1
|
Chen Y, Fu KX, Cotton R, Ou Z, Kwak JW, Chien JC, Kesler V, Nyein HYY, Eisenstein M, Tom Soh H. A biochemical sensor with continuous extended stability in vivo. Nat Biomed Eng 2025:10.1038/s41551-025-01389-6. [PMID: 40410556 DOI: 10.1038/s41551-025-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/03/2025] [Indexed: 05/25/2025]
Abstract
The development of biosensors that can detect specific analytes continuously, in vivo, in real time has proven difficult due to biofouling, probe degradation and signal drift that often occur in vivo. By drawing inspiration from intestinal mucosa that can protect host cell receptors in the presence of the gut microbiome, we develop a synthetic biosensor that can continuously detect specific target molecules in vivo. The biomimetic multicomponent sensor features the hierarchical nano-bio interface design with three-dimensional bicontinuous nanoporous structure, polymer coating and aptamer switches, balancing small-molecule sensing and surface protection in complex biological environments. Our system is stable for at least 1 month in undiluted serum in vitro or 1 week implanted within the blood vessels of free-moving rats, retaining over 50% baseline signal and reproducible calibration curves. We demonstrate that the implanted system can intravenously track pharmacokinetics in real time even after 4 days of continuous exposure to flowing blood within rat femoral vein. In this way, our work provides a generalizable design foundation for biosensors that can continuously operate in vivo for extended durations.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Kaiyu X Fu
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Renee Cotton
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jean Won Kwak
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Jun-Chau Chien
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Vladimir Kesler
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hnin Yin Yin Nyein
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Emmons N, Gibson JM, McDonough MH, Gerson J, Erdal MK, Leung K, Fetter LC, Plaxco KW, Kippin TE. Simultaneous, Seconds-Resolved Doxorubicin Measurements in the Blood and Subcutaneous Interstitial Fluid Identify Quantitative Pharmacokinetic Relationships between the Two. ACS Pharmacol Transl Sci 2025; 8:1347-1358. [PMID: 40370992 PMCID: PMC12070229 DOI: 10.1021/acsptsci.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025]
Abstract
The kinetics with which chemotherapeutics distribute into solid tissues, including their sites of both action and toxicity, remains poorly characterized. This is due to the limited temporal resolution of traditional methods of measuring drug concentrations in the body, all of which employ sample collection (e.g., via a blood draw or microdialysis) followed by benchtop analysis. Here, we have used electrochemical aptamer-based (EAB) sensors to perform simultaneous, 12 s resolution, nanomolar-precision measurements of the chemotherapeutic doxorubicin in the jugular vein (plasma) and subcutaneous space (interstitial fluid) of live rats. The resulting data sets identify predictively strong correlations between its plasma and solid-tissue pharmacokinetics in terms of both cumulative (area under the curve) and maximum exposure. In contrast, the correlations between delivered body-mass-adjusted and body-surface-area-adjusted doses and drug exposure in both the plasma and solid tissue are relatively poor. The latter observation highlights the need for therapeutic drug monitoring, and the former observation shows the potential value of employing subcutaneous EAB sensors as a convenient, minimally invasive, high-precision means of performing such monitoring. The high time density of our two-compartment data sets also provides unprecedented opportunities to model the distribution of a drug from the central compartment to a distal physiological compartment. We find that the preferred description of doxorubicin transport into the solid tissues for five of our six data sets is a three-compartment model composed of the vein (plasma), the interstitial fluid, and an unobserved third compartment distal to the interstitial fluid, with this additional compartment presumably representing intracellular fluid.
Collapse
Affiliation(s)
- Nicole
A. Emmons
- University of
California, Santa
Barbara, California 93106, United States
| | - Jennifer M. Gibson
- University of
California, Santa
Barbara, California 93106, United States
| | | | - Julian Gerson
- University of
California, Santa
Barbara, California 93106, United States
| | - Murat Kaan Erdal
- University of
California, Santa
Barbara, California 93106, United States
| | - Kaylyn Leung
- University of
California, Santa
Barbara, California 93106, United States
| | - Lisa C. Fetter
- University of
California, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- University of
California, Santa
Barbara, California 93106, United States
| | - Tod E. Kippin
- University of
California, Santa
Barbara, California 93106, United States
| |
Collapse
|
3
|
Zhang Z, Zhang Y, Yang C, He J, Jia X, Long M, Yuan R, Xu W. Target-Responsive Conformation Switch of Bihairpin Molecular Beacon to Illustrate Ratiometric Fluorescence Biosensing of Dual-Emissive Silver Nanoclusters. Anal Chem 2025; 97:7419-7428. [PMID: 40152428 DOI: 10.1021/acs.analchem.5c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
It might be intriguing to explore the tailored ability of a bihairpin-structured molecular beacon (bhMB) for improving reaction kinetics and assay sensitivity for a label-free ratiometric fluorescence assay of a specific trigger (T*), in which red and green silver nanoclusters (rSNC and gSNC) were utilized as two reverse emitting reporters. Unlike traditional dually labeled MB, herein the proposed bhMB was designed with two hairpin subunits for specific recognition and signaling readout. Four functional modules were included: the complement of T* in the identifiable hairpin, the template sequence of rSNC and gSNC in the signaling hairpin, two variable consensus loops capable of complementarily hybridizing to form one paired stem, and two stems able to merge into one new loop. Upon introducing T*, the conformation switch of bhMB was triggered via affinity linking to a cognate consensus sequence, thereby reconstructing a perfect stem-loop monohairpin structure. As such, the mutual transition of loops and stems between nonbinding and binding states was powered by a population-shift mechanism to shift the thermodynamic equilibrium toward the binding state. Benefiting from the structure confinement of bhMB, the local concentration of reactive species was increased to speed up the reaction kinetics. In a tailored response route, the template sequence for rSNC clustering was merged with increased red fluorescence, while the emission of gSNC was decreased, pointing to the obtained specific and sensitive ratiometric signal via built-in correction. Thus, this label-free strategy would be the first example to integrate recognizing and signaling subunits in a double-hairpin beacon for label-free biosensing and potential applications.
Collapse
Affiliation(s)
- Zhihan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yuqing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chunli Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xinyue Jia
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Min Long
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
Saunders J, Thompson IAP, Soh HT. Generalizable Molecular Switch Designs for In Vivo Continuous Biosensing. Acc Chem Res 2025; 58:703-713. [PMID: 39954262 PMCID: PMC11883736 DOI: 10.1021/acs.accounts.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Continuous biosensors have the potential to transform medicine, enabling healthcare to be more preventative and personalized as compared to the current standard of reactive diagnostics. Realizing this transformative potential requires biosensors that can function continuously in vivo without sample preparation and deliver molecular specificity, sensitivity, and high temporal resolution. Molecular switches stand out as a promising solution for creating such sensors for the continuous detection of many different types of molecules. Molecular switches are target-binding receptors designed such that binding causes a conformational change in the switch's structure. This structure switching induces a measurable signal change via reporters incorporated into the molecular switch, enabling highly specific, label-free sensing. However, there remains an outstanding need for generalizable switch designs that can be adapted for the detection of a wide range of molecular targets. In this Account, we chronicle the work our lab has done to develop generalizable molecular switch designs that allow more rapid development of high-performance biosensors across a broad range of biomarkers. Pioneering efforts toward molecular switch-based biosensing have employed aptamers─nucleic acid-based receptors with sequence-specific target affinity. However, most of these early demonstrations relied upon aptamers with intrinsic structure-switching capabilities. To accelerate aptamer switch design for more targets, we have applied rational design and knowledge of an aptamer's structure to engineer switching functionality into pre-existing aptamers. Our designs contained several structural parameters that enabled us to easily tune the sensitivity and binding kinetics of the resulting switches. Using such rationally designed aptamer switches, we demonstrated continuous optical detection of cortisol and dopamine at physiologically relevant concentrations in complex media. In an effort to move beyond aptamers with well-characterized structural properties, we developed a high-throughput screening method that allowed us to simultaneously screen millions of candidates derived from a single aptamer to find sensitive switches without any prior structural knowledge of the parent aptamer. In subsequent work, we reasoned that we could enhance our ability to design a broader range of biosensors by leveraging other classes of receptors besides aptamers. Antibodies offer excellent affinity and specificity for a wide range of targets, but lack the capacity for intrinsic structure switching. We therefore developed a set of strategies to augment antibodies with the capacity to act as molecular switches with a diverse range of target-binding properties. We combined both the high binding affinity of an antibody with the structure-switching capabilities of an aptamer to develop a chimeric switch with 100-fold enhanced sensitivity for a protein target and improved function in interferent-rich samples. In a second design, we developed a competitive immunoassay-inspired scheme to engineer switching behavior into an antibody for minutes-scale temporal resolution with nanomolar sensitivity. We used this competitive antibody-switch to demonstrate the first continuous detection of cortisol directly in whole blood. Together, these advances in molecular switch development have expanded our capability to rapidly engineer new continuous biosensors, thereby increasing opportunities to track health via a wide range of biomarkers to deliver more personalized and preventative medicine.
Collapse
Affiliation(s)
- Jason Saunders
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ian A. P. Thompson
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hyongsok Tom Soh
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Shang Z, Ding D, Deng Z, Zhao J, Yang M, Xiao Y, Chu W, Xu S, Zhang Z, Yi X, Lin M, Xia F. Programming the Dynamic Range of Nanochannel Biosensors for MicroRNA Detection Through Allosteric DNA Probes. Angew Chem Int Ed Engl 2025; 64:e202417280. [PMID: 39494980 DOI: 10.1002/anie.202417280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
Solid-state nanochannel biosensors are extensively utilized for microRNA (miRNA) detection owing to their high sensitivity and rapid response. However, conventional nanochannel biosensors face limitations in their fixed dynamic range, restricting their versatility and efficacy. Herein, we introduce tunable triblock DNA probes with varying affinities for target miRNA to engineer solid-state nanochannel biosensors capable of customizable dynamic range adjustment. The triblock DNA architecture comprises a poly-adenine (polyA) block for adjustable surface density anchoring, alongside stem and loop blocks for modulating structural stability. Through systematic manipulation of these blocks, we demonstrate the ability to achieve diverse target binding affinities and detection limits, achieving an initial 81-fold dynamic range. By combining probes with various affinities, we extend this dynamic range significantly to 10,900-fold. Furthermore, by implementing a sequestration mechanism, the effective dynamic range of the nanochannel biosensor is narrowed to only a 3-fold span of target concentrations. The customizable dynamic range of these advanced nanochannel biosensors makes them highly promising for a broad spectrum of biomedical and clinical applications.
Collapse
Affiliation(s)
- Zhiwei Shang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Defang Ding
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zixuan Deng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Mengyu Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuling Xiao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Wenjing Chu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shijun Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhicheng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
6
|
Gao Y, Zhang R, Na Q, Li J, Zhang Y, Zhang Y, Hu K, Zhang G, Zhang X, Lou X. In Vitro Isolation of Quick-Response High-Affinity Aptamers for Continuous and Reagentless Detection of Thrombin. Anal Chem 2025; 97:1695-1703. [PMID: 39807818 DOI: 10.1021/acs.analchem.4c04808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates. Here, we describe an in vitro aptamer isolation strategy that enriches quick-response, high-affinity bivalent protein-binding aptamers. The method is general, as evidenced by the isolation of aptamers targeting thrombin and human serum albumin. We then demonstrated the excellent regeneration capability of the isolated thrombin aptamers using biolayer interferometry. The sensors instantly responded to alternating concentration changes of thrombin at nanomolar levels (200-500 nM), reaching highly consistent equilibrium signals within 10 s. In contrast, the well-known thrombin-binding aptamers, TBA-15 and TBA-29, were not capable of regeneration. Our study provides a simple means to obtain quick-response, high-affinity protein-binding aptamers. It can also be used for the isolation of aptamer pairs, which has been demonstrated to be quite challenging. Our study also provides insights into the rational design of aptamers to control their binding thermodynamics and kinetics.
Collapse
Affiliation(s)
- Yajing Gao
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Ronghui Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Qiao Na
- École Centrale de Lyon, Eculy 69134, France
| | - Jing Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Yi Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Yu Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Keyi Hu
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Guangxin Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Xin Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| |
Collapse
|
7
|
Wang X, Dou L, Bai F, Zhang Y, Wang Z, Shen J, Wen K. Integration of DNA-Decorated Hapten in Emergency Immunoassays for Antibody and Small-Molecule Detection: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1038-1052. [PMID: 39754575 DOI: 10.1021/acs.jafc.4c10521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
DNA-decorated hapten (DDH)-based immunoassays have emerged, demonstrating supreme advantages in sensing applications because of their excellent sensitivity, specificity, and reliability. DDH combines both a recognition element (hapten) and a signal transduction element (DNA portion) with its highly programmable DNA structure enabling the trigger of signal transduction following a recognition event, thereby introducing a novel signal transduction mechanism to immunoassays. In this review, we provide a critical overview of recent research in the DDH-based immunoassays, which are designed to detect specific small molecules and antibodies. On the basis of the following events after binding of antibodies to DDH, the reported studies involved with DDH-based immunoassays can be categorized into three groups: (i) DDH-based immunoassay based on DNA conformational switches induced by antibody binding, (ii) DDH-based immunoassay based on co-localization of nucleic acids induced by antibody binding, and (iii) DDH-based immunoassay based on antibody steric hindrance. We also focus on several fundamental elements of DDH-based immunoassays, including the designed DNA structure, principles of signal transformation, and platform of DDH-based immunoassays. Then, the representative applications of DDH-based immunoassays in areas such as food safety, medical diagnostics, and environmental monitoring as well as the challenges and perspectives of DDH-based immunoassays are also explored.
Collapse
Affiliation(s)
- Xiaonan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Feier Bai
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
8
|
Prévost-Tremblay C, Vigneault A, Lauzon D, Vallée-Bélisle A. Programming the Kinetics of Chemical Communication: Induced Fit vs Conformational Selection. J Am Chem Soc 2025; 147:192-199. [PMID: 39698738 DOI: 10.1021/jacs.4c08597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Life on Earth depends on chemical communication and the ability of biomolecular switches to integrate various chemical signals that trigger their activation or deactivation over time scales ranging from microseconds to days. The ability to similarly program and control the kinetics of artificial switches would greatly assist the design and optimization of future chemical and nanotechnological systems. Two distinct structure-switching mechanisms are typically employed by biomolecular switches: induced fit (IF) and conformational selection (CS). Despite 60 years of experimental and theoretical investigations, the kinetic and evolutive advantages of these two mechanisms remain unclear. Here, we have created a simple modular DNA switch that can operate through both mechanisms and be easily tuned and adapted to characterize its thermodynamic and kinetic parameters. We show that the fastest activation rate of a switch occurs when the ligand is able to bind its inactive conformation (IF). In contrast, we show that when the ligand can only bind the active conformation of the switch (CS), its activation rate can be easily programmed over many orders of magnitude by a simple tuning of its conformational equilibrium. We demonstrate the programming ability of both these mechanisms by designing a drug delivery vessel that can be programmed to release a drug over different time scales (>1000-fold). Overall, these findings provide a programmable strategy to optimize the kinetics of molecular systems and nanomachines while also illustrating how evolution may have taken advantage of IF and CS mechanisms to optimize the kinetics of biomolecular switches.
Collapse
Affiliation(s)
- Carl Prévost-Tremblay
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Achille Vigneault
- Institut de Génie Biomédical, Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Dominic Lauzon
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Alexis Vallée-Bélisle
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H2V 0B3, Canada
- Institut de Génie Biomédical, Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H2V 0B3, Canada
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
9
|
Fan X, Zhang X, Zhang Y, Jiang S, Song W. Photocurrent switchable dual-target bioassay: Signal distinction and interface reconfiguration via pH-responsive triplex DNA programming. Biosens Bioelectron 2024; 262:116540. [PMID: 38943856 DOI: 10.1016/j.bios.2024.116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Most multiplexed photoelectrochemical (PEC) sensors require additional instrumentation and cumbersome electrode modification and surface partitioning, which limits their portability and instrument miniaturization. Herein, a pH-responsive programmable triple DNA nanomachine was developed for constructing a reconfigurable multiplex PEC sensing platform. By programming the base sequence, T-A·T-riched triple DNA was designed to construct integrated nano-controlled release machine (INCRM) for simultaneous recognition of multiple targets. The INCRM enables to recognize two targets in one step, and sequentially separate the signal labels by pH adjustment. The detached signal label catalyzes glucose to produce gluconic acid, causing the C-riched DNA fold into a triple structure on the electrode surface. As a result, one target can be detected relying on the enhanced photocurrent due to accelerated electron transfer between the CdS QD labeled at the end of C-riched DNA and the electrode. The triplex DNA dissociation in pH 7.4 buffer reconfigures the electrode interface, which can be continued to detect another target. The feasibility of the multiplexed sensor is verified by the detection of extensively coexisting antibiotics enrofloxacin (ENR) and ciprofloxacin (CIP). Under the optimal conditions, wide linear range (10 fg/mL ∼ 1 μg/mL) and low detection limit (3.27 fg/mL and 9.60 fg/mL) were obtained. The pH-regulated programmable triplex DNA nanomachine-based sensing platform overcomes the technical difficulties of conventional multiplexed PEC assay, which may open the way for miniaturization of multiplexed PEC sensors.
Collapse
Affiliation(s)
- Xue Fan
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuechen Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yanru Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
10
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
11
|
Wang Z, Zhang R, Liu S, Zhang W, Han J, Bu H. Thermodynamic Allosteric Switch-Actuated 3D DNA Nanomachine for Ultrasensitive Electrochemical/Fluorescent Dual-Mode Biosensing of a Transcription Factor. ACS APPLIED BIO MATERIALS 2024; 7:1073-1080. [PMID: 38215043 DOI: 10.1021/acsabm.3c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Herein, we reported an innovative thermodynamic allosteric switch-actuated 3D DNA nanomachine for selective, sensitive, and accurate electrochemical (EC)/fluorescent (FL) dual-mode biosensing of a microphthalmia-associated transcription factor (MITF). The thermodynamic allosteric switch was ingeniously customized as a hairpin probe (HP) that was in dynamic equilibrium but rapidly interconverting conformations. At the "inactive state", the MITF-binding region and the switch part were "sequestered". Upon the introduction of MITF, an MITF-HP complex promptly formed, and the equilibrium of HP thermodynamically inclined from the "inactive state" toward the "active state" conformation. Immediately, the exposed switch on HP effectively actuated the 3D DNA nanomachine and synchronously produced the restriction site for Nb.BbvCI nicking endonuclease. After the autonomous conveying of the 3D DNA nanomachine by means of the high-efficiency circularly nicking endonuclease signal amplification (NESA), not only was MB-S1 in the supernatant used for FL measurements but also MB-SP/MNs/S2 in the precipitate was adapted for EC analysis, significantly improving the utilization of output products derived from the 3D DNA nanomachine. Accordingly, benefiting from the efficient DNA nanomachine signal amplification manner and the self-calibration function of a dual-mode bioassay, the constructed biosensor exhibits superior sensitivity and accuracy for MITF determination.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Rongrong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Shuning Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Wen Zhang
- School of Chemical Engineering, Xi'an University, Xi'an 710065, China
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Huaiyu Bu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| |
Collapse
|
12
|
Chamorro A, Rossetti M, Bagheri N, Porchetta A. Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:71-106. [PMID: 38273204 DOI: 10.1007/10_2023_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.
Collapse
Affiliation(s)
| | - Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
13
|
Lauzon D, Vallée-Bélisle A. Programing Chemical Communication: Allostery vs Multivalent Mechanism. J Am Chem Soc 2023; 145:18846-18854. [PMID: 37581934 DOI: 10.1021/jacs.3c04045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The emergence of life has relied on chemical communication and the ability to integrate multiple chemical inputs into a specific output. Two mechanisms are typically employed by nature to do so: allostery and multivalent activation. Although a better understanding of allostery has recently provided a variety of strategies to optimize the binding affinity, sensitivity, and specificity of molecular switches, mechanisms relying on multivalent activation remain poorly understood. As a proof of concept to compare the thermodynamic basis and design principles of both mechanisms, we have engineered a highly programmable DNA-based switch that can be triggered by either a multivalent or an allosteric DNA activator. By precisely designing the binding interface of the multivalent activator, we show that the affinity, dynamic range, and activated half-life of the molecular switch can be programed with even more versatility than when using an allosteric activator. The simplicity by which the activation properties of molecular switches can be rationally tuned using multivalent assembly suggests that it may find many applications in biosensing, drug delivery, synthetic biology, and molecular computation fields, where precise control over the transduction of binding events into a specific output is key.
Collapse
Affiliation(s)
- Dominic Lauzon
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal QC H2V 0B3, Canada
| | - Alexis Vallée-Bélisle
- Département de Chimie, Laboratoire de Biosenseurs et Nanomachines, Université de Montréal, Montréal QC H2V 0B3, Canada
| |
Collapse
|
14
|
Wang L, Yao L, Ma Q, Mao Y, Qu H, Zheng L. Investigation on small molecule-aptamer dissociation equilibria based on antisense displacement probe. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Yin Q, Zhao D, Chang Y, Liu B, Liu Y, Liu M. Functional DNA Superstructures Exhibit Positive Homotropic Allostery in Ligand Binding. Angew Chem Int Ed Engl 2023; 62:e202303838. [PMID: 37071541 DOI: 10.1002/anie.202303838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/19/2023]
Abstract
Inspired by intrinsically disordered proteins in nature, DNA aptamers can be engineered to display strongly homotropic allosteric (or cooperative) ligand binding, representing a unique feature that could be of great utility in applications such as biosensing, imaging and drug delivery. The use of an intrinsic disorder mechanism, however, comes with an inherent drawback of significantly reduced overall binding affinity. We hypothesize that it could be addressed via the design of multivalent supramolecular aptamers. We built functional DNA superstructures (denoted as 3D DNA), made of long-chain DNA containing tandem repeating DNA aptamers (or concatemeric aptamers). The 3D DNA systems exhibit highly cooperative binding to both small molecules and proteins, without loss of binding affinities of their parent aptamers. We further produced a highly responsive sensor for fluorescence imaging of glutamate stimulation-evoked adenosine triphosphate (ATP) release in neurons, as well as force stimulus-triggered ATP release in astrocytes.
Collapse
Affiliation(s)
- Qingxin Yin
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Dan Zhao
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| |
Collapse
|
16
|
Zheng LL, Li JZ, Wen M, Xi D, Zhu Y, Wei Q, Zhang XB, Ke G, Xia F, Gao ZF. Enthalpy and entropy synergistic regulation-based programmable DNA motifs for biosensing and information encryption. SCIENCE ADVANCES 2023; 9:eadf5868. [PMID: 37196083 DOI: 10.1126/sciadv.adf5868] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Deoxyribonucleic acid (DNA) provides a collection of intelligent tools for the development of information cryptography and biosensors. However, most conventional DNA regulation strategies rely solely on enthalpy regulation, which suffers from unpredictable stimuli-responsive performance and unsatisfactory accuracy due to relatively large energy fluctuations. Here, we report an enthalpy and entropy synergistic regulation-based pH-responsive A+/C DNA motif for programmable biosensing and information encryption. In the DNA motif, the variation in loop length alters entropic contribution, and the number of A+/C bases regulates enthalpy, which is verified through thermodynamic characterizations and analyses. On the basis of this straightforward strategy, the performances, such as pKa, of the DNA motif can be precisely and predictably tuned. The DNA motifs are finally successfully applied for glucose biosensing and crypto-steganography systems, highlighting their potential in the field of biosensing and information encryption.
Collapse
Affiliation(s)
- Lin Lin Zheng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jin Ze Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Mei Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yanxi Zhu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
- Central Laboratory of Linyi People's Hospital, Linyi 276003, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
17
|
Gu M, Yi X, Xiao Y, Zhang J, Lin M, Xia F. Programming the dynamic range of nanobiosensors with engineering poly-adenine-mediated spherical nucleic acid. Talanta 2023; 256:124278. [PMID: 36681039 DOI: 10.1016/j.talanta.2023.124278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Spherical nucleic acid (SNA) conjugates consisting of gold cores functionalized with a densely packed DNA shells are of great significance in the field of medical detection and intracellular imaging. Especially, poly adenine (polyA)-mediated SNAs can improve the controllability and reproducibility of DNA assembly on the nanointerface, showing the tunable hybridization ability. However, due to the physics of single-site binding, the biosensor based on SNA usually exhibits a dynamic range spanning a fixed 81-fold change in target concentration, which limits its application in disease monitoring. To address this problem, we report a tri-block DNA-based approach to assemble SNA for nucleic acid detection based on structure-switching mechanism with programmable dynamic range. The tri-block DNA is a FAM-labeled stem-loop structure, which contains three blocks: polyA block as an anchoring block for tunable surface density, stem block with different GC base pair content for varying the structure stability, and the fixed loop block for target recognition. We find that varying the polyA block, the reaction temperature, and the GC base pair, SNA shows different target binding affinity and detection limit but with normally 81-fold dynamic range. We can extend the dynamic range to 1000-fold by using the combination of two SNAs with different affinity, and narrow the dynamic range to 5-fold by sequestration mechanism. Furthermore, the tunable SNA enables sensitive detection of mRNA in cells. Given its tunable dynamic range, such nanobiosensor based on SNA offers new possibility for various biomedical and clinical applications.
Collapse
Affiliation(s)
- Menghan Gu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Yucheng Xiao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
18
|
Wang J, Chen X, Qu D, Zhang X, Wang L, Guo Z, Liu S. An enzyme-responsive electrochemical DNA biosensor achieving various dynamic range by using only-one immobilization probe. Anal Chim Acta 2023; 1251:340999. [PMID: 36925289 DOI: 10.1016/j.aca.2023.340999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Developing a simple and easy-to-operate biosensor with tunable dynamic range would provide enormous opportunities to promote the diagnostic applications. Herein, an enzyme-responsive electrochemical DNA biosensor is developed by using only-one immobilization probe. The immobilization probe was designed with a two-loop hairpin-like structure that contained the mutually independent target recognition and enzyme (EcoRI restriction endonuclease) responsive domains. The target recognition was based on a toehold-mediated strand displacement reaction strategy. The toehold region was initially caged in the loop of the immobilization probe and showed a relatively low binding affinity with target, which was improved via EcoRI cleavage of immobilization probe to liberate the toehold region. The EcoRI cleavage operation for immobilization probe demonstrated the well regulation ability in detection performance. It showed a largely extended dynamic range, a significantly lowered detection limit and better discrimination ability toward the mismatched sequences whether in two buffers (with high or low salt concentrations) or in the serum system. The advantages also includes simplicity in probe design, and facile biosensor fabrication and operation. It thus opens a new avenue for the development of the modulated DNA biosensor and hold a great potential for the diagnostic applications and drug monitoring.
Collapse
Affiliation(s)
- Jianru Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xue Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dengfeng Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China
| | - Xiaofan Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China.
| | - Zongxia Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
19
|
Lauzon D, Vallée-Bélisle A. Functional advantages of building nanosystems using multiple molecular components. Nat Chem 2023; 15:458-467. [PMID: 36759713 DOI: 10.1038/s41557-022-01127-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023]
Abstract
Over half of all the natural nanomachines in living organisms are multimeric and likely exploit the self-assembly of their components to provide functional benefits. However, the advantages and disadvantages of building nanosystems using multiple molecular components remain relatively unexplored at the thermodynamic, kinetic and functional levels. In this study we used theory and a simple DNA-based model that forms the same nanostructures with different numbers of components to advance our knowledge in this area. Despite its lower assembly rate, we found that a system built with three components may undergo a more cooperative assembly transition from less preorganized components, which facilitates the emergence of functionalities. Using simple variations of its components, we also found that trimeric nanosystems display a much higher level of programmability than their dimeric counterparts because they can assemble with various levels of cooperativity, self-inhibition and time-dependent properties. We show here how two simple strategies (for example, cutting and adding components) can be employed to efficiently programme the regulatory function of a more complex, artificially selected, RNA-cleaving catalytic nanosystem.
Collapse
Affiliation(s)
- D Lauzon
- Laboratoire de Biosenseurs & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - A Vallée-Bélisle
- Laboratoire de Biosenseurs & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Wu Y, Ranallo S, Del Grosso E, Chamoro-Garcia A, Ennis HL, Milosavić N, Yang K, Kippin T, Ricci F, Stojanovic M, Plaxco KW. Using Spectroscopy to Guide the Adaptation of Aptamers into Electrochemical Aptamer-Based Sensors. Bioconjug Chem 2023; 34:124-132. [PMID: 36044602 PMCID: PMC10799766 DOI: 10.1021/acs.bioconjchem.2c00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electrochemical aptamer-based (EAB) sensors utilize the binding-induced conformational change of an electrode-attached, redox-reporter-modified aptamer to transduce target recognition into an easily measurable electrochemical output. Because this signal transduction mechanism is single-step and rapidly reversible, EAB sensors support high-frequency, real-time molecular measurements, and because it recapitulates the reagentless, conformation-linked signaling seen in vivo among naturally occurring receptors, EAB sensors are selective enough to work in the complex, time-varying environments found in the living body. The fabrication of EAB sensors, however, requires that their target-recognizing aptamer be modified such that (1) it undergoes the necessary binding-induced conformational change and (2) that the thermodynamics of this "conformational switch" are tuned to ensure that they reflect an acceptable trade-off between affinity and signal gain. That is, even if an "as-selected" aptamer achieves useful affinity and specificity, it may fail when adapted to the EAB platform because it lacks the binding-induced conformational change required to support EAB signaling. In this paper we reveal the spectroscopy-guided approaches we use to modify aptamers such that they support the necessary binding-induced conformational change. Specifically, using newly reported aptamers, we demonstrate the systematic design of EAB sensors achieving clinically and physiologically relevant specificity, limits of detection, and dynamic range against the targets methotrexate and tryptophan.
Collapse
Affiliation(s)
- Yuyang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Simona Ranallo
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Erica Del Grosso
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Alejandro Chamoro-Garcia
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Herbert L Ennis
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Nenad Milosavić
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Kyungae Yang
- Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Tod Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Francesco Ricci
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Milan Stojanovic
- Department of Medicine, Columbia University, New York, New York 10032, United States
- Department of Biomedical Engineering and Systems Biology, Columbia University, New York, New York 10032, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
21
|
Pan J, Xu W, Li W, Chen S, Dai Y, Yu S, Zhou Q, Xia F. Electrochemical Aptamer-Based Sensors with Tunable Detection Range. Anal Chem 2023; 95:420-432. [PMID: 36625123 DOI: 10.1021/acs.analchem.2c04498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenxia Xu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanlu Li
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shuwen Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shanwu Yu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qitao Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
22
|
DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance. Nat Commun 2022; 13:7107. [PMID: 36402783 PMCID: PMC9675814 DOI: 10.1038/s41467-022-34858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
DNA is well-documented to stimulate immune response. However, the nature of the DNA to activate immune surveillance is less understood. Here, we show that the activation of cyclic GMP-AMP synthase (cGAS) depends on DNA mechanical flexibility, which is controlled by DNA-sequence, -damage and -length. Consistently, DNA-sequence was shown to control cGAS activation. Structural analyses revealed that a conserved cGAS residue (mouse R222 or human R236) contributed to the DNA-flexibility detection. And the residue substitution neutralised the flexibility-controlled DNA-potential to activate cGAS, and relaxed the DNA-length specificity of cGAS. Moreover, low dose radiation was shown to mount cGAS-mediated acute immune surveillance (AIS) via repairable (reusable) DNAs in hrs. Loss of cGAS-mediated AIS decreased the regression of local and abscopal tumours in the context of focal radiation and immune checkpoint blockade. Our results build a direct link between immunosurveillance and DNA mechanical feature.
Collapse
|
23
|
Desrosiers A, Derbali RM, Hassine S, Berdugo J, Long V, Lauzon D, De Guire V, Fiset C, DesGroseillers L, Leblond Chain J, Vallée-Bélisle A. Programmable self-regulated molecular buffers for precise sustained drug delivery. Nat Commun 2022; 13:6504. [PMID: 36323663 PMCID: PMC9630261 DOI: 10.1038/s41467-022-33491-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Unlike artificial nanosystems, biological systems are ideally engineered to respond to their environment. As such, natural molecular buffers ensure precise and quantitative delivery of specific molecules through self-regulated mechanisms based on Le Chatelier's principle. Here, we apply this principle to design self-regulated nucleic acid molecular buffers for the chemotherapeutic drug doxorubicin and the antimalarial agent quinine. We show that these aptamer-based buffers can be programmed to maintain any specific desired concentration of free drug both in vitro and in vivo and enable the optimization of the chemical stability, partition coefficient, pharmacokinetics and biodistribution of the drug. These programmable buffers can be built from any polymer and should improve patient therapeutic outcome by enhancing drug activity and minimizing adverse effects and dosage frequency.
Collapse
Affiliation(s)
- Arnaud Desrosiers
- grid.14848.310000 0001 2292 3357Laboratoire de Biosenseurs et Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7 Canada ,grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Rabeb Mouna Derbali
- grid.14848.310000 0001 2292 3357Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC H3C 3J7 Canada
| | - Sami Hassine
- grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Jérémie Berdugo
- grid.14848.310000 0001 2292 3357Département de Pathologie, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Valérie Long
- grid.14848.310000 0001 2292 3357Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC H3C 3J7 Canada ,grid.482476.b0000 0000 8995 9090Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, QC H1Y 3G4 Canada
| | - Dominic Lauzon
- grid.14848.310000 0001 2292 3357Laboratoire de Biosenseurs et Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Vincent De Guire
- grid.414216.40000 0001 0742 1666Clinical Biochemistry Department, Maisonneuve-Rosemont Hospital, Optilab-CHUM Laboratory Network, Montreal, QC Canada
| | - Céline Fiset
- grid.14848.310000 0001 2292 3357Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC H3C 3J7 Canada ,grid.482476.b0000 0000 8995 9090Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, QC H1Y 3G4 Canada
| | - Luc DesGroseillers
- grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Jeanne Leblond Chain
- grid.503113.50000 0004 0459 4432Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Alexis Vallée-Bélisle
- grid.14848.310000 0001 2292 3357Laboratoire de Biosenseurs et Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7 Canada ,grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| |
Collapse
|
24
|
Onaş AM, Dascălu C, Raicopol MD, Pilan L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. BIOSENSORS 2022; 12:816. [PMID: 36290952 PMCID: PMC9599214 DOI: 10.3390/bios12100816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nucleic-acid aptamers consisting in single-stranded DNA oligonucleotides emerged as very promising biorecognition elements for electrochemical biosensors applied in various fields such as medicine, environmental, and food safety. Despite their outstanding features, such as high-binding affinity for a broad range of targets, high stability, low cost and ease of modification, numerous challenges had to be overcome from the aptamer selection process on the design of functioning biosensing devices. Moreover, in the case of small molecules such as metabolites, toxins, drugs, etc., obtaining efficient binding aptamer sequences proved a challenging task given their small molecular surface and limited interactions between their functional groups and aptamer sequences. Thus, establishing consistent evaluation standards for aptamer affinity is crucial for the success of these aptamers in biosensing applications. In this context, this article will give an overview on the thermodynamic and structural aspects of the aptamer-target interaction, its specificity and selectivity, and will also highlight the current methods employed for determining the aptamer-binding affinity and the structural characterization of the aptamer-target complex. The critical aspects regarding the generation of aptamer-modified electrodes suitable for electrochemical sensing, such as appropriate bioreceptor immobilization strategy and experimental conditions which facilitate a convenient anchoring and stability of the aptamer, are also discussed. The review also summarizes some effective small molecule aptasensing platforms from the recent literature.
Collapse
Affiliation(s)
- Andra Mihaela Onaş
- Advanced Polymer Materials Group, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Constanţa Dascălu
- Faculty of Applied Sciences, University ‘Politehnica’ of Bucharest, 313 Splaiul Independenţei, District 6, 060042 Bucharest, Romania
| | - Matei D. Raicopol
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Luisa Pilan
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| |
Collapse
|
25
|
Rossetti M, Merlo R, Bagheri N, Moscone D, Valenti A, Saha A, Arantes PR, Ippodrino R, Ricci F, Treglia I, Delibato E, van der Oost J, Palermo G, Perugino G, Porchetta A. Enhancement of CRISPR/Cas12a trans-cleavage activity using hairpin DNA reporters. Nucleic Acids Res 2022; 50:8377-8391. [PMID: 35822842 PMCID: PMC9371913 DOI: 10.1093/nar/gkac578] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
The RNA programmed non-specific (trans) nuclease activity of CRISPR-Cas Type V and VI systems has opened a new era in the field of nucleic acid-based detection. Here, we report on the enhancement of trans-cleavage activity of Cas12a enzymes using hairpin DNA sequences as FRET-based reporters. We discover faster rate of trans-cleavage activity of Cas12a due to its improved affinity (Km) for hairpin DNA structures, and provide mechanistic insights of our findings through Molecular Dynamics simulations. Using hairpin DNA probes we significantly enhance FRET-based signal transduction compared to the widely used linear single stranded DNA reporters. Our signal transduction enables faster detection of clinically relevant double stranded DNA targets with improved sensitivity and specificity either in the presence or in the absence of an upstream pre-amplification step.
Collapse
Affiliation(s)
- Marianna Rossetti
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica 00133, Rome, Italy
| | - Rosa Merlo
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica 00133, Rome, Italy
| | - Danila Moscone
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica 00133, Rome, Italy
| | - Anna Valenti
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Aakash Saha
- Department of Bioengineering and Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512 USA
| | - Pablo R Arantes
- Department of Bioengineering and Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512 USA
| | - Rudy Ippodrino
- Ulisse BioMed S.r.l. Area Science Park, 34149 Trieste, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica 00133, Rome, Italy
| | - Ida Treglia
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Elisabetta Delibato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512 USA
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy.,Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte Sant'Angelo, Ed. 7, Via Cintia 26, 80126 Naples, Italy
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica 00133, Rome, Italy
| |
Collapse
|
26
|
Del Grosso E, Franco E, Prins LJ, Ricci F. Dissipative DNA nanotechnology. Nat Chem 2022; 14:600-613. [PMID: 35668213 DOI: 10.1038/s41557-022-00957-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
Abstract
DNA nanotechnology has emerged as a powerful tool to precisely design and control molecular circuits, machines and nanostructures. A major goal in this field is to build devices with life-like properties, such as directional motion, transport, communication and adaptation. Here we provide an overview of the nascent field of dissipative DNA nanotechnology, which aims at developing life-like systems by combining programmable nucleic-acid reactions with energy-dissipating processes. We first delineate the notions, terminology and characteristic features of dissipative DNA-based systems and then we survey DNA-based circuits, devices and materials whose functions are controlled by chemical fuels. We emphasize how energy consumption enables these systems to perform work and cyclical tasks, in contrast with DNA devices that operate without dissipative processes. The ability to take advantage of chemical fuel molecules brings dissipative DNA systems closer to the active molecular devices that exist in nature.
Collapse
Affiliation(s)
- Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padua, Padua, Italy.
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy.
| |
Collapse
|
27
|
The Mechanistic Integration and Thermodynamic Optimality of a Nanomotor. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The performance of artificial nanomotors is still far behind nature-made biomolecular motors. A mechanistic disparity between the two categories exists: artificial motors often rely on a single mechanism to rectify directional motion, but biomotors integrate multiple mechanisms for better performance. This study proposes a design for a motor-track system and shows that by introducing asymmetric compound foot-track interactions, both selective foot detachment and biased foot-track binding arise from the mechanics of the system. The two mechanisms are naturally integrated to promote the motility of the motor towards being unidirectional, while each mechanism alone only achieves 50% directional fidelity at most. Based on a reported theory, the optimization of the motor is conducted via maximizing the directional fidelity. Along the optimization, the directional fidelity of the motor is raised by parameters that concentrate more energy on driving selective-foot detachment and biased binding, which in turn promotes work production due to the two energies converting to work via a load attached. However, the speed of the motor can drop significantly after the optimization because of energetic competition between speed and directional fidelity, which causes a speed-directional fidelity tradeoff. As a case study, these results test thermodynamic correlation between the performances of a motor and suggest that directional fidelity is an important quantity for motor optimization.
Collapse
|
28
|
Chen ZM, Mou Q, Wu SH, Xie Y, Salminen K, Sun JJ. Real-Time Tunable Dynamic Range for Calibration-Free Biomolecular Measurements with a Temperature-Modulated Electrochemical Aptamer-Based Sensor in an Unprocessed Actual Sample. Anal Chem 2021; 94:1397-1405. [PMID: 34962777 DOI: 10.1021/acs.analchem.1c04697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The sensing technologies for monitoring molecular analytes in biological fluids with high frequency and in real time could enable a broad range of applications in personalized healthcare and clinical diagnosis. However, due to the limited dynamic range (less than 81-fold), real-time analysis of biomolecular concentration varying over multiple orders of magnitude is a severe challenge faced by this class of analytical platforms. For the first time, we describe here that temperature-modulated electrochemical aptamer-based sensors with a dynamically adjustable calibration-free detection window could enable continuous, real-time, and accurate response for the several-hundredfold target concentration changes in unprocessed actual samples. Specifically, we could regulate the electrode surface temperature of sensors to obtain the corresponding dynamic range because of the temperature-dependent affinity variations. This temperature modulation method relies on an alternate hot and cold electrode reported by our group, whose surface could actively be heated and cooled without the need for altering ambient temperature, thus likewise applying for the flowing system. We then performed dual-frequency calibration-free measurements at different interface temperatures, thus achieving an extended detection window from 25 to 2500 μM for procaine in undiluted urine, 1-500 μM for adenosine triphosphate, and 5-2000 μM for adenosine in undiluted serum. The resulting sensor architecture could drastically expand the real-time response range accessible to these continuous, reagent-less biosensors.
Collapse
Affiliation(s)
- Zhi-Min Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Qi Mou
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Sheng-Hong Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Yu Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Kalle Salminen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
29
|
Abstract
Inspired by allosteric regulation of natural molecules, we present a rational design scheme to build synthetic nucleic acid allosteric nanodevices. The clearly specified conformational states of switches obtained from systematic screening and analyses make the ON-OFF transition clear-cut and quantification ready. Under the rational design scheme, we have developed a series of DNA switches with triplex-forming oligos as allosteric modulators and implemented designated allosteric transitions, allosteric coregulation, and reaction pathway control. In conjunction with toehold-mediated strand displacement, our design scheme has also been applied to synthetic nucleic acid computing including a set of logic operations and complex algorithm.
Collapse
Affiliation(s)
- Tianqing Zhang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Zanut A, Rossetti M, Marcaccio M, Ricci F, Paolucci F, Porchetta A, Valenti G. DNA-Based Nanoswitches: Insights into Electrochemiluminescence Signal Enhancement. Anal Chem 2021; 93:10397-10402. [PMID: 34213888 PMCID: PMC8382220 DOI: 10.1021/acs.analchem.1c01683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Electrochemiluminescence (ECL) is a powerful transduction technique that has rapidly gained importance as a powerful analytical technique. Since ECL is a surface-confined process, a comprehensive understanding of the generation of ECL signal at a nanometric distance from the electrode could lead to several highly promising applications. In this work, we explored the mechanism underlying ECL signal generation on the nanoscale using luminophore-reporter-modified DNA-based nanoswitches (i.e., molecular beacon) with different stem stabilities. ECL is generated according to the "oxidative-reduction" strategy using tri-n-propylamine (TPrA) as a coreactant and Ru(bpy)32+ as a luminophore. Our findings suggest that by tuning the stem stability of DNA nanoswitches we can activate different ECL mechanisms (direct and remote) and, under specific conditions, a "digital-like" association curve, i.e., with an extremely steep transition after the addition of increasing concentrations of DNA target, a large signal variation, and low preliminary analytical performance (LOD 22 nM for 1GC DNA-nanoswtich and 16 nM for 5GC DNA-nanoswitch). In particular, we were able to achieve higher signal gain (i.e., 10 times) with respect to the standard "signal-off" electrochemical readout. We demonstrated the copresence of two different ECL generation mechanisms on the nanoscale that open the way for the design of customized DNA devices for highly efficient dual-signal-output ratiometric-like ECL systems.
Collapse
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marianna Rossetti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Massimo Marcaccio
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Alessandro Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
31
|
Dillen A, Vandezande W, Daems D, Lammertyn J. Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers: a thermodynamic study. Anal Bioanal Chem 2021; 413:4739-4750. [PMID: 34109445 DOI: 10.1007/s00216-021-03444-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Duplexed aptamers (DAs) are widespread aptasensor formats that simultaneously recognize and signal the concentration of target molecules. They are composed of an aptamer and aptamer complementary element (ACE) which consists of a short oligonucleotide that partially inhibits the aptamer sequence. Although the design principles to engineer DAs are straightforward, the tailored development of DAs for a particular target is currently based on trial and error due to limited knowledge of how the ACE sequence affects the final performance of DA biosensors. Therefore, we have established a thermodynamic model describing the influence of the ACE on the performance of DAs applied in equilibrium assays and demonstrated that this relationship can be described by the binding strength between the aptamer and ACE. To validate our theoretical findings, the model was applied to the 29-mer anti-thrombin aptamer as a case study, and an experimental relation between the aptamer-ACE binding strength and performance of DAs was established. The obtained results indicated that our proposed model could accurately describe the effect of the ACE sequence on the performance of the established DAs for thrombin detection, applied for equilibrium assays. Furthermore, to characterize the binding strength between the aptamer and ACEs evaluated in this work, a set of fitting equations was derived which enables thermodynamic characterization of DNA-based interactions through thermal denaturation experiments, thereby overcoming the limitations of current predictive software and chemical denaturation experiments. Altogether, this work encourages the development, characterization, and use of DAs in the field of biosensing.
Collapse
Affiliation(s)
- Annelies Dillen
- Department of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Wouter Vandezande
- Department of Microbial and Molecular Systems - Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001, Leuven, Belgium
| | - Devin Daems
- Department of Chemistry - AXES research group, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerpen, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium.
| |
Collapse
|
32
|
Billet B, Chovelon B, Fiore E, Oukacine F, Petrillo MA, Faure P, Ravelet C, Peyrin E. Aptamer Switches Regulated by Post-Transition/Transition Metal Ions. Angew Chem Int Ed Engl 2021; 60:12346-12350. [PMID: 33742515 DOI: 10.1002/anie.202102254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 12/11/2022]
Abstract
We introduced an aptamer switch design that relies on the ability of post-transition/transition metal ions to trigger, through their coordination to nucleobases, substantial DNA destabilization. In the absence of molecular target, the addition of one such metal ion to usual aptamer working solutions promotes the formation of an alternative, inert DNA state. Upon exposure to the cognate compound, the equilibrium is shifted towards the competent DNA form. The switching process was preferentially activated by metal ions of intermediate base over phosphate complexation preference (i.e. Pb2+ , Cd2+ ) and operated with diversely structured DNA molecules. This very simple aptamer switch scheme was applied to the detection of small organics using the fluorescence anisotropy readout mode. We envision that the approach could be adapted to a variety of signalling methods that report on changes in the surface charge density of DNA receptors.
Collapse
Affiliation(s)
- Blandine Billet
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France.,Biochemistry, Toxicology and Pharmacology Department, Grenoble site Nord CHU- Biology and Pathology Institute, 38041, Grenoble, France
| | - Benoit Chovelon
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France.,Biochemistry, Toxicology and Pharmacology Department, Grenoble site Nord CHU- Biology and Pathology Institute, 38041, Grenoble, France
| | - Emmanuelle Fiore
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France
| | - Farid Oukacine
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France
| | | | - Patrice Faure
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France.,Biochemistry, Toxicology and Pharmacology Department, Grenoble site Nord CHU- Biology and Pathology Institute, 38041, Grenoble, France
| | - Corinne Ravelet
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France
| | - Eric Peyrin
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France
| |
Collapse
|
33
|
Billet B, Chovelon B, Fiore E, Oukacine F, Petrillo M, Faure P, Ravelet C, Peyrin E. Aptamer Switches Regulated by Post‐Transition/Transition Metal Ions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Blandine Billet
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
- Biochemistry, Toxicology and Pharmacology Department Grenoble site Nord CHU- Biology and Pathology Institute 38041 Grenoble France
| | - Benoit Chovelon
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
- Biochemistry, Toxicology and Pharmacology Department Grenoble site Nord CHU- Biology and Pathology Institute 38041 Grenoble France
| | - Emmanuelle Fiore
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
| | - Farid Oukacine
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
| | | | - Patrice Faure
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
- Biochemistry, Toxicology and Pharmacology Department Grenoble site Nord CHU- Biology and Pathology Institute 38041 Grenoble France
| | - Corinne Ravelet
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
| | - Eric Peyrin
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
| |
Collapse
|
34
|
Clifford A, Das J, Yousefi H, Mahmud A, Chen JB, Kelley SO. Strategies for Biomolecular Analysis and Continuous Physiological Monitoring. J Am Chem Soc 2021; 143:5281-5294. [PMID: 33793215 DOI: 10.1021/jacs.0c13138] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Portable devices capable of rapid disease detection and health monitoring are crucial to decentralizing diagnostics from clinical laboratories to the patient point-of-need. Although technologies have been developed targeting this challenge, many require the use of reporter molecules or reagents that complicate the automation and autonomy of sensors. New work in the field has targeted reagentless approaches to enable breakthroughs that will allow personalized monitoring of a wide range of biomarkers on demand. This Perspective focuses on the ability of reagentless platforms to revolutionize the field of sensing by allowing rapid and real-time analysis in resource-poor settings. First, we will highlight advantages of reagentless sensing techniques, specifically electrochemical detection strategies. Advances in this field, including the development of wearable and in situ sensors capable of real-time monitoring of biomarkers such as nucleic acids, proteins, viral particles, bacteria, therapeutic agents, and metabolites, will be discussed. Reagentless platforms which allow for wash-free, calibration free-detection with increased dynamic range are highlighted as a key technological advance for autonomous sensing applications. Furthermore, we will highlight remaining challenges which must be overcome to enable widespread use of reagentless devices. Finally, future prospects and potential breakthroughs in precision medicine that will arise as a result of further development of reagentless sensing approaches are discussed.
Collapse
Affiliation(s)
- Amanda Clifford
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jagotamoy Das
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Hanie Yousefi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jenise B Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
35
|
Farag N, Mattossovich R, Merlo R, Nierzwicki Ł, Palermo G, Porchetta A, Perugino G, Ricci F. Folding-upon-Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes. Angew Chem Int Ed Engl 2021; 60:7283-7289. [PMID: 33415794 PMCID: PMC8783695 DOI: 10.1002/anie.202016223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 09/28/2023]
Abstract
We present a new class of DNA-based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding-upon-repair DNA nanoswitches are synthetic DNA sequences containing O6 -methyl-guanine (O6 -MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of the O6 -MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding-upon-repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors.
Collapse
Affiliation(s)
- Nada Farag
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Rosanna Mattossovich
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosa Merlo
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Łukasz Nierzwicki
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
36
|
Farag N, Mattossovich R, Merlo R, Nierzwicki Ł, Palermo G, Porchetta A, Perugino G, Ricci F. Folding‐upon‐Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nada Farag
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Rosanna Mattossovich
- Institute of Biosciences and BioResources National Research Council of Italy Via Pietro Castellino 111 80131 Naples Italy
| | - Rosa Merlo
- Institute of Biosciences and BioResources National Research Council of Italy Via Pietro Castellino 111 80131 Naples Italy
| | - Łukasz Nierzwicki
- Department of Bioengineering University of California Riverside 900 University Avenue Riverside CA 52512 USA
| | - Giulia Palermo
- Department of Bioengineering University of California Riverside 900 University Avenue Riverside CA 52512 USA
- Department of Chemistry University of California Riverside 900 University Avenue Riverside CA 52512 USA
| | - Alessandro Porchetta
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources National Research Council of Italy Via Pietro Castellino 111 80131 Naples Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
37
|
Bertucci A, Porchetta A, Del Grosso E, Patiño T, Idili A, Ricci F. Protein‐Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alessandro Bertucci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Alessandro Porchetta
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Tania Patiño
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Andrea Idili
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) Campus UAB Bellaterra 08193 Barcelona Spain
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
38
|
Thermodynamic analysis of cooperative ligand binding by the ATP-binding DNA aptamer indicates a population-shift binding mechanism. Sci Rep 2020; 10:18944. [PMID: 33144644 PMCID: PMC7609719 DOI: 10.1038/s41598-020-76002-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 01/27/2023] Open
Abstract
The ATP-binding DNA aptamer is often used as a model system for developing new aptamer-based biosensor methods. This aptamer follows a structure-switching binding mechanism and is unusual in that it binds two copies of its ligand. We have used isothermal titration calorimetry methods to study the binding of ATP, ADP, AMP and adenosine to the ATP-binding aptamer. Using both individual and global fitting methods, we show that this aptamer follows a positive cooperative binding mechanism. We have determined the binding affinity and thermodynamics for both ligand-binding sites. By separating the ligand-binding sites by an additional four base pairs, we engineered a variant of this aptamer that binds two adenosine ligands in an independent manner. Together with NMR and thermal stability experiments, these data indicate that the ATP-binding DNA aptamer follows a population-shift binding mechanism that is the source of the positive binding cooperativity by the aptamer.
Collapse
|
39
|
Wang GA, Xie X, Mansour H, Chen F, Matamoros G, Sanchez AL, Fan C, Li F. Expanding detection windows for discriminating single nucleotide variants using rationally designed DNA equalizer probes. Nat Commun 2020; 11:5473. [PMID: 33122648 PMCID: PMC7596233 DOI: 10.1038/s41467-020-19269-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Combining experimental and simulation strategies to facilitate the design and operation of nucleic acid hybridization probes are highly important to both fundamental DNA nanotechnology and diverse biological/biomedical applications. Herein, we introduce a DNA equalizer gate (DEG) approach, a class of simulation-guided nucleic acid hybridization probes that drastically expand detection windows for discriminating single nucleotide variants in double-stranded DNA (dsDNA) via the user-definable transformation of the quantitative relationship between the detection signal and target concentrations. A thermodynamic-driven theoretical model was also developed, which quantitatively simulates and predicts the performance of DEG. The effectiveness of DEG for expanding detection windows and improving sequence selectivity was demonstrated both in silico and experimentally. As DEG acts directly on dsDNA, it is readily adaptable to nucleic acid amplification techniques, such as polymerase chain reaction (PCR). The practical usefulness of DEG was demonstrated through the simultaneous detection of infections and the screening of drug-resistance in clinical parasitic worm samples collected from rural areas of Honduras.
Collapse
Affiliation(s)
- Guan A Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, Sichuan, China
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Xiaoyu Xie
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Hayam Mansour
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Department of Cell Biology, National Research Centre, Cairo, 12622, Egypt
| | - Fangfang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, Sichuan, China
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Gabriela Matamoros
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Microbiology Research Institute, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - Ana L Sanchez
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
- Microbiology Research Institute, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 201240, Shanghai, China
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, Sichuan, China.
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
40
|
Nagpal S, Luong TDN, Sadqi M, Muñoz V. Downhill (Un)Folding Coupled to Binding as a Mechanism for Engineering Broadband Protein Conformational Transducers. ACS Synth Biol 2020; 9:2427-2439. [PMID: 32822536 DOI: 10.1021/acssynbio.0c00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Canonical proteins fold and function as conformational switches that toggle between their folded (on) and unfolded (off) states, a mechanism that also provides the basis for engineering transducers for biosensor applications. One of the limitations of such transducers, however, is their relatively narrow operational range, limited to ligand concentrations 20-fold below or above their C50. Previously, we discovered that certain fast-folding proteins lose/gain structure gradually (downhill folding), which led us to postulate their operation as conformational rheostats capable of processing inputs/outputs in analog fashion. Conformational rheostats could make transducers with extended sensitivity. Here we investigate this hypothesis by engineering pH transducing into the naturally pH insensitive, downhill folding protein gpW. Particularly, we engineered histidine grafts into its hydrophobic core to induce unfolding via histidine ionization. We designed and tested the effects of ionization via computational modeling and studied experimentally the four most promising single grafts and two double grafts. All tested mutants become reversible pH transducers in the 4-9 range, and their response increases proportionally to how buried the histidine graft is. Importantly, the pH-dependent reversible (un)folding occurs in rheostatic fashion, so the engineered transducers can detect up to 6 orders of magnitude in [H+] for single grafts, and even more for double grafts. Our results demonstrate that downhill (un)folding coupled to binding produces the gradual, analog responses to the ligand (here H+) that are expected of conformational rheostats, and which make them a powerful mechanism for engineering transducers with sensitivity over many orders of magnitude in ligand concentration (broadband).
Collapse
Affiliation(s)
- Suhani Nagpal
- Bioengineering Graduate Program, University of California at Merced, Merced, 95343 California, United States
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
| | - Thinh D. N. Luong
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
- Chemistry and Chemical Biology Graduate Program, University of California at Merced, Merced, 95343 California, United States
| | - Mourad Sadqi
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
- Department of Bioengineering, University of California at Merced, Merced, 95343 California, United States
| | - Victor Muñoz
- Bioengineering Graduate Program, University of California at Merced, Merced, 95343 California, United States
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
- Chemistry and Chemical Biology Graduate Program, University of California at Merced, Merced, 95343 California, United States
- Department of Bioengineering, University of California at Merced, Merced, 95343 California, United States
| |
Collapse
|
41
|
Bertucci A, Porchetta A, Del Grosso E, Patiño T, Idili A, Ricci F. Protein-Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators*. Angew Chem Int Ed Engl 2020; 59:20577-20581. [PMID: 32737920 DOI: 10.1002/anie.202008553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Indexed: 12/20/2022]
Abstract
Integrating dynamic DNA nanotechnology with protein-controlled actuation will expand our ability to process molecular information. We have developed a strategy to actuate strand displacement reactions using DNA-binding proteins by engineering synthetic DNA translators that convert specific protein-binding events into trigger inputs through a programmed conformational change. We have constructed synthetic DNA networks responsive to two different DNA-binding proteins, TATA-binding protein and Myc-Max, and demonstrated multi-input activation of strand displacement reactions. We achieved protein-controlled regulation of a synthetic RNA and of an enzyme through artificial DNA-based communication, showing the potential of our molecular system in performing further programmable tasks.
Collapse
Affiliation(s)
- Alessandro Bertucci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Erica Del Grosso
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Tania Patiño
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Andrea Idili
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
42
|
Mao X, Liu M, Yan L, Deng M, Li F, Li M, Wang F, Li J, Wang L, Tian Y, Fan C, Zuo X. Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS NANO 2020; 14:8776-8783. [PMID: 32484652 DOI: 10.1021/acsnano.0c03362] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Active sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers. We demonstrate that the molecular-scale confinement increases the thermodynamic stability of aptamers via facilitated folding kinetics, which is confirmed by the single-molecule FRET (smFRET). Unfavorable conformations of aptamers are restricted as revealed by the Monte Carlo simulation. The binding affinity of the DNA framework-confined aptamer is improved by ∼3-fold. With a similar strategy we improve the catalytic activity of hemin-binding aptamer. Our approach thus shows high potential for designing protein-mimicking DNA nanostructures with enhanced binding affinity and catalytic activity for biosensing and biomedical engineering.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lei Yan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengying Deng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| |
Collapse
|
43
|
Bissonnette S, Del Grosso E, Simon AJ, Plaxco KW, Ricci F, Vallée-Bélisle A. Optimizing the Specificity Window of Biomolecular Receptors Using Structure-Switching and Allostery. ACS Sens 2020; 5:1937-1942. [PMID: 32297508 DOI: 10.1021/acssensors.0c00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To ensure maximum specificity (i.e., minimize cross-reactivity with structurally similar analogues of the desired target), most bioassays invoke "stringency", the careful tuning of the conditions employed (e.g., pH, ionic strength, or temperature). Willingness to control assay conditions will fall, however, as quantitative, single-step biosensors begin to replace multistep analytical processes. This is especially true for sensors deployed in vivo, where the tuning of such parameters is not just inconvenient but impossible. In response, we describe here the rational adaptation of two strategies employed by nature to tune the affinity of biomolecular receptors so as to optimize the placement of their specificity "windows" without the need to alter measurement conditions: structure-switching and allosteric control. We quantitatively validate these approaches using two distinct, DNA-based receptors: a simple, linear-chain DNA suitable for detecting a complementary DNA strand and a structurally complex DNA aptamer used for the detection of a small-molecule drug. Using these models, we show that, without altering assay conditions, structure-switching and allostery can tune the concentration range over which a receptor achieves optimal specificity over orders of magnitude, thus optimally matching the specificity window with the range of target concentrations expected to be seen in a given application.
Collapse
Affiliation(s)
- Stéphanie Bissonnette
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Erica Del Grosso
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome 00136, Italy
| | | | | | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome 00136, Italy
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
44
|
Parolo C, Idili A, Ortega G, Csordas A, Hsu A, Arroyo-Currás N, Yang Q, Ferguson BS, Wang J, Plaxco KW. Real-Time Monitoring of a Protein Biomarker. ACS Sens 2020; 5:1877-1881. [PMID: 32619092 DOI: 10.1021/acssensors.0c01085] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to monitor protein biomarkers continuously and in real-time would significantly advance the precision of medicine. Current protein-detection techniques, however, including ELISA and lateral flow assays, provide only time-delayed, single-time-point measurements, limiting their ability to guide prompt responses to rapidly evolving, life-threatening conditions. In response, here we present an electrochemical aptamer-based sensor (EAB) that supports high-frequency, real-time biomarker measurements. Specifically, we have developed an electrochemical, aptamer-based (EAB) sensor against Neutrophil Gelatinase-Associated Lipocalin (NGAL), a protein that, if present in urine at levels above a threshold value, is indicative of acute renal/kidney injury (AKI). When deployed inside a urinary catheter, the resulting reagentless, wash-free sensor supports real-time, high-frequency monitoring of clinically relevant NGAL concentrations over the course of hours. By providing an "early warning system", the ability to measure levels of diagnostically relevant proteins such as NGAL in real-time could fundamentally change how we detect, monitor, and treat many important diseases.
Collapse
Affiliation(s)
- Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Andrew Csordas
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alex Hsu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Qin Yang
- Aptitude Medical Systems, Inc., Santa Barbara, California 93105, United States
| | | | - Jinpeng Wang
- Aptitude Medical Systems, Inc., Santa Barbara, California 93105, United States
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Interdepartmental Program in Biomolecular Science and Engineering University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
45
|
Lin M, Yi X, Wan H, Zhang J, Huang F, Xia F. Photoresponsive Electrochemical DNA Biosensors Achieving Various Dynamic Ranges by Using Only-One Capture Probe. Anal Chem 2020; 92:9963-9970. [DOI: 10.1021/acs.analchem.0c01571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoqing Yi
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Hao Wan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
46
|
Wilson BD, Soh HT. Re-Evaluating the Conventional Wisdom about Binding Assays. Trends Biochem Sci 2020; 45:639-649. [PMID: 32402748 DOI: 10.1016/j.tibs.2020.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Analytical technologies based on binding assays have evolved substantially since their inception nearly 60 years ago, but our conceptual understanding of molecular recognition has not kept pace. Contemporary technologies, such as single-molecule and digital measurements, have challenged, or even rendered obsolete, core concepts behind conventional binding assay design. Here, we explore the fundamental principles underlying molecular recognition systems, which we consider in terms of signals generated through concentration-dependent shifts in equilibrium. We challenge certain orthodoxies related to binding-based detection assays, including the primary importance of a low dissociation constant (KD) and the extent to which this parameter constrains dynamic range and limit of detection. Lastly, we identify key principles for designing binding assays that are optimally suited for a given detection application.
Collapse
Affiliation(s)
- Brandon D Wilson
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Radiology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
47
|
Khowsathit J, Bazzoli A, Cheng H, Karanicolas J. Computational Design of an Allosteric Antibody Switch by Deletion and Rescue of a Complex Structural Constellation. ACS CENTRAL SCIENCE 2020; 6:390-403. [PMID: 32232139 PMCID: PMC7099597 DOI: 10.1021/acscentsci.9b01065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 05/08/2023]
Abstract
Therapeutic monoclonal antibodies have transformed medicine, especially with regards to treating cancers and disorders of the immune system. More than 50 antibody-derived drugs have already reached the clinic, the majority of which target cytokines or cell-surface receptors. Unfortunately, many of these targets have pleiotropic functions: they serve multiple different roles, and often not all of these roles are disease-related. This can be problematic because antibodies act throughout the body, and systemic neutralization of such targets can lead to safety concerns. To address this, we have developed a strategy whereby an antibody's ability to recognize its antigen is modulated by a second layer of control, relying on addition of an exogenous small molecule. In previous studies, we began to explore this idea by introducing a deactivating tryptophan-to-glycine mutation in the domain-domain interface of a single-chain variable fragment (scFv), and then restoring activity by adding back indole to fit the designed cavity. Here, we now describe a novel computational strategy for enumerating larger cavities that can be formed by simultaneously introducing multiple adjacent large-to-small mutations; we then carry out a complementary virtual screen to identify druglike compounds to match each candidate cavity. We first demonstrate the utility of this strategy in a fluorescein-binding single-chain variable fragment (scFv) and experimentally characterize a triple mutant with reduced antigen-binding (Rip-3) that can be rescued using a complementary ligand (Stitch-3). Because our design is built upon conserved residues in the antibody framework, we then show that the same mutation/ligand pair can also be used to modulate antigen-binding in an scFv build from a completely unrelated framework. This set of residues is present in many therapeutic antibodies as well, suggesting that this mutation/ligand pair may serve as a general starting point for introducing ligand-dependence into many clinically relevant antibodies.
Collapse
Affiliation(s)
- Jittasak Khowsathit
- Program
in Molecular Therapeutics, Fox Chase Cancer
Center, Philadelphia, Pennsylvania 19111, United States
- Department of Molecular
Biosciences and Center for Computational Biology, University
of Kansas, Lawrence, Kansas 66045, United
States
| | - Andrea Bazzoli
- Department of Molecular
Biosciences and Center for Computational Biology, University
of Kansas, Lawrence, Kansas 66045, United
States
| | - Hong Cheng
- Program
in Molecular Therapeutics, Fox Chase Cancer
Center, Philadelphia, Pennsylvania 19111, United States
| | - John Karanicolas
- Program
in Molecular Therapeutics, Fox Chase Cancer
Center, Philadelphia, Pennsylvania 19111, United States
- Department of Molecular
Biosciences and Center for Computational Biology, University
of Kansas, Lawrence, Kansas 66045, United
States
| |
Collapse
|
48
|
Slavkovic S, Eisen SR, Johnson PE. Designed Alteration of Binding Affinity in Structure-Switching Aptamers through the Use of Dangling Nucleotides. Biochemistry 2020; 59:663-670. [PMID: 31912723 DOI: 10.1021/acs.biochem.9b00630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to change binding affinity in a controlled fashion is a key step in the rational design of biomolecules in general and functional nucleic acids in particular. Here, we use dangling nucleotides to alter the binding affinity of structure-switching aptamers. Dangling nucleotides can stabilize or destabilize a nucleic acid structure with a known ΔG°37. When the dangling nucleotide stabilizes the structure, less free energy from ligand binding is needed to fold the molecule and hence the ligand is observed to bind tighter than in the absence of the unpaired nucleotide. For a destabilizing dangling nucleotide, the opposite occurs, and the observed binding is weaker. We demonstrate this concept using both the cocaine-binding aptamer and the ATP-binding aptamer systems. We find that for both aptamers there is a direct, but different, relationship between the predicted stabilization and the change in the observed binding free energy.
Collapse
Affiliation(s)
- Sladjana Slavkovic
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario , Canada M3J 1P3
| | - Sophie R Eisen
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario , Canada M3J 1P3
| | - Philip E Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario , Canada M3J 1P3
| |
Collapse
|
49
|
Wilson BD, Hariri AA, Thompson IAP, Eisenstein M, Soh HT. Independent control of the thermodynamic and kinetic properties of aptamer switches. Nat Commun 2019; 10:5079. [PMID: 31699984 PMCID: PMC6838323 DOI: 10.1038/s41467-019-13137-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Molecular switches that change their conformation upon target binding offer powerful capabilities for biotechnology and synthetic biology. Aptamers are useful as molecular switches because they offer excellent binding properties, undergo reversible folding, and can be engineered into many nanostructures. Unfortunately, the thermodynamic and kinetic properties of the aptamer switches developed to date are intrinsically coupled, such that high temporal resolution can only be achieved at the cost of lower sensitivity or high background. Here, we describe a design strategy that decouples and enables independent control over the thermodynamics and kinetics of aptamer switches. Starting from a single aptamer, we create an array of aptamer switches with effective dissociation constants ranging from 10 μM to 40 mM and binding kinetics ranging from 170 ms to 3 s. Our strategy is broadly applicable to other aptamers, enabling the development of switches suitable for a diverse range of biotechnology applications. Aptamer switches are promising biotechnological tools but coupling of their affinity and temporal response limits their versatility. Here, the authors developed an intramolecular strand-displacement strategy that allows for independent fine-tuning of thermodynamics and kinetics of aptamer switches.
Collapse
Affiliation(s)
- Brandon D Wilson
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Amani A Hariri
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.,Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA. .,Department of Radiology, Stanford University, Stanford, CA, 94305, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
50
|
Wang J, Song Q, Guo X, Cui X, Tan L, Dong L. Precise Cross-Dimensional Regulation of the Structure of a Photoreversible DNA Nanoswitch. Anal Chem 2019; 91:14530-14537. [PMID: 31617350 DOI: 10.1021/acs.analchem.9b03547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, an accurately and digitally regulated allosteric nanoswitch based on the conformational control of two DNA hairpins was developed. By switching between UV irradiation and blue light conditions, the second molecular beacon (H#2) would bind/separate with a repression sequence (RES) via the introduced PTG molecules (a photosensitive azobenzene derivative), resulting in the target aptamer sequence in the first molecular beacon (H#1) not being able/being able to hold the stem-loop configuration, hence losing/regaining the ability to bind with the target. Importantly, we successfully monitor conformation changes of the nanoswitch by an elegant mathematical model for connecting Ki (the dissociation constant between RES and H#2) with Kd (the overall equilibrium constant of the nanoswitch binding the target), hence realizing "observing" DNA structure across dimensions from "structural visualization" to digitization and, accurately, digitally regulating DNA structure from digitization to "structural visualization".
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China.,Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education , Chongqing University , Chongqing 40004 , China
| | - Qitao Song
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , 100871 Beijing , China
| | - Xiaogang Guo
- College of Chemistry and Chemical Engineering , Yangtze Normal. University , Chongqing 408100 , China
| | - Xun Cui
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Luxi Tan
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China.,Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education , Chongqing University , Chongqing 40004 , China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China.,Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education , Chongqing University , Chongqing 40004 , China
| |
Collapse
|