnessed a rapid increase in studies on how and when ICRs become marked by and subsequently maintain such epigenetic modifications. These novel findings are summarised in this review, which focuses on the germline acquisition of DNA methylation imprints and particularly on the combined role of primary sequence specificity, chromatin configuration, non-histone proteins and transcriptional events.
Collapse
|
18
|
|
19
|
Hahn M, Dambacher S, Schotta G. Heterochromatin dysregulation in human diseases. J Appl Physiol (1985) 2010; 109:232-42. [PMID: 20360431 DOI: 10.1152/japplphysiol.00053.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin is a repressive chromatin state that is characterized by densely packed DNA and low transcriptional activity. Heterochromatin-induced gene silencing is important for mediating developmental transitions, and in addition, it has more global functions in ensuring chromosome segregation and genomic integrity. Here we discuss how altered heterochromatic states can impair normal gene expression patterns, leading to the development of different diseases. Over the last years, therapeutic strategies that aim toward resetting the epigenetic state of dysregulated genes have been tested. However, due to the complexity of epigenetic gene regulation, the "first-generation drugs" that function globally by inhibiting epigenetic machineries might also introduce severe side effects. Thus detailed understanding of how repressive chromatin states are established and maintained at specific loci will be fundamental for the development of more selective epigenetic treatment strategies in the future.
Collapse
Affiliation(s)
- Matthias Hahn
- Munich Center for Integrated Protein Science (CiPSM) and Adolf-Butenandt-Institute, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
20
|
Demars J, Shmela ME, Rossignol S, Okabe J, Netchine I, Azzi S, Cabrol S, Le Caignec C, David A, Le Bouc Y, El-Osta A, Gicquel C. Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum Mol Genet 2009; 19:803-14. [DOI: 10.1093/hmg/ddp549] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Kacem S, Feil R. Chromatin mechanisms in genomic imprinting. Mamm Genome 2009; 20:544-56. [PMID: 19760321 DOI: 10.1007/s00335-009-9223-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/17/2009] [Indexed: 12/12/2022]
Abstract
Mammalian imprinted genes are clustered in chromosomal domains. Their mono-allelic, parent-of-origin-specific expression is regulated by imprinting control regions (ICRs), which are essential sequence elements marked by DNA methylation on one of the two parental alleles. These methylation "imprints" are established during gametogenesis and, after fertilization, are somatically maintained throughout development. Nonhistone proteins and histone modifications contribute to this epigenetic process. The way ICRs mediate imprinted gene expression differs between domains. At some domains, for instance, ICRs produce long noncoding RNAs that mediate chromatin silencing. Lysine methylation on histone H3 is involved in this developmental process and is particularly important for imprinting in the placenta and brain. Together, the newly discovered chromatin mechanisms provide further clues for addressing imprinting-related pathologies in humans.
Collapse
Affiliation(s)
- Slim Kacem
- CNRS and University of Montpellier I and II, Montpellier, France
| | | |
Collapse
|