1
|
Moreno-Martinez L, Gaja-Capdevila N, Mosqueira-Martín L, Herrando-Grabulosa M, Rodriguez-Gomez L, Gonzalez-Imaz K, Calvo AC, Sagartzazu-Aizpurua M, Moreno-García L, Fuentes JM, Acevedo-Arozena A, Aizpurua JM, Miranda JI, López de Munain A, Vallejo-Illarramendi A, Navarro X, Osta R, Gil-Bea FJ. Novel FKBP prolyl isomerase 1A (FKBP12) ligand promotes functional improvement in SOD1 G93A amyotrophic lateral sclerosis (ALS) mice. Br J Pharmacol 2025; 182:2466-2486. [PMID: 39947630 DOI: 10.1111/bph.17448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with limited treatment options. ALS pathogenesis involves intricate processes within motor neurons, characterized by dysregulated Ca2+ influx and buffering in early ALS-affected motor neurones. This study proposes the modulation of ryanodine receptors (RyRs), key mediators of intracellular Ca2+, as a therapeutic target. EXPERIMENTAL APPROACH A novel class of novel FKBP12 ligands that show activity as cytosolic calcium modulators through stabilizing RyR channel activity, were tested in the superoxide dismutase 1 (SOD1)G93A mouse model of ALS. Different outcomes were used to assess treatment efficacy, including electrophysiology, histopathology, neuromuscular function and survival. KEY RESULTS Among the novel FKBP12 ligands, MP-010 was chosen for its central nervous system availability and favourable in vitro pharmaco-toxicological profile. Chronic administration of MP-010 to SOD1G93A mice produced preservation of motor nerve conduction, with the 61-mg·kg-1 dose significantly delaying the onset of motor impairment. This was accompanied by improved motor coordination, increased innervated endplates and significant preservation of motor neurones in the spinal cord of treated mice. Notably, MP-010 treatment significantly extended lifespan by an average of 10 days compared to vehicle. CONCLUSIONS AND IMPLICATIONS FKBP12 ligands, particularly MP-010, exhibit promising neuroprotective effects in ALS, highlighting their potential as novel therapeutic agents. Further investigations into the molecular mechanisms and clinical translatability of these compounds are needed for their application in ALS treatment.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), Zaragoza, Spain
| | - Núria Gaja-Capdevila
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Mosqueira-Martín
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Neuroscience, BioGipuzkoa Health Research Institute (IIS BioGipuzkoa), San Sebastian, Spain
| | - Mireia Herrando-Grabulosa
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Rodriguez-Gomez
- Department of Neuroscience, BioGipuzkoa Health Research Institute (IIS BioGipuzkoa), San Sebastian, Spain
| | - Klaudia Gonzalez-Imaz
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Neuroscience, BioGipuzkoa Health Research Institute (IIS BioGipuzkoa), San Sebastian, Spain
| | - Ana C Calvo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), Zaragoza, Spain
| | - Maialen Sagartzazu-Aizpurua
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Leticia Moreno-García
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), Zaragoza, Spain
| | - Jose Manuel Fuentes
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biochemistry and Molecular Biology and Genetics, Faculty of Nursing and Occupational Therapy, University of Extremadura, Cáceres, Spain
- Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Abraham Acevedo-Arozena
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Research Unit, Canarias University Hospital, ITB-ULL, Tenerife, Spain
| | - Jesús María Aizpurua
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Miramoon Pharma, San Sebastian, Spain
| | - José Ignacio Miranda
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Miramoon Pharma, San Sebastian, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Neuroscience, BioGipuzkoa Health Research Institute (IIS BioGipuzkoa), San Sebastian, Spain
- Miramoon Pharma, San Sebastian, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Ainara Vallejo-Illarramendi
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Neuroscience, BioGipuzkoa Health Research Institute (IIS BioGipuzkoa), San Sebastian, Spain
- Miramoon Pharma, San Sebastian, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosario Osta
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), Zaragoza, Spain
| | - Francisco Javier Gil-Bea
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Neuroscience, BioGipuzkoa Health Research Institute (IIS BioGipuzkoa), San Sebastian, Spain
- Miramoon Pharma, San Sebastian, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Department of Health Sciences, Public University of Navarra, Pamplona, Spain
| |
Collapse
|
2
|
Marksteiner J, Dostal C, Ebner J, Szabó PL, Podesser BK, Baydar S, Goncalves AIA, Wagner A, Kratochwill K, Fichtinger P, Abraham D, Salzer I, Kubista H, Lilliu E, Hackl B, Sauer J, Todt H, Koenig X, Hilber K, Kiss A. Chronic administration of ivabradine improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy. Sci Rep 2025; 15:8991. [PMID: 40089543 PMCID: PMC11910634 DOI: 10.1038/s41598-025-92927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Duchenne muscular dystrophy (DMD), a severe muscle disease caused by mutations in the gene encoding for the intracellular protein dystrophin, is associated with impaired cardiac function and arrhythmias. A causative factor for complications in the dystrophic heart is abnormal calcium (Ca) handling in ventricular cardiomyocytes, and restoration of normal Ca homeostasis has emerged as therapeutic strategy. Here, we used a rodent model of DMD, the dystrophin-deficient DMDmdx rat, to test the following hypothesis: chronic administration of ivabradine (IVA), a drug clinically approved for the treatment of heart failure, improves Ca handling in dystrophic ventricular cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Intracellular Ca measurements revealed that 4-months administration of IVA to DMDmdx rats significantly improves Ca handling properties in dystrophic ventricular cardiomyocytes. In particular, IVA treatment increased electrically-evoked Ca transients and speeded their decay. This suggested enhanced sarcoplasmic reticulum Ca release and faster removal of Ca from the cytosol. Chronic IVA administration also enhanced the sarcoplasmic reticulum Ca load. Transthoracic echocardiography revealed a significant improvement of cardiac systolic function in IVA-treated DMDmdx rats. Thus, left ventricular ejection fraction and fractional shortening were enhanced, and end-systolic as well as end-diastolic diameters were diminished by the drug. Finally, chronic IVA administration neither significantly attenuated cardiac fibrosis and apoptosis, nor was vascular function improved by the drug. Collectively our findings suggest that long-term IVA administration enhances contractile function in the dystrophic heart by improvement of Ca handling in ventricular cardiomyocytes. Chronic IVA administration may be beneficial for DMD patients.
Collapse
Affiliation(s)
- Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Petra Lujza Szabó
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Simge Baydar
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Ana I A Goncalves
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Anja Wagner
- Core Facility Proteomics, Medical University of Vienna, 1090, Vienna, Austria
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, 1090, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, 1090, Vienna, Austria
| | - Petra Fichtinger
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elena Lilliu
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
3
|
Lara-López A, Gonzalez-Imaz K, Rodríguez-Hidalgo M, Sarasola-Gastesi M, Escudero-Arrarás L, Milla-Navarro S, de la Villa P, Sagartzazu-Aizpurua M, Miranda JI, Aizpurua JM, de Munain AL, Vallejo-Illarramendi A, Ruiz-Ederra J. Topical Administration of Novel FKBP12 Ligand MP-004 Improves Retinal Function and Structure in Retinitis Pigmentosa Models. Invest Ophthalmol Vis Sci 2025; 66:56. [PMID: 40136284 PMCID: PMC11951062 DOI: 10.1167/iovs.66.3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose This study evaluates the therapeutic potential of MP-004, a novel FKBP12 ligand, in the treatment of inherited retinal dystrophies (IRDs). MP-004 targets the FKBP12/RyR interaction, which is disrupted in several neurologic disorders with underlying oxidative stress. Methods The toxicity and efficacy of MP-004 were examined in vitro in 661W cells. Efficacy was evaluated in phototoxic and H2O2-induced damage using impedance assays, calcium imaging, and in situ PLA. In vivo, MP-004 efficacy was evaluated in the rd10 mouse model of retinitis pigmentosa (RP) by topical ocular instillation. Retinal function was assessed by electroretinography (ERG), visual acuity was measured using a water maze test, and retinal structure was analyzed morphometrically. Results MP-004 exhibited low toxicity (LD50: 1.22 mM) and effectively protected 661W cells from phototoxicity (EC50: 30.6 nM). Under oxidative stress conditions, MP-004 preserved the FKBP12.6/RyR2 interaction, restored cytosolic and endoplasmic reticulum calcium levels, and prevented cell death. In vivo, MP-004 significantly preserved retinal function in rd10 mice, with ERG wave amplitude increases of up to 50% in scotopic and 71% in photopic conditions, corresponding to rod and cone functions, respectively. Additionally, MP-004 improved visual acuity for low spatial frequency patterns and preserved retinal structure, with a 23% increase in outer nuclear layer thickness and preservation in the number of rods and cones and their segment length. Conclusions MP-004 shows promise as a therapeutic agent for RP, preserving retinal structure and function, likely through modulation of the FKBP12.6/RyR2 interaction. Further studies are needed to explore its pharmacokinetics and efficacy in other IRD models.
Collapse
Affiliation(s)
- Araceli Lara-López
- Miramoon Pharma, S.L., Donostia-San Sebastian, Spain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Klaudia Gonzalez-Imaz
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - María Rodríguez-Hidalgo
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
| | - Miren Sarasola-Gastesi
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- Department of Dermatology, Ophthalmology and ORL, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Leire Escudero-Arrarás
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
| | - Santiago Milla-Navarro
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
- Visual Neurophysiology Group, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pedro de la Villa
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
- Visual Neurophysiology Group, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Maialen Sagartzazu-Aizpurua
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - José Ignacio Miranda
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Jesús María Aizpurua
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Adolfo López de Munain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA, Donostia-San Sebastián, Spain
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Javier Ruiz-Ederra
- Miramoon Pharma, S.L., Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- Department of Dermatology, Ophthalmology and ORL, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
4
|
D’Amario D, Arcudi A, Narducci ML, Novelli V, Canonico F, Parodi A, Dell’Era G, Di Francesco M, Laborante R, Borovac JA, Galli M, Mercuri EM, Vergaro G, Russo AD, D’Amico AT, Bisignani A, Adorisio R, Pompilio G, Patti G. Arrhythmic Risk Stratification and Sudden Cardiac Death Prevention in Duchenne Muscular Dystrophy: A Critical Appraisal. Rev Cardiovasc Med 2025; 26:27089. [PMID: 40160579 PMCID: PMC11951492 DOI: 10.31083/rcm27089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/30/2024] [Accepted: 12/26/2024] [Indexed: 04/02/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive neuromuscular disorder characterized by early-onset proximal muscle weakness and significant long-term pulmonary and cardiac involvement. Due to the early pharmacological treatments and the wider adoption of non-invasive ventilation, life expectancy has significantly increased in recent years, highlighting the relevance of DMD-related cardiomyopathy and fatal arrhythmias, especially in the late stage of the disease. Current guideline-derived evaluation of sudden cardiac death (SCD) in DMD lacks accuracy, leading to inadequate arrhythmic risk stratification and jeopardized SCD prevention strategies. This review aims to outline these critical issues, proposing an integrative approach encompassing manifold tools such as an imaging-derived systematic and comprehensive evaluation (speckle-tracking echocardiography and magnetic resonance imaging), the electrophysiological study, the 3-dimensional electroanatomic mapping, and a multidimensional clinical examination. This approach might lead to more personalized management along with an effective arrhythmia-prevention strategy aiming to balance clinical care goals, patient expectations, and ethical considerations.
Collapse
Affiliation(s)
- Domenico D’Amario
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
- Thoraco-Cardio-Vascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Alessandra Arcudi
- Thoraco-Cardio-Vascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Maria Lucia Narducci
- Department of Cardiovascular Science, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Valeria Novelli
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy
| | - Francesco Canonico
- Thoraco-Cardio-Vascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Alessandro Parodi
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Gabriele Dell’Era
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Marco Di Francesco
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Renzo Laborante
- Department of Cardiovascular Science, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Josip Andelo Borovac
- Clinic for Heart and Vascular Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy
| | - Eugenio Maria Mercuri
- Department of Cardiovascular Science, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti Umberto I-Lancisi-Salesi”, 60126 Ancona, Italy
| | - Anthea Tonia D’Amico
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Antonio Bisignani
- Center of Excellence in Cardiovascular Sciences, Ospedale Isola Tiberina-Gemelli Isola, 00153 Rome, Italy
| | - Rachele Adorisio
- Advanced Cardiovascular Therapy Unit, Bambino Gesù Pediatric Hospital and Research Institute, 00165, Rome, Italy
| | - Giulio Pompilio
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
- Thoraco-Cardio-Vascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| |
Collapse
|
5
|
Lin Z, Yu Q, Yi B, Xu W, He H, Huang K, Zheng C, Wu S, Lin J. Protective Effects of Low-Intensity Pulsed Ultrasound on Cardiac Electrophysiological Function in a Rat Model of Ischemic Cardiomyopathy. J Am Heart Assoc 2025; 14:e037402. [PMID: 39950540 PMCID: PMC12074784 DOI: 10.1161/jaha.124.037402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Ischemic cardiomyopathy (ICM) is the end stage of ischemic heart disease, in which ventricular remodeling contributes to a fatal ventricular arrhythmia, worsens heart function and unfavorable outcomes, and is related to persistent chronic inflammation. Low-intensity pulsed ultrasound (LIPUS) is an effective treatment modality for osteoarthropathy and has been illustrated to regulate the overactive inflammatory response in various diseases. Here, we aim to investigate whether LIPUS can perform cardiac protective effects in ICM and explore its possible mechanism. METHODS The left anterior descending artery of adult male Sprague-Dawley rats was ligated for 4 weeks to develop ICM and then treated with LIPUS. Vagotomy was applied to suppress the cholinergic anti-inflammatory pathway. Cardiac-specific Cav-1 (caveolin-1) overexpression in ICM on arrhythmias, excitation-contraction coupling, and cardiac remodeling was investigated using the intramyocardial injection of an adeno-associated virus serotype 9 system. RESULTS The results showed that LIPUS alleviated ventricular remodeling, improved cardiac electrophysiological function, and reduced the cardiac expression of collagens and inflammatory cytokines. Vagotomy suppressed the improvement of LIPUS. The overexpression of Cav-1 reset the influence of vagotomy. CONCLUSIONS We found that LIPUS had a direct effect on regional anti-inflammation and antifibrosis, improved cardiac autonomic function and heart failure, protected the Cx43 (connexin-43) protein, and reduced the risk of malignant arrhythmia during ICM. The cholinergic anti-inflammatory pathway was one of the potential critical mechanisms involved, and Cav-1 might play an important role downstream. Our study provided a new, promising, and noninvasive strategy for treating ICM.
Collapse
Affiliation(s)
- Zhong‐Hao Lin
- Department of CardiologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Panvascular Diseases of WenzhouWenzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouChina
| | - Qiu‐Lu Yu
- Department of CardiologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Panvascular Diseases of WenzhouWenzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouChina
| | - Bing‐Hua Yi
- Department of CardiologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Panvascular Diseases of WenzhouWenzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouChina
| | - Wen‐Cai Xu
- Department of CardiologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Panvascular Diseases of WenzhouWenzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouChina
| | - Hua‐Ling He
- Department of CardiologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Panvascular Diseases of WenzhouWenzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouChina
| | - Kai‐Yu Huang
- Department of CardiologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Panvascular Diseases of WenzhouWenzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouChina
| | - Cheng Zheng
- Department of CardiologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Panvascular Diseases of WenzhouWenzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouChina
| | - Shu‐Jie Wu
- Department of CardiologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Panvascular Diseases of WenzhouWenzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouChina
| | - Jia‐Feng Lin
- Department of CardiologyThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Key Laboratory of Panvascular Diseases of WenzhouWenzhouZhejiangChina
- Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
6
|
Uchinoumi H, Nakamura Y, Suetomi T, Nawata T, Fujinaka M, Kobayashi S, Yamamoto T, Yano M, Sano M. Structural instability of ryanodine receptor 2 causes endoplasmic reticulum (ER) dysfunction as well as sarcoplasmic reticulum (SR) dysfunction. J Cardiol 2025:S0914-5087(25)00038-3. [PMID: 39929264 DOI: 10.1016/j.jjcc.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
The type 2 ryanodine receptor (RyR2) is a giant Ca2+ (Ca)-releasing channel on the sarcoplasmic reticulum (SR) membrane, with subunits composed of 5000 amino acids constituting a homotetrameric channel. The N-terminal (1-220) and central (2300-2500) domain interactions (inter-subunit zipping interfaces) within RyR2 are located in close proximity to each other between different neighboring subunits and play an important "cornerstone" role in maintaining the tetrameric structure of RyR2. External stress such as oxidative stress causes Ca leak by destabilizing RyR2 (instability of the tetrameric structure) due to domain unzipping between N-terminal (1-220) and central (2300-2500) domains, followed by dissociation of calmodulin (CaM: binds to the RyR2 and stabilize RyR2) from RyR2. Ca leak from SR causes arrhythmias and myocardial dysfunction. RyR2 is also present in the endoplasmic reticulum (ER), thus it is not surprising that undesired Ca release from RyR2 on the ER is closely associated with various diseases involving ER dysfunction such as neurodegenerative diseases, diabetes, metabolic dysfunction-associated steatotic liver disease, chronic kidney disease, and autoimmune diseases. Pharmacological or genetic (point mutations within RyR2 that increase CaM-RyR2 affinity: knock-in RyR2-V3599K) RyR2 structural stabilization has shown potential therapeutic effects not only for SR failure-related diseases (malignant hyperthermia, arrhythmia, and heart failure) but also for ER failure-related disease. RyR2-stabilizers may function as a panacea for aging-related diseases.
Collapse
Affiliation(s)
- Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.
| | - Yoshihide Nakamura
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takeshi Suetomi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takashi Nawata
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Masafumi Fujinaka
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shigeki Kobayashi
- Department of Therapeutic Science for Heart Failure in the Elderly, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Takeshi Yamamoto
- Department of Laboratory Medicine, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Masafumi Yano
- Department of Therapeutic Science for Heart Failure in the Elderly, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Motoaki Sano
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|
7
|
Guarnieri AR, Anthony SR, Acharya P, Wen BY, Lanzillotta L, Gavin R, Tranter M. HuR-dependent expression of RyR2 contributes to calcium-mediated thermogenesis in brown adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619637. [PMID: 39484459 PMCID: PMC11527003 DOI: 10.1101/2024.10.22.619637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Several uncoupling protein 1 (UCP1)-independent thermogenic pathways have been described in thermogenic adipose tissue, including calcium-mediated thermogenesis in beige adipocytes via sarco/endoplasmic reticulum ATPase (SERCA). We have previously shown that adipocyte-specific deletion of the RNA binding protein human antigen R (HuR) results in thermogenic dysfunction independent of UCP1 expression. RNA sequencing revealed the downregulation of several genes involved in calcium ion transport upon HuR deletion. The goal of this work was to define the HuR-dependent mechanisms of calcium driven thermogenesis in brown adipocytes. We generated (BAT)-specific HuR-deletion (BAT-HuR -/- ) mice and show that their body weight, glucose tolerance, brown and white adipose tissue weights, and total lipid droplet size were not significantly different compared to wild-type. Similar to our initial findings in Adipo-HuR -/- mice, mice with BAT-specific HuR deletion are cold intolerant following acute thermal challenge at 4°C, demonstrating specificity of acute HuR-dependent thermogenesis to BAT. We also found decreased expression of ryanodine receptor 2 (RyR2), but no changes in RyR2, SERCA1, SERCA2, or UCP1 expression, in BAT from BAT-HuR -/- mice. Next, we used Fluo-4 calcium indicator dye to show that genetic deletion or pharmacological inhibition of HuR blunts the increase in cytosolic calcium concentration in SVF-derived primary brown adipocytes. Moreover, we saw a similar blunting in β-adrenergic-mediated heat generation, as assessed by ERtherm AC fluorescence, in SVF-derived brown adipocytes following HuR inhibition or deletion. Mechanistically, we show that HuR directly binds and reduces the decay rate of RyR2 mRNA in brown adipocytes, and stabilization of RyR2 via S107 rescues β-adrenergic-mediated cytosolic calcium increase and heat generation in HuR deficient brown adipocytes. In conclusion, our results suggest that HuR-dependent control of RyR2 expression plays a significant role in the thermogenic function of brown adipose tissue through modulation of SR calcium cycling.
Collapse
|
8
|
Li C, Willegems K, Uchański T, Pardon E, Steyaert J, Efremov RG. Rapid small-scale nanobody-assisted purification of ryanodine receptors for cryo-EM. J Biol Chem 2024; 300:107734. [PMID: 39233227 PMCID: PMC11474372 DOI: 10.1016/j.jbc.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
Ryanodine receptors (RyRs) are large Ca2+ release channels residing in the endoplasmic or sarcoplasmic reticulum membrane. Three isoforms of RyRs have been identified in mammals, the disfunction of which has been associated with a series of life-threatening diseases. The need for large amounts of native tissue or eukaryotic cell cultures limits advances in structural studies of RyRs. Here, we report a method that utilizes nanobodies to purify RyRs from only 5 mg of total protein. The purification process, from isolated membranes to cryo-EM grade protein, is achieved within 4 h on the bench, yielding protein usable for cryo-EM analysis. This is demonstrated by solving the structures of rabbit RyR1, solubilized in detergent, reconstituted into lipid nanodiscs or liposomes, and bovine RyR2 reconstituted in nanodisc, and mouse RyR2 in detergent. The reported method facilitates structural studies of RyRs directed toward drug development and is useful in cases where the amount of starting material is limited.
Collapse
Affiliation(s)
- Chenyao Li
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Katrien Willegems
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Tomasz Uchański
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Els Pardon
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Jan Steyaert
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium.
| |
Collapse
|
9
|
Gandhi S, Sweeney HL, Hart CC, Han R, Perry CGR. Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response. Cells 2024; 13:1168. [PMID: 39056750 PMCID: PMC11274633 DOI: 10.3390/cells13141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cora C. Hart
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
10
|
Seitz A, Busch M, Kroemer J, Schneider A, Simon S, Jungmann A, Katus HA, Most P, Ritterhoff J. S100A1's single cysteine is an indispensable redox switch for the protection against diastolic calcium waves in cardiomyocytes. Am J Physiol Heart Circ Physiol 2024; 327:H000. [PMID: 38819384 PMCID: PMC11381028 DOI: 10.1152/ajpheart.00634.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
The EF-hand calcium (Ca2+) sensor protein S100A1 combines inotropic with antiarrhythmic potency in cardiomyocytes (CMs). Oxidative posttranslational modification (ox-PTM) of S100A1's conserved, single-cysteine residue (C85) via reactive nitrogen species (i.e., S-nitrosylation or S-glutathionylation) has been proposed to modulate conformational flexibility of intrinsically disordered sequence fragments and to increase the molecule's affinity toward Ca2+. Considering the unknown biological functional consequence, we aimed to determine the impact of the C85 moiety of S100A1 as a potential redox switch. We first uncovered that S100A1 is endogenously glutathionylated in the adult heart in vivo. To prevent glutathionylation of S100A1, we generated S100A1 variants that were unresponsive to ox-PTMs. Overexpression of wild-type (WT) and C85-deficient S100A1 protein variants in isolated CM demonstrated equal inotropic potency, as shown by equally augmented Ca2+ transient amplitudes under basal conditions and β-adrenergic receptor (βAR) stimulation. However, in contrast, ox-PTM defective S100A1 variants failed to protect against arrhythmogenic diastolic sarcoplasmic reticulum (SR) Ca2+ waves and ryanodine receptor 2 (RyR2) hypernitrosylation during βAR stimulation. Despite diastolic performance failure, C85-deficient S100A1 protein variants exerted similar Ca2+-dependent interaction with the RyR2 than WT-S100A1. Dissecting S100A1's molecular structure-function relationship, our data indicate for the first time that the conserved C85 residue potentially acts as a redox switch that is indispensable for S100A1's antiarrhythmic but not its inotropic potency in CMs. We, therefore, propose a model where C85's ox-PTM determines S100A1's ability to beneficially control diastolic but not systolic RyR2 activity.NEW & NOTEWORTHY S100A1 is an emerging candidate for future gene-therapy treatment of human chronic heart failure. We aimed to study the significance of the conserved single-cysteine 85 (C85) residue in cardiomyocytes. We show that S100A1 is endogenously glutathionylated in the heart and demonstrate that this is dispensable to increase systolic Ca2+ transients, but indispensable for mediating S100A1's protection against sarcoplasmic reticulum (SR) Ca2+ waves, which was dependent on the ryanodine receptor 2 (RyR2) nitrosylation status.
Collapse
Affiliation(s)
- Andreas Seitz
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Martin Busch
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Jasmin Kroemer
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Schneider
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Simon
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Jungmann
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hugo A Katus
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Most
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Informatics for Life consortium, Klaus Tschira Foundation, Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Informatics for Life consortium, Klaus Tschira Foundation, Heidelberg, Germany
| |
Collapse
|
11
|
Barthélémy I, Su JB, Cauchois X, Relaix F, Ghaleh B, Blot S. Ambulatory electrocardiographic longitudinal monitoring in a canine model for Duchenne muscular dystrophy identifies decreased very low frequency power as a hallmark of impaired heart rate variability. Sci Rep 2024; 14:8969. [PMID: 38637619 PMCID: PMC11026469 DOI: 10.1038/s41598-024-59196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) patients exhibit a late left ventricular systolic dysfunction preceded by an occult phase, during which myocardial fibrosis progresses and some early functional impairments can be detected. These latter include electrocardiographic (ECG) and heart rate variability (HRV) abnormalities. This longitudinal study aimed at describing the sequence of ECG and HRV abnormalities, using Holter ECG in the GRMD (Golden retriever muscular dystrophy) dog model, known to develop a DMD-like disease, including cardiomyopathy. Most of the known ECG abnormalities described in DMD patients were also found in GRMD dogs, including increased heart rate, prolonged QT and shortened PR intervals, ventricular arrhythmias, and several of them could be detected months before the decrease of fractional shortening. The HRV was impaired like in DMD patients, one of the earliest evidenced abnormalities being a decrease in the very low frequency (VLF) component of the power spectrum. This decrease was correlated with the further reduction of fractional shortening. Such decreased VLF probably reflects impaired autonomic function and abnormal vasomotor tone. This study provides new insights into the knowledge of the GRMD dog model and DMD cardiomyopathy and emphasizes the interest to monitor the VLF power in DMD patients, still unexplored in this disease, whilst it is highly predictive of deleterious clinical events in many other pathological conditions.
Collapse
Affiliation(s)
- Inès Barthélémy
- "Biology of the Neuromuscular System" Team, U955 IMRB, INSERM, Univ Paris-Est Créteil, 94010, Créteil, France.
- École Nationale Vétérinaire d'Alfort, IMRB, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| | - Jin Bo Su
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Xavier Cauchois
- "Biology of the Neuromuscular System" Team, U955 IMRB, INSERM, Univ Paris-Est Créteil, 94010, Créteil, France
- École Nationale Vétérinaire d'Alfort, IMRB, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Frédéric Relaix
- "Biology of the Neuromuscular System" Team, U955 IMRB, INSERM, Univ Paris-Est Créteil, 94010, Créteil, France
- École Nationale Vétérinaire d'Alfort, IMRB, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France
| | - Bijan Ghaleh
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Stéphane Blot
- "Biology of the Neuromuscular System" Team, U955 IMRB, INSERM, Univ Paris-Est Créteil, 94010, Créteil, France.
- École Nationale Vétérinaire d'Alfort, IMRB, 7 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| |
Collapse
|
12
|
Behrmann A, Cayton J, Hayden MR, Lambert MD, Nourian Z, Nyanyo K, Godbee B, Hanft LM, Krenz M, McDonald KS, Domeier TL. Right ventricular preload and afterload challenge induces contractile dysfunction and arrhythmia in isolated hearts of dystrophin-deficient male mice. Physiol Rep 2024; 12:e16004. [PMID: 38658324 PMCID: PMC11043033 DOI: 10.14814/phy2.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.
Collapse
MESH Headings
- Animals
- Male
- Dystrophin/genetics
- Dystrophin/deficiency
- Mice
- Myocardial Contraction
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/metabolism
- Mice, Inbred mdx
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Andrew Behrmann
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Jessica Cayton
- Department of Veterinary PathobiologyUniversity of MissouriColumbiaMissouriUSA
| | - Matthew R. Hayden
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Michelle D. Lambert
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Zahra Nourian
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Keith Nyanyo
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Brooke Godbee
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Laurin M. Hanft
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Maike Krenz
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Kerry S. McDonald
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Timothy L. Domeier
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
13
|
Souidi M, Resta J, Dridi H, Sleiman Y, Reiken S, Formoso K, Colombani S, Amédro P, Meyer P, Charrabi A, Vincenti M, Liu Y, Soni RK, Lezoualc'h F, Stéphane Blot D, Rivier F, Cazorla O, Parini A, Marks AR, Mialet‐Perez J, Lacampagne A, Meli AC. Ryanodine receptor dysfunction causes senescence and fibrosis in Duchenne dilated cardiomyopathy. J Cachexia Sarcopenia Muscle 2024; 15:536-551. [PMID: 38221511 PMCID: PMC10995256 DOI: 10.1002/jcsm.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/03/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca2+) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM. METHODS Here, we used hiPSC-CMs from DMD patients selected by Speckle-tracking echocardiography and canine DMD cardiac biopsies to assess key early-stage Duchenne DCM features. RESULTS Dystrophin deficiency was associated with RyR2 remodelling and SR Ca2+ leak (RyR2 Po of 0.03 ± 0.01 for HC vs. 0.16 ± 0.01 for DMD, P < 0.01), which led to early-stage defects including senescence. We observed higher levels of senescence markers including p15 (2.03 ± 0.75 for HC vs. 13.67 ± 5.49 for DMD, P < 0.05) and p16 (1.86 ± 0.83 for HC vs. 10.71 ± 3.00 for DMD, P < 0.01) in DMD hiPSC-CMs and in the canine DMD model. The fibrosis was increased in DMD hiPSC-CMs. We observed cardiac hypocontractility in DMD hiPSC-CMs. Stabilizing RyR2 pharmacologically by S107 prevented most of these pathological features, including the rescue of the contraction amplitude (1.65 ± 0.06 μm for DMD vs. 2.26 ± 0.08 μm for DMD + S107, P < 0.01). These data were confirmed by proteomic analyses, in particular ECM remodelling and fibrosis. CONCLUSIONS We identified key cellular damages that are established earlier than cardiac clinical pathology in DMD patients, with major perturbation of the cardiac ECC. Our results demonstrated that cardiac fibrosis and premature senescence are induced by RyR2 mediated SR Ca2+ leak in DMD cardiomyocytes. We revealed that RyR2 is an early biomarker of DMD-associated cardiac damages in DMD patients. The progressive and later DCM onset could be linked with the RyR2-mediated increased fibrosis and premature senescence, eventually causing cell death and further cardiac fibrosis in a vicious cycle leading to further hypocontractility as a major feature of DCM. The present study provides a novel understanding of the pathophysiological mechanisms of the DMD-induced DCM. By targeting RyR2 channels, it provides a potential pharmacological treatment.
Collapse
Affiliation(s)
- Monia Souidi
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
| | - Jessica Resta
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERMUniversity of ToulouseToulouseFrance
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular CardiologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| | - Yvonne Sleiman
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
| | - Steve Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular CardiologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| | - Karina Formoso
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERMUniversity of ToulouseToulouseFrance
| | - Sarah Colombani
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
| | - Pascal Amédro
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
- Department of Pediatric and Congenital Cardiology, M3C Regional Reference CHD Centre, Clinical Investigation CentreMontpellier University HospitalMontpellierFrance
| | - Pierre Meyer
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
- Department of Pediatric Neurology, Reference Center for Neuromuscular Diseases AOC, Clinical Investigation CentreMontpellier University HospitalMontpellierFrance
| | - Azzouz Charrabi
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
| | - Marie Vincenti
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
- Department of Pediatric and Congenital Cardiology, M3C Regional Reference CHD Centre, Clinical Investigation CentreMontpellier University HospitalMontpellierFrance
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular CardiologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared ResourceHerbert Irving Comprehensive Cancer CenterNew YorkNYUSA
| | - Frank Lezoualc'h
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERMUniversity of ToulouseToulouseFrance
| | - D.V.M. Stéphane Blot
- IMRB ‐ Biology of the neuromuscular system, INSERM, UPEC, EFS, EnvAMaisons‐AlfortFrance
| | - François Rivier
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
- Department of Pediatric Neurology, Reference Center for Neuromuscular Diseases AOC, Clinical Investigation CentreMontpellier University HospitalMontpellierFrance
| | - Olivier Cazorla
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERMUniversity of ToulouseToulouseFrance
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular CardiologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNYUSA
| | - Jeanne Mialet‐Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERMUniversity of ToulouseToulouseFrance
- Present address:
MitoLab Team, UMR CNRS 6015, INSERM U1083, MitoVasc InstituteAngers UniversityAngersFrance
| | - Alain Lacampagne
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
| | - Albano C. Meli
- PhyMedExpUniversity of Montpellier, INSERM, CNRSMontpellierFrance
| |
Collapse
|
14
|
Saxena H, Weintraub NL, Tang Y. Potential Therapeutic Targets for Hypotension in Duchenne Muscular Dystrophy. Med Hypotheses 2024; 185:111318. [PMID: 38585412 PMCID: PMC10993928 DOI: 10.1016/j.mehy.2024.111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is marked by genetic mutations occurring in the DMD gene, which is widely expressed in the cardiovascular system. In addition to developing cardiomyopathy, patients with DMD have been reported to be susceptible to the development of symptomatic hypotension, although the mechanisms are unclear. Analysis of single-cell RNA sequencing data has identified potassium voltage-gated channel subfamily Q member 5 (KCNQ5) and possibly ryanodine receptor 2 (RyR2) as potential candidate hypotension genes whose expression is significantly upregulated in the vascular smooth muscle cells of DMD mutant mice. We hypothesize that heightened KCNQ5 and RyR2 expression contributes to decreased arterial blood pressure in patients with DMD. Exploring pharmacological approaches to inhibit the KCNQ5 and RyR2 channels holds promise in managing the systemic hypotension observed in individuals with DMD. This avenue of investigation presents new prospects for improving clinical outcomes for these patients.
Collapse
Affiliation(s)
- Harshi Saxena
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Beqaj H, Sittenfeld L, Chang A, Miotto M, Dridi H, Willson G, Jorge CM, Li JA, Reiken S, Liu Y, Dai Z, Marks AR. Location of ryanodine receptor type 2 mutation predicts age of onset of sudden death in catecholaminergic polymorphic ventricular tachycardia - A systematic review and meta-analysis of case-based literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304349. [PMID: 38559077 PMCID: PMC10980137 DOI: 10.1101/2024.03.15.24304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited arrhythmia caused by mutations in the ryanodine receptor type 2 (RyR2). Diagnosis of CPVT often occurs after a major cardiac event, thus posing a severe threat to the patient's health. Methods Publication databases, including PubMed, Scopus, and Embase, were searched for articles on patients with RyR2-CPVT mutations and their associated clinical presentation. Articles were reviewed by two independent reviewers and mutations were analyzed for demographic information, mutation distribution, and therapeutics. The human RyR2 cryo-EM structure was used to model CPVT mutations and predict the diagnosis and outcomes of CPVT patients. Findings We present a database of 1008 CPVT patients from 227 papers. Data analyses revealed that patients most often experienced exercise-induced syncope in their early teenage years but the diagnosis of CPVT took a decade. Mutations located near key regulatory sites in the channel were associated with earlier onset of CPVT symptoms including sudden cardiac death. Interpretation The present study provides a road map for predicting clinical outcomes based on the location of RyR2 mutations in CPVT patients. The study was partially limited by the inconsistency in the depth of information provided in each article, but nevertheless is an important contribution to the understanding of the clinical and molecular basis of CPVT and suggests the need for early diagnosis and creative approaches to disease management. Funding The work was supported by grant NIH R01HL145473, P01 HL164319 R25HL156002, T32 HL120826.
Collapse
|
16
|
Haffner V, Nourian Z, Boerman EM, Lambert MD, Hanft LM, Krenz M, Baines CP, Duan D, McDonald KS, Domeier TL. Calcium handling dysfunction and cardiac damage following acute ventricular preload challenge in the dystrophin-deficient mouse heart. Am J Physiol Heart Circ Physiol 2023; 325:H1168-H1177. [PMID: 37737731 PMCID: PMC10907071 DOI: 10.1152/ajpheart.00265.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy and is caused by mutations in the dystrophin gene. Dystrophin deficiency is associated with structural and functional changes of the muscle cell sarcolemma and/or stretch-induced ion channel activation. In this investigation, we use mice with transgenic cardiomyocyte-specific expression of the GCaMP6f Ca2+ indicator to test the hypothesis that dystrophin deficiency leads to cardiomyocyte Ca2+ handling abnormalities following preload challenge. α-MHC-MerCreMer-GCaMP6f transgenic mice were developed on both a wild-type (WT) or dystrophic (Dmdmdx-4Cv) background. Isolated hearts of 3-7-mo male mice were perfused in unloaded Langendorff mode (0 mmHg) and working heart mode (preload = 20 mmHg). Following a 30-min preload challenge, hearts were perfused in unloaded Langendorff mode with 40 μM blebbistatin, and GCaMP6f was imaged using confocal fluorescence microscopy. Incidence of premature ventricular complexes (PVCs) was monitored before and following preload elevation at 20 mmHg. Hearts of both wild-type and dystrophic mice exhibited similar left ventricular contractile function. Following preload challenge, dystrophic hearts exhibited a reduction in GCaMP6f-positive cardiomyocytes and an increase in number of cardiomyocytes exhibiting Ca2+ waves/overload. Incidence of cardiac arrhythmias was low in both wild-type and dystrophic hearts during unloaded Langendorff mode. However, after preload elevation to 20-mmHg hearts of dystrophic mice exhibited an increased incidence of PVCs compared with hearts of wild-type mice. In conclusion, these data indicate susceptibility to preload-induced Ca2+ overload, ventricular damage, and ventricular dysfunction in male Dmdmdx-4Cv hearts. Our data support the hypothesis that cardiomyocyte Ca2+ overload underlies cardiac dysfunction in muscular dystrophy.NEW & NOTEWORTHY The mechanisms of cardiac disease progression in muscular dystrophy are complex and poorly understood. Using a transgenic mouse model with cardiomyocyte-specific expression of the GCaMP6f Ca2+ indicator, the present study provides further support for the Ca2+-overload hypothesis of disease progression and ventricular arrhythmogenesis in muscular dystrophy.
Collapse
Affiliation(s)
- Vivian Haffner
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Zahra Nourian
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Michelle D Lambert
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States
- The Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Christopher P Baines
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- The Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Medicine, School of Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
17
|
Sleiman Y, Reiken S, Charrabi A, Jaffré F, Sittenfeld LR, Pasquié JL, Colombani S, Lerman BB, Chen S, Marks AR, Cheung JW, Evans T, Lacampagne A, Meli AC. Personalized medicine in the dish to prevent calcium leak associated with short-coupled polymorphic ventricular tachycardia in patient-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:266. [PMID: 37740238 PMCID: PMC10517551 DOI: 10.1186/s13287-023-03502-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Polymorphic ventricular tachycardia (PMVT) is a rare genetic disease associated with structurally normal hearts which in 8% of cases can lead to sudden cardiac death, typically exercise-induced. We previously showed a link between the RyR2-H29D mutation and a clinical phenotype of short-coupled PMVT at rest using patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs). In the present study, we evaluated the effects of clinical and experimental anti-arrhythmic drugs on the intracellular Ca2+ handling, contractile and molecular properties in PMVT hiPSC-CMs in order to model a personalized medicine approach in vitro. METHODS Previously, a blood sample from a patient carrying the RyR2-H29D mutation was collected and reprogrammed into several clones of RyR2-H29D hiPSCs, and in addition we generated an isogenic control by reverting the RyR2-H29D mutation using CRIPSR/Cas9 technology. Here, we tested 4 drugs with anti-arrhythmic properties: propranolol, verapamil, flecainide, and the Rycal S107. We performed fluorescence confocal microscopy, video-image-based analyses and biochemical analyses to investigate the impact of these drugs on the functional and molecular features of the PMVT RyR2-H29D hiPSC-CMs. RESULTS The voltage-dependent Ca2+ channel inhibitor verapamil did not prevent the aberrant release of sarcoplasmic reticulum (SR) Ca2+ in the RyR2-H29D hiPSC-CMs, whereas it was prevented by S107, flecainide or propranolol. Cardiac tissue comprised of RyR2-H29D hiPSC-CMs exhibited aberrant contractile properties that were largely prevented by S107, flecainide and propranolol. These 3 drugs also recovered synchronous contraction in RyR2-H29D cardiac tissue, while verapamil did not. At the biochemical level, S107 was the only drug able to restore calstabin2 binding to RyR2 as observed in the isogenic control. CONCLUSIONS By testing 4 drugs on patient-specific PMVT hiPSC-CMs, we concluded that S107 and flecainide are the most potent molecules in terms of preventing the abnormal SR Ca2+ release and contractile properties in RyR2-H29D hiPSC-CMs, whereas the effect of propranolol is partial, and verapamil appears ineffective. In contrast with the 3 other drugs, S107 was able to prevent a major post-translational modification of RyR2-H29D mutant channels, the loss of calstabin2 binding to RyR2. Using patient-specific hiPSC and CRISPR/Cas9 technologies, we showed that S107 is the most efficient in vitro candidate for treating the short-coupled PMVT at rest.
Collapse
Affiliation(s)
- Yvonne Sleiman
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Azzouz Charrabi
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
| | - Fabrice Jaffré
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Leah R Sittenfeld
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jean-Luc Pasquié
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
- Department of Cardiology, CHRU of Montpellier, Montpellier, France
| | - Sarah Colombani
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
| | - Bruce B Lerman
- Division of Cardiology, Weill Cornell Medical College, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jim W Cheung
- Division of Cardiology, Weill Cornell Medical College, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France
| | - Albano C Meli
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier , France.
- CNRS, INSERM, Montpellier Organoid Platform, Biocampus, University of Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Fayssoil A, Mansencal N, Nguyen LS, Nardi O, Yaou RB, Leturcq F, Amthor H, Wahbi K, Becane HM, Lofaso F, Prigent H, Bassez G, Behin A, Stojkovic T, Fontaine B, Duboc D, Dubourg O, Clair B, Laforet P, Annane D, Orlikowski D. Prognosis of Right Ventricular Systolic Dysfunction in Patients With Duchenne Muscular Dystrophy. J Am Heart Assoc 2023; 12:e027231. [PMID: 37581390 PMCID: PMC10492954 DOI: 10.1161/jaha.122.027231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 06/30/2023] [Indexed: 08/16/2023]
Abstract
Background Chronic respiratory failure and heart involvement may occur in Duchenne muscular dystrophy. We aimed to assess the prognostic value of the right ventricular (RV) systolic dysfunction in patients with Duchenne muscular dystrophy. Methods and Results We studied 90 genetically proven patients with Duchenne muscular dystrophy from 2010 to 2019, to obtain respiratory function and Doppler echocardiographic RV systolic function. Prognostic value was assessed in terms of death and cardiac events. The median age was 27.5 years, and median forced vital capacity was at 10% of the predicted value: 83 patients (92%) were on home mechanical ventilation. An RV systolic dysfunction was found in 46 patients (51%). In patients without RV dysfunction at inclusion, a left ventricular systolic dysfunction at inclusion was associated with a higher risk of developing RV dysfunction during follow-up with an odds ratio of 4.5 (P=0.03). RV systolic dysfunction was significantly associated with cardiac events, mainly acute heart failure (62%) and cardiogenic shock (23%). In a multivariable Cox model, the adjusted hazard ratio was 4.96 (95% CI [1.09-22.6]; P=0.04). In terms of death, we found a significant difference between patients with RV dysfunction versus patients without RV dysfunction in the Kaplan-Meier curves (log-rank P=0.045). Conclusions RV systolic dysfunction is frequently present in patients with Duchenne muscular dystrophy and is associated with increased risk of cardiac events, irrespective of left ventricular dysfunction and mechanical ventilation. Registration URL: https://www.clinicaltrials.org; unique identifier: NCT02501083.
Collapse
Affiliation(s)
- Abdallah Fayssoil
- Cardiology DepartmentAssistance Publique des Hôpitaux de Paris (AP‐HP), Raymond Poincaré HospitalGarchesFrance
- INSERM U1179, END‐ICAPMontigny‐le‐BretonneuxFrance
- Cardiology Department, Centre de référence des cardiomyopathies et des troubles du rythme cardiaque héréditaires ou raresAP‐HP, Ambroise Paré Hospital, Université de Versailles‐Saint Quentin (UVSQ)Boulogne‐BillancourtFrance
- Service de Réanimation médicale et unité de ventilation à domicileCHU Raymond Poincaré, APHP, UVSQGarchesFrance
| | - Nicolas Mansencal
- Cardiology Department, Centre de référence des cardiomyopathies et des troubles du rythme cardiaque héréditaires ou raresAP‐HP, Ambroise Paré Hospital, Université de Versailles‐Saint Quentin (UVSQ)Boulogne‐BillancourtFrance
- INSERM U‐1018, Centre de recherche en Epidémiologie et Santé des Populations (CESP)Equipe Epidémiologie Clinique, UVSQVillejuifFrance
| | - Lee S. Nguyen
- Department of PharmacologySorbonne University, INSERM CIC Paris‐Est, AP‐HP, ICAN, Regional Pharmacovigilance Centre, Pitié‐Salpêtrière HospitalParisFrance
- CMC Ambroise Paré, Research & Innovation (RICAP)Neuilly‐sur‐SeineFrance
| | - Olivier Nardi
- Service de Réanimation médicale et unité de ventilation à domicileCHU Raymond Poincaré, APHP, UVSQGarchesFrance
| | - Rabah Ben Yaou
- Institut de Myologie, CHU Pitié SalpetrièreParisFrance
- Centre de Recherche en MyologieSorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G.H. Pitié SalpêtrièreParisFrance
- Laboratoire de biochimie et génétique moléculairehôpital Cochin, AP‐HP, université Paris Descartes‐Sorbonne Paris CitéParisFrance
| | - France Leturcq
- Institut de Myologie, CHU Pitié SalpetrièreParisFrance
- Centre de Recherche en MyologieSorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G.H. Pitié SalpêtrièreParisFrance
- Laboratoire de biochimie et génétique moléculairehôpital Cochin, AP‐HP, université Paris Descartes‐Sorbonne Paris CitéParisFrance
| | - Helge Amthor
- Service de Pédiatrie, CHU Raymond Poincaré, APHPUniversité de Versailles saint Quentin en YvelinesGarchesFrance
| | - Karim Wahbi
- Cardiology DepartmentAP‐HP, Cochin HospitalParisFrance
- Université Paris Descartes‐Sorbonne Paris CitéParisFrance
| | - Henri Marc Becane
- Service de NeurologieCHU Raymond Poincaré, APHP, Université de Versailles Saint Quentin en YvelinesGarchesFrance
| | - Frederic Lofaso
- Service de Physiologie, Explorations fonctionnelles, CHU Raymond Poincaré, APHPUniversité de Versailles saint Quentin en YvelinesGarchesFrance
| | - Helene Prigent
- Service de Physiologie, Explorations fonctionnelles, CHU Raymond Poincaré, APHPUniversité de Versailles saint Quentin en YvelinesGarchesFrance
| | - Guillaume Bassez
- APHP, Sorbonne Université, Centre de référence neuro musculaire Paris EstParisFrance
- Institut de MyologieHôpital Universitaire Pitié SalpetrièreParisFrance
| | - Anthony Behin
- APHP, Sorbonne Université, Centre de référence neuro musculaire Paris EstParisFrance
- Institut de MyologieHôpital Universitaire Pitié SalpetrièreParisFrance
| | - Tanya Stojkovic
- APHP, Sorbonne Université, Centre de référence neuro musculaire Paris EstParisFrance
- Institut de MyologieHôpital Universitaire Pitié SalpetrièreParisFrance
| | - Bertrand Fontaine
- APHP, Sorbonne Université, Centre de référence neuro musculaire Paris EstParisFrance
- Institut de MyologieHôpital Universitaire Pitié SalpetrièreParisFrance
| | - Denis Duboc
- Cardiology DepartmentAP‐HP, Cochin HospitalParisFrance
- Université Paris Descartes‐Sorbonne Paris CitéParisFrance
| | - Olivier Dubourg
- Cardiology Department, Centre de référence des cardiomyopathies et des troubles du rythme cardiaque héréditaires ou raresAP‐HP, Ambroise Paré Hospital, Université de Versailles‐Saint Quentin (UVSQ)Boulogne‐BillancourtFrance
| | - Bernard Clair
- Service de Réanimation médicale et unité de ventilation à domicileCHU Raymond Poincaré, APHP, UVSQGarchesFrance
| | - Pascal Laforet
- Service de NeurologieCHU Raymond Poincaré, APHP, Université de Versailles Saint Quentin en YvelinesGarchesFrance
| | - Djillali Annane
- Service de Réanimation médicale et unité de ventilation à domicileCHU Raymond Poincaré, APHP, UVSQGarchesFrance
| | - David Orlikowski
- Service de Réanimation médicale et unité de ventilation à domicileCHU Raymond Poincaré, APHP, UVSQGarchesFrance
- Centre d’Investigation clinique et Innovation technologique CIC 14.29, INSERMGarchesFrance
| |
Collapse
|
19
|
Lillo MA, Muñoz M, Rhana P, Gaul-Muller K, Quan J, Shirokova N, Xie LH, Santana LF, Fraidenraich D, Contreras JE. Remodeled connexin 43 hemichannels alter cardiac excitability and promote arrhythmias. J Gen Physiol 2023; 155:e202213150. [PMID: 37191672 PMCID: PMC10192603 DOI: 10.1085/jgp.202213150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Connexin-43 (Cx43) is the most abundant protein forming gap junction channels (GJCs) in cardiac ventricles. In multiple cardiac pathologies, including hypertrophy and heart failure, Cx43 is found remodeled at the lateral side of the intercalated discs of ventricular cardiomyocytes. Remodeling of Cx43 has been long linked to spontaneous ventricular arrhythmia, yet the mechanisms by which arrhythmias develop are still debated. Using a model of dystrophic cardiomyopathy, we previously showed that remodeled Cx43 function as aberrant hemichannels (non-forming GJCs) that alter cardiomyocyte excitability and, consequently, promote arrhythmias. Here, we aim to evaluate if opening of remodeled Cx43 can serve as a general mechanism to alter cardiac excitability independent of cellular dysfunction associated with a particular cardiomyopathy. To address this issue, we used a genetically modified Cx43 knock-in mouse (S3A) that promotes cardiac remodeling of Cx43 protein without apparent cardiac dysfunction. Importantly, when S3A mice were subjected to cardiac stress using the β-adrenergic agonist isoproterenol (Iso), they displayed acute and severe arrhythmias, which were not observed in WT mice. Pretreatment of S3A mice with the Cx43 hemichannel blocker, Gap19, prevented Iso-induced abnormal electrocardiographic behavior. At the cellular level, when compared with WT, Iso-treated S3A cardiomyocytes showed increased membrane permeability, greater plasma membrane depolarization, and Ca2+ overload, which likely caused prolonged action potentials, delayed after depolarizations, and triggered activity. All these cellular dysfunctions were also prevented by Cx43 hemichannel blockers. Our results support the notion that opening of remodeled Cx43 hemichannels, regardless of the type of cardiomyopathy, is sufficient to mediate cardiac-stress-induced arrhythmogenicity.
Collapse
Affiliation(s)
- Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Manuel Muñoz
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Paula Rhana
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Kelli Gaul-Muller
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Jonathan Quan
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Natalia Shirokova
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Luis Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Jorge E. Contreras
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| |
Collapse
|
20
|
Richardson SJ, Thekkedam CG, Casarotto MG, Beard NA, Dulhunty AF. FKBP12 binds to the cardiac ryanodine receptor with negative cooperativity: implications for heart muscle physiology in health and disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220169. [PMID: 37122219 PMCID: PMC10150220 DOI: 10.1098/rstb.2022.0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Cardiac ryanodine receptors (RyR2) release the Ca2+ from intracellular stores that is essential for cardiac myocyte contraction. The ion channel opening is tightly regulated by intracellular factors, including the FK506 binding proteins, FKBP12 and FKBP12.6. The impact of these proteins on RyR2 activity and cardiac contraction is debated, with often apparently contradictory experimental results, particularly for FKBP12. The isoform that regulates RyR2 has generally been considered to be FKBP12.6, despite the fact that FKBP12 is the major isoform associated with RyR2 in some species and is bound in similar proportions to FKBP12.6 in others, including sheep and humans. Here, we show time- and concentration-dependent effects of adding FKBP12 to RyR2 channels that were partly depleted of FKBP12/12.6 during isolation. The added FKBP12 displaced most remaining endogenous FKBP12/12.6. The results suggest that FKBP12 activates RyR2 with high affinity and inhibits RyR2 with lower affinity, consistent with a model of negative cooperativity in FKBP12 binding to each of the four subunits in the RyR tetramer. The easy dissociation of some FKBP12/12.6 could dynamically alter RyR2 activity in response to changes in in vivo regulatory factors, indicating a significant role for FKBP12/12.6 in Ca2+ signalling and cardiac function in healthy and diseased hearts. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- S J Richardson
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - C G Thekkedam
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - M G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - N A Beard
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| | - A F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australia, Australian Capital Territory 2601, Australia
| |
Collapse
|
21
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
22
|
Su SA, Zhang Y, Li W, Xi Y, Lu Y, Shen J, Ma Y, Wang Y, Shen Y, Xie L, Ma H, Xie Y, Xiang M. Cardiac Piezo1 Exacerbates Lethal Ventricular Arrhythmogenesis by Linking Mechanical Stress with Ca 2+ Handling After Myocardial Infarction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0165. [PMID: 37303604 PMCID: PMC10255393 DOI: 10.34133/research.0165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Ventricular arrhythmogenesis is a key cause of sudden cardiac death following myocardial infarction (MI). Accumulating data show that ischemia, sympathetic activation, and inflammation contribute to arrhythmogenesis. However, the role and mechanisms of abnormal mechanical stress in ventricular arrhythmia following MI remain undefined. We aimed to examine the impact of increased mechanical stress and identify the role of the key sensor Piezo1 in ventricular arrhythmogenesis in MI. Concomitant with increased ventricular pressure, Piezo1, as a newly recognized mechano-sensitive cation channel, was the most up-regulated mechanosensor in the myocardium of patients with advanced heart failure. Piezo1 was mainly located at the intercalated discs and T-tubules of cardiomyocytes, which are responsible for intracellular calcium homeostasis and intercellular communication. Cardiomyocyte-conditional Piezo1 knockout mice (Piezo1Cko) exhibited preserved cardiac function after MI. Piezo1Cko mice also displayed a dramatically decreased mortality in response to the programmed electrical stimulation after MI with a markedly reduced incidence of ventricular tachycardia. In contrast, activation of Piezo1 in mouse myocardium increased the electrical instability as indicated by prolonged QT interval and sagging ST segment. Mechanistically, Piezo1 impaired intracellular calcium cycling dynamics by mediating the intracellular Ca2+ overload and increasing the activation of Ca2+-modulated signaling, CaMKII, and calpain, which led to the enhancement of phosphorylation of RyR2 and further increment of Ca2+ leaking, finally provoking cardiac arrhythmias. Furthermore, in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Piezo1 activation remarkably triggered cellular arrhythmogenic remodeling by significantly shortening the duration of the action potential, inducing early afterdepolarization, and enhancing triggered activity.This study uncovered a proarrhythmic role of Piezo1 during cardiac remodeling, which is achieved by regulating Ca2+ handling, implying a promising therapeutic target in sudden cardiac death and heart failure.
Collapse
Affiliation(s)
- Sheng-an Su
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yuhao Zhang
- Department of Endocrinology, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wudi Li
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yutao Xi
- Texas Heart Institute, Houston, TX 77030, USA
| | - Yunrui Lu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yuankun Ma
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yaping Wang
- Department of Endocrinology, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yimin Shen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lan Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
23
|
Marcadet L, Juracic ES, Khan N, Bouredji Z, Yagita H, Ward LM, Tupling AR, Argaw A, Frenette J. RANKL Inhibition Reduces Cardiac Hypertrophy in mdx Mice and Possibly in Children with Duchenne Muscular Dystrophy. Cells 2023; 12:1538. [PMID: 37296659 PMCID: PMC10253225 DOI: 10.3390/cells12111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cardiomyopathy has become one of the leading causes of death in patients with Duchenne muscular dystrophy (DMD). We recently reported that the inhibition of the interaction between the receptor activator of nuclear factor κB ligand (RANKL) and receptor activator of nuclear factor κB (RANK) significantly improves muscle and bone functions in dystrophin-deficient mdx mice. RANKL and RANK are also expressed in cardiac muscle. Here, we investigate whether anti-RANKL treatment prevents cardiac hypertrophy and dysfunction in dystrophic mdx mice. Anti-RANKL treatment significantly reduced LV hypertrophy and heart mass, and maintained cardiac function in mdx mice. Anti-RANKL treatment also inhibited NFκB and PI3K, two mediators implicated in cardiac hypertrophy. Furthermore, anti-RANKL treatment increased SERCA activity and the expression of RyR, FKBP12, and SERCA2a, leading possibly to an improved Ca2+ homeostasis in dystrophic hearts. Interestingly, preliminary post hoc analyses suggest that denosumab, a human anti-RANKL, reduced left ventricular hypertrophy in two patients with DMD. Taken together, our results indicate that anti-RANKL treatment prevents the worsening of cardiac hypertrophy in mdx mice and could potentially maintain cardiac function in teenage or adult patients with DMD.
Collapse
Affiliation(s)
- Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
| | - Emma Sara Juracic
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (E.S.J.); (A.R.T.)
| | - Nasrin Khan
- The Ottawa Pediatric Bone Health Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (N.K.); (L.M.W.)
| | - Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Leanne M. Ward
- The Ottawa Pediatric Bone Health Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (N.K.); (L.M.W.)
- The Department of Pediatrics, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (E.S.J.); (A.R.T.)
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada; (L.M.); (Z.B.); (A.A.)
- Department of Rehabilitation, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
24
|
Eisen B, Binah O. Modeling Duchenne Muscular Dystrophy Cardiomyopathy with Patients' Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:ijms24108657. [PMID: 37240001 DOI: 10.3390/ijms24108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the dystrophin gene, resulting in death by the end of the third decade of life at the latest. A key aspect of the DMD clinical phenotype is dilated cardiomyopathy, affecting virtually all patients by the end of the second decade of life. Furthermore, despite respiratory complications still being the leading cause of death, with advancements in medical care in recent years, cardiac involvement has become an increasing cause of mortality. Over the years, extensive research has been conducted using different DMD animal models, including the mdx mouse. While these models present certain important similarities to human DMD patients, they also have some differences which pose a challenge to researchers. The development of somatic cell reprograming technology has enabled generation of human induced pluripotent stem cells (hiPSCs) which can be differentiated into different cell types. This technology provides a potentially endless pool of human cells for research. Furthermore, hiPSCs can be generated from patients, thus providing patient-specific cells and enabling research tailored to different mutations. DMD cardiac involvement has been shown in animal models to include changes in gene expression of different proteins, abnormal cellular Ca2+ handling, and other aberrations. To gain a better understanding of the disease mechanisms, it is imperative to validate these findings in human cells. Furthermore, with the recent advancements in gene-editing technology, hiPSCs provide a valuable platform for research and development of new therapies including the possibility of regenerative medicine. In this article, we review the DMD cardiac-related research performed so far using human hiPSCs-derived cardiomyocytes (hiPSC-CMs) carrying DMD mutations.
Collapse
Affiliation(s)
- Binyamin Eisen
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ofer Binah
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
25
|
Szabo PL, Marksteiner J, Ebner J, Dostal C, Podesser BK, Sauer J, Kubista H, Todt H, Hackl B, Koenig X, Kiss A, Hilber K. Ivabradine acutely improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy. Physiol Rep 2023; 11:e15664. [PMID: 37032434 PMCID: PMC10083165 DOI: 10.14814/phy2.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
The muscular dystrophies caused by dystrophin deficiency, the so-called dystrophinopathies, are associated with impaired cardiac contractility and arrhythmias, which considerably contribute to disease morbidity and mortality. Impaired Ca handling in ventricular cardiomyocytes has been identified as a causative factor for complications in the dystrophic heart, and restoration of normal Ca handling in myocytes has emerged as a promising new therapeutic strategy. In the present study, we explored the hypothesis that ivabradine, a drug clinically approved for the treatment of heart failure and stable angina pectoris, improves Ca handling in dystrophic cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Therefore, ventricular cardiomyocytes were isolated from the hearts of adult dystrophin-deficient DMDmdx rats, and the effects of acutely applied ivabradine on intracellular Ca transients were tested. In addition, the drug's acute impact on cardiac function in DMDmdx rats was assessed by transthoracic echocardiography. We found that administration of ivabradine to DMDmdx rats significantly improved cardiac function. Moreover, the amplitude of electrically induced intracellular Ca transients in ventricular cardiomyocytes isolated from DMDmdx rats was increased by the drug. We conclude that ivabradine enhances Ca release from the sarcoplasmic reticulum in dystrophic cardiomyocytes and thereby improves contractile performance in the dystrophic heart.
Collapse
Affiliation(s)
- Petra Lujza Szabo
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
26
|
Fujii S, Kobayashi S, Chang Y, Nawata J, Yoshitomi R, Tanaka S, Kohno M, Nakamura Y, Ishiguchi H, Suetomi T, Uchinoumi H, Oda T, Okuda S, Okamura T, Yamamoto T, Yano M. RyR2-targeting therapy prevents left ventricular remodeling and ventricular tachycardia in post-infarction heart failure. J Mol Cell Cardiol 2023; 178:36-50. [PMID: 36963751 DOI: 10.1016/j.yjmcc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Dantrolene binds to the Leu601-Cys620 region of the N-terminal domain of cardiac ryanodine receptor (RyR2), which corresponds to the Leu590-Cys609 region of the skeletal ryanodine receptor, and suppresses diastolic Ca2+ leakage through RyR2. OBJECTIVE We investigated whether the chronic administration of dantrolene prevented left ventricular (LV) remodeling and ventricular tachycardia (VT) after myocardial infarction (MI) by the same mechanism with the mutation V3599K of RyR2, which indicated that the inhibition of diastolic Ca2+ leakage occurred by enhancing the binding affinity of calmodulin (CaM) to RyR2. METHODS AND RESULTS A left anterior descending coronary artery ligation MI model was developed in mice. Wild-type (WT) were divided into four groups: sham-operated mice (WT-Sham), sham-operated mice treated with dantrolene (WT-Sham-DAN), MI mice (WT-MI), and MI mice treated with dantrolene (WT-MI-DAN). Homozygous V3599K RyR2 knock-in (KI) mice were divided into two groups: sham-operated mice (KI-Sham) and MI mice (KI-MI). The mice were followed for 12 weeks. Survival was significantly higher in the WT-MI-DAN (73%) and KI-MI groups (70%) than the WT-MI group (40%). Echocardiography, pathological tissue, and epinephrine-induced VT studies showed that LV remodeling and VT were prevented in the WT-MI-DAN and KI-MI groups compared to the WT-MI group. An increase in diastolic Ca2+ spark frequency and a decrease in the binding affinity of CaM to the RyR2 were observed at 12 weeks after MI in the WT-MI group, although significant improvements in these values were observed in the WT-MI-DAN and KI-MI groups. CONCLUSIONS Pharmacological or genetic stabilization of RyR2 tetrameric structure improves survival after MI by suppressing LV remodeling and proarrhythmia.
Collapse
Affiliation(s)
- Shohei Fujii
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Shigeki Kobayashi
- Department of Therapeutic Science for Heart Failure in the Elderly, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Yaowei Chang
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junya Nawata
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Ryosuke Yoshitomi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Shinji Tanaka
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Michiaki Kohno
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yoshihide Nakamura
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hironori Ishiguchi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Takeshi Suetomi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hitoshi Uchinoumi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Tetsuro Oda
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Shinichi Okuda
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Takayuki Okamura
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Takeshi Yamamoto
- Department of Laboratory Medicine, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Masafumi Yano
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
27
|
Deng J, Jiang Y, Chen ZB, Rhee JW, Deng Y, Wang ZV. Mitochondrial Dysfunction in Cardiac Arrhythmias. Cells 2023; 12:679. [PMID: 36899814 PMCID: PMC10001005 DOI: 10.3390/cells12050679] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Electrophysiological and structural disruptions in cardiac arrhythmias are closely related to mitochondrial dysfunction. Mitochondria are an organelle generating ATP, thereby satisfying the energy demand of the incessant electrical activity in the heart. In arrhythmias, the homeostatic supply-demand relationship is impaired, which is often accompanied by progressive mitochondrial dysfunction leading to reduced ATP production and elevated reactive oxidative species generation. Furthermore, ion homeostasis, membrane excitability, and cardiac structure can be disrupted through pathological changes in gap junctions and inflammatory signaling, which results in impaired cardiac electrical homeostasis. Herein, we review the electrical and molecular mechanisms of cardiac arrhythmias, with a particular focus on mitochondrial dysfunction in ionic regulation and gap junction action. We provide an update on inherited and acquired mitochondrial dysfunction to explore the pathophysiology of different types of arrhythmias. In addition, we highlight the role of mitochondria in bradyarrhythmia, including sinus node dysfunction and atrioventricular node dysfunction. Finally, we discuss how confounding factors, such as aging, gut microbiome, cardiac reperfusion injury, and electrical stimulation, modulate mitochondrial function and cause tachyarrhythmia.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yunqiu Jiang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - June-Wha Rhee
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Department of Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhao V. Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
28
|
Morales ED, Yue Y, Watkins TB, Han J, Pan X, Gibson AM, Hu B, Brito‐Estrada O, Yao G, Makarewich CA, Babu GJ, Duan D. Dwarf Open Reading Frame (DWORF) Gene Therapy Ameliorated Duchenne Muscular Dystrophy Cardiomyopathy in Aged mdx Mice. J Am Heart Assoc 2023; 12:e027480. [PMID: 36695318 PMCID: PMC9973626 DOI: 10.1161/jaha.122.027480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
Background Cardiomyopathy is a leading health threat in Duchenne muscular dystrophy (DMD). Cytosolic calcium upregulation is implicated in DMD cardiomyopathy. Calcium is primarily removed from the cytosol by the sarcoendoplasmic reticulum calcium ATPase (SERCA). SERCA activity is reduced in DMD. Improving SERCA function may treat DMD cardiomyopathy. Dwarf open reading frame (DWORF) is a recently discovered positive regulator for SERCA, hence, a potential therapeutic target. Methods and Results To study DWORF's involvement in DMD cardiomyopathy, we quantified DWORF expression in the heart of wild-type mice and the mdx model of DMD. To test DWORF gene therapy, we engineered and characterized an adeno-associated virus serotype 9-DWORF vector. To determine if this vector can mitigate DMD cardiomyopathy, we delivered it to 6-week-old mdx mice (6×1012 vector genome particles/mouse) via the tail vein. Exercise capacity, heart histology, and cardiac function were examined at 18 months of age. We found DWORF expression was significantly reduced at the transcript and protein levels in mdx mice. Adeno-associated virus serotype 9-DWORF vector significantly enhanced SERCA activity. Systemic adeno-associated virus serotype 9-DWORF therapy reduced myocardial fibrosis and improved treadmill running, electrocardiography, and heart hemodynamics. Conclusions Our data suggest that DWORF deficiency contributes to SERCA dysfunction in mdx mice and that DWORF gene therapy holds promise to treat DMD cardiomyopathy.
Collapse
Affiliation(s)
- Emily D. Morales
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Thais B. Watkins
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Jin Han
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Aaron M. Gibson
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
| | - Bryan Hu
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
| | - Omar Brito‐Estrada
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
| | - Gang Yao
- Department of Biomedical, Biological & Chemical Engineering, College of EngineeringThe University of MissouriColumbiaMO
| | - Catherine A. Makarewich
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical CenterThe Heart InstituteCincinnatiOH
- Department of PediatricsThe University of Cincinnati College of MedicineCincinnatiOH
| | - Gopal J. Babu
- Department of Cell Biology and Molecular MedicineRutgers, New Jersey Medical SchoolNewarkNJ
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaMO
- Department of Biomedical, Biological & Chemical Engineering, College of EngineeringThe University of MissouriColumbiaMO
- Department of Neurology, School of MedicineThe University of MissouriColumbiaMO
- Department of Biomedical Sciences, College of Veterinary MedicineThe University of MissouriColumbiaMO
| |
Collapse
|
29
|
Ion Channels of the Sarcolemma and Intracellular Organelles in Duchenne Muscular Dystrophy: A Role in the Dysregulation of Ion Homeostasis and a Possible Target for Therapy. Int J Mol Sci 2023; 24:ijms24032229. [PMID: 36768550 PMCID: PMC9917149 DOI: 10.3390/ijms24032229] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.
Collapse
|
30
|
Abstract
This Review provides an update on ryanodine receptors (RyRs) and their role in human diseases of heart, muscle, and brain. Calcium (Ca2+) is a requisite second messenger in all living organisms. From C. elegans to mammals, Ca2+ is necessary for locomotion, bodily functions, and neural activity. However, too much of a good thing can be bad. Intracellular Ca2+ overload can result in loss of function and death. Intracellular Ca2+ release channels evolved to safely provide large, rapid Ca2+ signals without exposure to toxic extracellular Ca2+. RyRs are intracellular Ca2+ release channels present throughout the zoosphere. Over the past 35 years, our knowledge of RyRs has advanced to the level of atomic-resolution structures revealing their role in the mechanisms underlying the pathogenesis of human disorders of heart, muscle, and brain. Stress-induced RyR-mediated intracellular Ca2+ leak in the heart can promote heart failure and cardiac arrhythmias. In skeletal muscle, RyR1 leak contributes to muscle weakness in inherited myopathies, to age-related loss of muscle function and cancer-associated muscle weakness, and to impaired muscle function in muscular dystrophies, including Duchenne. In the brain, leaky RyR channels contribute to cognitive dysfunction in Alzheimer's disease, posttraumatic stress disorder, and Huntington's disease. Novel therapeutics targeting dysfunctional RyRs are showing promise.
Collapse
|
31
|
Greene D, Luchko T, Shiferaw Y. The role of subunit cooperativity on ryanodine receptor 2 calcium signaling. Biophys J 2023; 122:215-229. [PMID: 36348625 PMCID: PMC9822801 DOI: 10.1016/j.bpj.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The ryanodine receptor type 2 (RyR2) is composed of four subunits that control calcium (Ca) release in cardiac cells. RyR2 serves primarily as a Ca sensor and can respond to rapid sub-millisecond pulses of Ca while remaining shut at resting concentrations. However, it is not known how the four subunits interact for the RyR2 to function as an effective Ca sensor. To address this question, and to understand the role of subunit cooperativity in Ca-mediated signal transduction, we have developed a computational model of the RyR2 composed of four interacting subunits. We first analyze the statistical properties of a single RyR2 tetramer, where each subunit can exist in a closed or open conformation. Our findings indicate that the number of subunits in the open state is a crucial parameter that dictates RyR2 kinetics. We find that three or four open subunits are required for the RyR2 to harness cooperative interactions to respond to sub-millisecond changes in Ca, while at the same time remaining shut at the resting Ca levels in the cardiac cell. If the required number of open subunits is lowered to one or two, the RyR2 cannot serve as a robust Ca sensor, as the large cooperativity required to stabilize the closed state prevents channel activation. Using this four-subunit model, we analyze the kinetics of Ca release from a RyR2 cluster. We show that the closure of a cluster of RyR2 channels is highly sensitive to the balance of cooperative interactions between closed and open subunits. Based on this result, we analyze how specific interactions between RyR2 subunits can induce persistent Ca leak from the sarcoplasmic reticulum (SR), which is believed to be arrhythmogenic. Thus, these results provide a framework to analyze how a pharmacologic or genetic modification of RyR2 subunit cooperativity can induce abnormal Ca cycling that can potentially lead to life-threatening arrhythmias.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics & Astronomy, California State University, Northridge
| | - Tyler Luchko
- Department of Physics & Astronomy, California State University, Northridge
| | - Yohannes Shiferaw
- Department of Physics & Astronomy, California State University, Northridge.
| |
Collapse
|
32
|
Wu SJ, He RL, Zhao L, Yu XY, Jiang YN, Guan X, Chen QY, Ren FF, Xie ZY, Wu LP, Li L. Cardiac-Specific Overexpression of Caveolin-1 in Rats With Ischemic Cardiomyopathy Improves Arrhythmogenicity and Cardiac Remodelling. Can J Cardiol 2023; 39:73-86. [PMID: 36240973 DOI: 10.1016/j.cjca.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Ischemic cardiomyopathy (ICM) is associated with electrical and structural remodelling, leading to arrhythmias. Caveolin-1 (Cav1) is a membrane protein involved in the pathogenesis of ischemic injury. Cav1 deficiency has been associated with arrhythmogenicity. The current study aimed to determine how Cav1 overexpression inhibits arrhythmias and cardiac remodelling in ICM. METHODS ICM was modelled using left anterior descending (LAD) artery ligation for 4 weeks. Cardiac-specific Cav1 overexpression in ICM on arrhythmias, excitation-contraction coupling, and cardiac remodelling were investigated using the intramyocardial injection of an adeno-associated virus serotype 9 (AAV-9) system, carrying a specific sequence expressing Cav1 (AAVCav1) under the cardiac troponin T (cTnT) promoter. RESULTS Cav1 overexpression decreased susceptibility to arrhythmias by upregulating gap junction connexin 43 (CX43) and reducing spontaneous irregular proarrhythmogenic Ca2+ waves in ventricular cardiomyocytes. It also alleviated ischemic injury-induced contractility weakness by improving Ca2+ cycling through normalizing Ca2+-handling protein levels and improving Ca2+ homeostasis. Masson stain and immunoblotting revealed that the deposition of excessive fibrosis was attenuated by Cav1 overexpression, inhibiting the transforming growth factor-β (TGF-β)/Smad2 signalling pathway. Coimmunoprecipitation assays demonstrated that the interaction between Cav1 and cSrc modulated CX43 expression and Ca2+-handling protein levels. CONCLUSIONS Cardiac-specific overexpression of Cav1 attenuated ventricular arrhythmia, improved Ca2+ cycling, and attenuated cardiac remodelling. These effects were attributed to modulation of CX43, normalized Ca2+-handling protein levels, improved Ca2+ homeostasis, and attenuated cardiac fibrosis.
Collapse
Affiliation(s)
- Shu-Jie Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Rui-Lin He
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lin Zhao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiao-Yu Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yi-Na Jiang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuan Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Qiao-Ying Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Fang-Fang Ren
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zuo-Yi Xie
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lian-Pin Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lei Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
33
|
Fossier L, Panel M, Butruille L, Colombani S, Azria L, Woitrain E, Decoin R, Torrente AG, Thireau J, Lacampagne A, Montaigne D, Fauconnier J. Enhanced Mitochondrial Calcium Uptake Suppresses Atrial Fibrillation Associated With Metabolic Syndrome. J Am Coll Cardiol 2022; 80:2205-2219. [DOI: 10.1016/j.jacc.2022.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
|
34
|
Hamilton S, Terentyev D. ER stress and calcium-dependent arrhythmias. Front Physiol 2022; 13:1041940. [PMID: 36425292 PMCID: PMC9679650 DOI: 10.3389/fphys.2022.1041940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays the key role in cardiac function as the major source of Ca2+ that activates cardiomyocyte contractile machinery. Disturbances in finely-tuned SR Ca2+ release by SR Ca2+ channel ryanodine receptor (RyR2) and SR Ca2+ reuptake by SR Ca2+-ATPase (SERCa2a) not only impair contraction, but also contribute to cardiac arrhythmia trigger and reentry. Besides being the main Ca2+ storage organelle, SR in cardiomyocytes performs all the functions of endoplasmic reticulum (ER) in other cell types including protein synthesis, folding and degradation. In recent years ER stress has become recognized as an important contributing factor in many cardiac pathologies, including deadly ventricular arrhythmias. This brief review will therefore focus on ER stress mechanisms in the heart and how these changes can lead to pro-arrhythmic defects in SR Ca2+ handling machinery.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Shanna Hamilton,
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
35
|
Pioner JM, Santini L, Palandri C, Langione M, Grandinetti B, Querceto S, Martella D, Mazzantini C, Scellini B, Giammarino L, Lupi F, Mazzarotto F, Gowran A, Rovina D, Santoro R, Pompilio G, Tesi C, Parmeggiani C, Regnier M, Cerbai E, Mack DL, Poggesi C, Ferrantini C, Coppini R. Calcium handling maturation and adaptation to increased substrate stiffness in human iPSC-derived cardiomyocytes: The impact of full-length dystrophin deficiency. Front Physiol 2022; 13:1030920. [PMID: 36419836 PMCID: PMC9676373 DOI: 10.3389/fphys.2022.1030920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiomyocytes differentiated from human induced Pluripotent Stem Cells (hiPSC- CMs) are a unique source for modelling inherited cardiomyopathies. In particular, the possibility of observing maturation processes in a simple culture dish opens novel perspectives in the study of early-disease defects caused by genetic mutations before the onset of clinical manifestations. For instance, calcium handling abnormalities are considered as a leading cause of cardiomyocyte dysfunction in several genetic-based dilated cardiomyopathies, including rare types such as Duchenne Muscular Dystrophy (DMD)-associated cardiomyopathy. To better define the maturation of calcium handling we simultaneously measured action potential and calcium transients (Ca-Ts) using fluorescent indicators at specific time points. We combined micropatterned substrates with long-term cultures to improve maturation of hiPSC-CMs (60, 75 or 90 days post-differentiation). Control-(hiPSC)-CMs displayed increased maturation over time (90 vs 60 days), with longer action potential duration (APD), increased Ca-T amplitude, faster Ca-T rise (time to peak) and Ca-T decay (RT50). The progressively increased contribution of the SR to Ca release (estimated by post-rest potentiation or Caffeine-induced Ca-Ts) appeared as the main determinant of the progressive rise of Ca-T amplitude during maturation. As an example of severe cardiomyopathy with early onset, we compared hiPSC-CMs generated from a DMD patient (DMD-ΔExon50) and a CRISPR-Cas9 genome edited cell line isogenic to the healthy control with deletion of a G base at position 263 of the DMD gene (c.263delG-CMs). In DMD-hiPSC-CMs, changes of Ca-Ts during maturation were less pronounced: indeed, DMD cells at 90 days showed reduced Ca-T amplitude and faster Ca-T rise and RT50, as compared with control hiPSC-CMs. Caffeine-Ca-T was reduced in amplitude and had a slower time course, suggesting lower SR calcium content and NCX function in DMD vs control cells. Nonetheless, the inotropic and lusitropic responses to forskolin were preserved. CRISPR-induced c.263delG-CM line recapitulated the same developmental calcium handling alterations observed in DMD-CMs. We then tested the effects of micropatterned substrates with higher stiffness. In control hiPSC-CMs, higher stiffness leads to higher amplitude of Ca-T with faster decay kinetics. In hiPSC-CMs lacking full-length dystrophin, however, stiffer substrates did not modify Ca-Ts but only led to higher SR Ca content. These findings highlighted the inability of dystrophin-deficient cardiomyocytes to adjust their calcium homeostasis in response to increases of extracellular matrix stiffness, which suggests a mechanism occurring during the physiological and pathological development (i.e. fibrosis).
Collapse
Affiliation(s)
| | - Lorenzo Santini
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Chiara Palandri
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Silvia Querceto
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
- Istituto Nazionale di Ricerca Metrologica (INRiM), Turin, Italy
| | | | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Flavia Lupi
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
| | - Francesco Mazzarotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Davide Rovina
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Rosaria Santoro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | | | - David L. Mack
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Raffaele Coppini
- Department of Neurofarba, University of Florence, Florence, Italy
| |
Collapse
|
36
|
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 2022; 5:1022. [PMID: 36168044 PMCID: PMC9515174 DOI: 10.1038/s42003-022-03980-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies. A review of the function of the Dystrophic Glycoprotein Complex (DGC) in mechanosignaling provides an overview of the various components of DGC and potential mechanopathogenic mechanisms, particularly as they relate to muscular dystrophy.
Collapse
|
37
|
Willi L, Abramovich I, Fernandez-Garcia J, Agranovich B, Shulman M, Milman H, Baskin P, Eisen B, Michele DE, Arad M, Binah O, Gottlieb E. Bioenergetic and Metabolic Impairments in Induced Pluripotent Stem Cell-Derived Cardiomyocytes Generated from Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2022; 23:ijms23179808. [PMID: 36077200 PMCID: PMC9456153 DOI: 10.3390/ijms23179808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene and dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality in DMD patients. We tested the hypothesis that DCM is caused by metabolic impairments by employing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from four DMD patients; an adult male, an adult female, a 7-year-old (7y) male and a 13-year-old (13y) male, all compared to two healthy volunteers. To test the hypothesis, we measured the bioenergetics, metabolomics, electrophysiology, mitochondrial morphology and mitochondrial activity of CMs, using respirometry, LC–MS, patch clamp, electron microscopy (EM) and confocal microscopy methods. We found that: (1) adult DMD CMs exhibited impaired energy metabolism and abnormal mitochondrial structure and function. (2) The 7y CMs demonstrated arrhythmia-free spontaneous firing along with “healthy-like” metabolic status, normal mitochondrial morphology and activity. In contrast, the 13y CMs were mildly arrhythmogenic and showed adult DMD-like bioenergetics deficiencies. (3) In DMD adult CMs, mitochondrial activities were attenuated by 45–48%, whereas the 7y CM activity was similar to that of healthy CMs. (4) In DMD CMs, but not in 7y CMs, there was a 75% decrease in the mitochondrial ATP production rate compared to healthy iPSC-CMs. In summary, DMD iPSC-CMs exhibit bioenergetic and metabolic impairments that are associated with rhythm disturbances corresponding to the patient’s phenotype, thereby constituting novel targets for alleviating cardiomyopathy in DMD patients.
Collapse
Affiliation(s)
- Lubna Willi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Jonatan Fernandez-Garcia
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Margarita Shulman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Daniel E. Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| |
Collapse
|
38
|
Melville Z, Dridi H, Yuan Q, Reiken S, Wronska A, Liu Y, Clarke OB, Marks AR. A drug and ATP binding site in type 1 ryanodine receptor. Structure 2022; 30:1025-1034.e4. [PMID: 35580609 DOI: 10.1016/j.str.2022.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for excitation-contraction coupling in skeletal and cardiac muscle. Inherited mutations and stress-induced post-translational modifications result in an SR Ca2+ leak that causes skeletal myopathies, heart failure, and exercise-induced sudden death. A class of therapeutics known as Rycals prevent the RyR-mediated leak, are effective in preventing disease progression and restoring function in animal models, and are in clinical trials for patients with muscle and heart disorders. Using cryogenic-electron microscopy, we present a model of RyR1 with a 2.45-Å resolution before local refinement, revealing a binding site in the RY1&2 domain (3.10 Å local resolution), where the Rycal ARM210 binds cooperatively with ATP and stabilizes the closed state of RyR1.
Collapse
Affiliation(s)
- Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Clyde & Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| |
Collapse
|
39
|
Sarcoplasmic Reticulum Ca2+ Dysregulation in the Pathophysiology of Inherited Arrhythmia: An Update. Biochem Pharmacol 2022; 200:115059. [DOI: 10.1016/j.bcp.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
40
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
41
|
Guarnieri AR, Benson TW, Tranter M. Calcium cycling as a mediator of thermogenic metabolism in adipose tissue. Mol Pharmacol 2022; 102:MOLPHARM-MR-2021-000465. [PMID: 35504660 PMCID: PMC9341262 DOI: 10.1124/molpharm.121.000465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Canonical non-shivering thermogenesis (NST) in brown and beige fat relies on uncoupling protein 1 (UCP1)-mediated heat generation, although alternative mechanisms of NST have been identified, including sarcoplasmic reticulum (SR)-calcium cycling. Intracellular calcium is a crucial cell signaling molecule for which compartmentalization is tightly regulated, and the sarco-endoplasmic calcium ATPase (SERCA) actively pumps calcium from the cytosol into the SR. In this review, we discuss the capacity of SERCA-mediated calcium cycling as a significant mediator of thermogenesis in both brown and beige adipocytes. Here, we suggest two primary mechanisms of SR calcium mediated thermogenesis. The first mechanism is through direct uncoupling of the ATPase and calcium pump activity of SERCA, resulting in the energy of ATP catalysis being expended as heat in the absence of calcium transport. Regulins, a class of SR membrane proteins, act to decrease the calcium affinity of SERCA and uncouple the calcium transport function from ATPase activity, but remain largely unexplored in adipose tissue thermogenesis. A second mechanism is through futile cycling of SR calcium whereby SERCA-mediated SR calcium influx is equally offset by SR calcium efflux, resulting in ATP consumption without a net change in calcium compartmentalization. A fuller understanding of the functional and mechanistic role of calcium cycling as a mediator of adipose tissue thermogenesis and how manipulation of these pathways can be harnessed for therapeutic gain remains unexplored. Significance Statement Enhancing thermogenic metabolism in brown or beige adipose tissue may be of broad therapeutic utility to reduce obesity and metabolic syndrome. Canonical BAT-mediated thermogenesis occurs via uncoupling protein 1 (UCP1). However, UCP1-independent pathways of thermogenesis, such as sarcoplasmic (SR) calcium cycling, have also been identified, but the regulatory mechanisms and functional significance of these pathways remain largely unexplored. Thus, this mini-review discusses the state of the field with regard to calcium cycling as a thermogenic mediator in adipose tissue.
Collapse
Affiliation(s)
| | - Tyler W Benson
- University of Cincinnati College of Medicine, United States
| | | |
Collapse
|
42
|
de Zélicourt A, Fayssoil A, Dakouane-Giudicelli M, De Jesus I, Karoui A, Zarrouki F, Lefebvre F, Mansart A, Launay JM, Piquereau J, Tarragó MG, Bonay M, Forand A, Moog S, Piétri-Rouxel F, Brisebard E, Chini CCS, Kashyap S, Fogarty MJ, Sieck GC, Mericskay M, Chini EN, Gomez AM, Cancela JM, de la Porte S. CD38-NADase is a new major contributor to Duchenne muscular dystrophic phenotype. EMBO Mol Med 2022; 14:e12860. [PMID: 35298089 PMCID: PMC9081905 DOI: 10.15252/emmm.202012860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase‐producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP‐ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38−/− mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA®) a monoclonal anti‐CD38 antibody. Finally, treatment of mdx and utrophin–dystrophin‐deficient (mdx/utr−/−) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti‐CD38 therapeutic intervention could be highly relevant to develop for DMD patients.
Collapse
Affiliation(s)
- Antoine de Zélicourt
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Institut des Neurosciences Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | | | | | - Isley De Jesus
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Ahmed Karoui
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Florence Lefebvre
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm, 2I, Versailles, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM UMR S942, Hôpital Lariboisière, Paris, France
| | - Jerome Piquereau
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Mariana G Tarragó
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Marcel Bonay
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| | - Anne Forand
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France.,Inovarion, Paris, France
| | - Sophie Moog
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France.,Inovarion, Paris, France
| | - France Piétri-Rouxel
- Centre de Recherche en Myologie, Faculté de Médecine de la Pitié Salpêtrière, Sorbonne Université-UMRS974-Inserm-Institut de Myologie, Paris, France
| | | | - Claudia C S Chini
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonu Kashyap
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J Fogarty
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C Sieck
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Mathias Mericskay
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - Eduardo N Chini
- Department of Anesthesiology and Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Ana Maria Gomez
- Signalisation et Physiopathologie Cardiovasculaire, INSERM, UMR-S 1180 - Université Paris-Saclay, Châtenay-Malabry, France
| | - José-Manuel Cancela
- Institut des Neurosciences Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | | |
Collapse
|
43
|
Bremner SB, Mandrycky CJ, Leonard A, Padgett RM, Levinson AR, Rehn ES, Pioner JM, Sniadecki NJ, Mack DL. Full-length dystrophin deficiency leads to contractile and calcium transient defects in human engineered heart tissues. J Tissue Eng 2022; 13:20417314221119628. [PMID: 36003954 PMCID: PMC9393922 DOI: 10.1177/20417314221119628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiomyopathy is currently the leading cause of death for patients with Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder affecting young boys. Animal models have provided insight into the mechanisms by which dystrophin protein deficiency causes cardiomyopathy, but there remains a need to develop human models of DMD to validate pathogenic mechanisms and identify therapeutic targets. Here, we have developed human engineered heart tissues (EHTs) from CRISPR-edited, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing a truncated dystrophin protein lacking part of the actin-binding domain. The 3D EHT platform enables direct measurement of contractile force, simultaneous monitoring of Ca2+ transients, and assessment of myofibril structure. Dystrophin-mutant EHTs produced less contractile force as well as delayed kinetics of force generation and relaxation, as compared to isogenic controls. Contractile dysfunction was accompanied by reduced sarcomere length, increased resting cytosolic Ca2+ levels, delayed Ca2+ release and reuptake, and increased beat rate irregularity. Transcriptomic analysis revealed clear differences between dystrophin-deficient and control EHTs, including downregulation of genes related to Ca2+ homeostasis and extracellular matrix organization, and upregulation of genes related to regulation of membrane potential, cardiac muscle development, and heart contraction. These findings indicate that the EHT platform provides the cues necessary to expose the clinically-relevant, functional phenotype of force production as well as mechanistic insights into the role of Ca2+ handling and transcriptomic dysregulation in dystrophic cardiac function, ultimately providing a powerful platform for further studies in disease modeling and drug discovery.
Collapse
Affiliation(s)
- Samantha B Bremner
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Christian J Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Andrea Leonard
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Ruby M Padgett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Alan R Levinson
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ethan S Rehn
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - J Manuel Pioner
- Department of Biology, University of Florence, Florence, Italy
| | - Nathan J Sniadecki
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David L Mack
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
44
|
Fernández-Morales JC, Xia Y, Rienzo TJ, Zhang XH, Morad M. Mutation in RyR2-FKBP Binding site alters Ca 2+ signaling modestly but increases "arrhythmogenesis" in human stem cells derived cardiomyocytes. Cell Calcium 2022; 101:102500. [PMID: 34813985 PMCID: PMC8752506 DOI: 10.1016/j.ceca.2021.102500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023]
Abstract
AIMS To gain insights into FKBP regulation of cardiac ryanodine receptor (RyR2) and Ca2+ signaling, we introduced the point mutation (N771D-RyR2) corresponding to skeletal muscle mutation (N760D-RyR1) associated with central core disease (CCD) via CRISPR/Cas9 gene-editing in the RyR2 FKBP binding site expressed in human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs). Patients inflicted with CCD and other hereditary skeletal muscle diseases often show higher incidence of atrial or ventricular arrhythmias. METHODS AND RESULTS Ca2+ imaging of voltage-clamped N771D-RyR2 mutant compared to WT hiPSCCMs showed: (1) ∼30% suppressed ICa with no significant changes in the gating kinetics of ICa; (2) 29% lower SR Ca2+ content and 33% lower RyR2 Ca2+ leak; (3) higher CICR gain and 30-35% increased efficiency of ICa-triggered Ca2±release; (4) higher incidence of aberrant SR Ca2+ releases, DADs, and Ca2+ sparks; (5) no change in fractional Ca2+-release, action potential morphology, sensitivity to isoproterenol, and sarcomeric FKBP-binding pattern. CONCLUSIONS The more frequent spontaneous Ca2+ releases and longer Ca2+ sparks underlie the increased incidence of DADs and cellular arrhythmogenesis of N771D-RyR2 mutant. The smaller RyR2 Ca2±leak and SR content result from suppressed ICathat is compensated by higher CICR gain.
Collapse
Affiliation(s)
| | - Yanli Xia
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA
| | - Taylor J. Rienzo
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA
| | - Xiao-Hua Zhang
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA.,Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
45
|
Sandonà M, Saccone V. Post-translational Modification in Muscular Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:71-84. [DOI: 10.1007/978-3-031-05460-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
47
|
Cazorla O, Barthélémy I, Su JB, Meli AC, Chetboul V, Scheuermann V, Gouni V, Anglerot C, Richard S, Blot S, Ghaleh B, Lacampagne A. Stabilizing Ryanodine Receptors Improves Left Ventricular Function in Juvenile Dogs With Duchenne Muscular Dystrophy. J Am Coll Cardiol 2021; 78:2439-2453. [PMID: 34886965 DOI: 10.1016/j.jacc.2021.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy is associated with progressive deterioration in left ventricular (LV) function. The golden retriever muscular dystrophy (GRMD) dog model recapitulates the pathology and clinical manifestations of Duchenne muscular dystrophy. Importantly, they develop progressive LV dysfunction starting at early age. OBJECTIVES The authors tested the cardioprotective effect of chronic administration of the ARM036, a small molecule that stabilizes the closed conformation of the cardiac sarcoplasmic reticulum ryanodine receptor/calcium release channel (RyR2) in young GRMD-dogs. METHODS Two-month-old GRMD-dogs were treated with ARM036 or placebo for 4 months. Healthy-dogs of the same genetic background served as controls. Cardiac function was evaluated by conventional and 2-dimensional speckle-tracking echocardiography. Cardiac cellular and molecular analyses were performed at 6 months old. RESULTS Conventional echocardiography showed normal LV dimensions and ejection fraction in 6-month-old GRMD dogs. Interestingly, 2-dimensional speckle-tracking echocardiography revealed decreased global longitudinal strain and the presence of hypokinetic segments in placebo-treated GRMD dogs. Single-channel measurements revealed higher RyR2 open probability at low resting Ca2+ in GRMD cardiomyocytes than in controls. ARM036 prevented those in vivo and in vitro dysfunctions in GRMD dogs. Myofilament Ca2+-sensitivity was increased in permeabilized GRMD cardiomyocytes at short sarcomere length. ARM036 had no effect on this parameter. Cross-bridge cycling kinetics were altered in GRMD myocytes and recovered with ARM036 treatment, which coincided with the level of myosin binding protein-C-S glutathionylation. CONCLUSIONS GRMD-dogs exhibit early LV dysfunction associated with altered myofilament contractile properties. These abnormalities were prevented pharmacologically by stabilizing RyR2 with ARM036.
Collapse
Affiliation(s)
- Olivier Cazorla
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France.
| | - Inès Barthélémy
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Jin Bo Su
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Albano C Meli
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France
| | - Valérie Chetboul
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | | | - Vassiliky Gouni
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Camille Anglerot
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France
| | - Sylvain Richard
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France
| | - Stéphane Blot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Bijan Ghaleh
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France; EnvA, IMRB, Maisons-Alfort, France
| | - Alain Lacampagne
- Phymedexp INSERM, CNRS, Université de Montpellier, CHRU Montpellier, France.
| |
Collapse
|
48
|
Meyer P, Notarnicola C, Meli AC, Matecki S, Hugon G, Salvador J, Khalil M, Féasson L, Cances C, Cottalorda J, Desguerre I, Cuisset JM, Sabouraud P, Lacampagne A, Chevassus H, Rivier F, Carnac G. Skeletal Ryanodine Receptors Are Involved in Impaired Myogenic Differentiation in Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2021; 22:12985. [PMID: 34884796 PMCID: PMC8657486 DOI: 10.3390/ijms222312985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting following repeated muscle damage and inadequate regeneration. Impaired myogenesis and differentiation play a major role in DMD as well as intracellular calcium (Ca2+) mishandling. Ca2+ release from the sarcoplasmic reticulum is mostly mediated by the type 1 ryanodine receptor (RYR1) that is required for skeletal muscle differentiation in animals. The study objective was to determine whether altered RYR1-mediated Ca2+ release contributes to myogenic differentiation impairment in DMD patients. The comparison of primary cultured myoblasts from six boys with DMD and five healthy controls highlighted delayed myoblast differentiation in DMD. Silencing RYR1 expression using specific si-RNA in a healthy control induced a similar delayed differentiation. In DMD myotubes, resting intracellular Ca2+ concentration was increased, but RYR1-mediated Ca2+ release was not changed compared with control myotubes. Incubation with the RYR-calstabin interaction stabilizer S107 decreased resting Ca2+ concentration in DMD myotubes to control values and improved calstabin1 binding to the RYR1 complex. S107 also improved myogenic differentiation in DMD. Furthermore, intracellular Ca2+ concentration was correlated with endomysial fibrosis, which is the only myopathologic parameter associated with poor motor outcome in patients with DMD. This suggested a potential relationship between RYR1 dysfunction and motor impairment. Our study highlights RYR1-mediated Ca2+ leakage in human DMD myotubes and its key role in myogenic differentiation impairment. RYR1 stabilization may be an interesting adjunctive therapeutic strategy in DMD.
Collapse
Affiliation(s)
- Pierre Meyer
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
- Reference Centre for Neuromuscular Diseases AOC, Clinical Investigation Centre, Pediatric Neurology Department, Montpellier University Hospital, 34000 Montpellier, France
| | - Cécile Notarnicola
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Stefan Matecki
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Gérald Hugon
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Jérémy Salvador
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Mirna Khalil
- Clinical Investigation Center, Montpellier University Hospital, 34000 Montpellier, France; (M.K.); (H.C.)
| | - Léonard Féasson
- Myology Unit, Reference Center for Neuromuscular Diseases Euro-NmD, Inter-University Laboratory of Human Movement Sciences—EA7424, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Claude Cances
- Reference Center for Neuromuscular Diseases AOC, Pediatric Neurology Department, Toulouse University Hospital, 3100 Toulouse, France;
- Pediatric Clinical Research Unit, Pediatric Multi-thematic Module CIC 1436, Toulouse Children’s Hospital, 31300 Toulouse, France
| | - Jérôme Cottalorda
- Pediatric Orthopedic and Plastic Surgery Department, Montpellier University Hospital, 34295 Montpellier, France;
| | - Isabelle Desguerre
- Reference Center for Neuromuscular Diseases Paris Nord-Ile-de-France-Est, Pediatric Neurology Department, Necker Enfant Malades University Hospital, Assistance Publique des Hôpitaux de Paris Centre, Paris University, 75019 Paris, France;
| | - Jean-Marie Cuisset
- Reference Center for Neuromuscular Diseases Nord-Ile-de-France-Est, Pediatric Neurology Department, Lille University Hospital, 59000 Lille, France;
| | - Pascal Sabouraud
- Reference Center for Neuromuscular Diseases Nord-Ile-de-France-Est, Pediatric Neurology Department, Reims University Hospital, 51100 Reims, France;
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Hugues Chevassus
- Clinical Investigation Center, Montpellier University Hospital, 34000 Montpellier, France; (M.K.); (H.C.)
| | - François Rivier
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
- Reference Centre for Neuromuscular Diseases AOC, Clinical Investigation Centre, Pediatric Neurology Department, Montpellier University Hospital, 34000 Montpellier, France
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| |
Collapse
|
49
|
Loncke J, Vervliet T, Parys JB, Kaasik A, Bultynck G. Uniting the divergent Wolfram syndrome-linked proteins WFS1 and CISD2 as modulators of Ca 2+ signaling. Sci Signal 2021; 14:eabc6165. [PMID: 34582248 DOI: 10.1126/scisignal.abc6165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Allen Kaasik
- University of Tartu, Institute of Biomedicine and Translational Medicine, Department of Pharmacology, Tartu, Estonia
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| |
Collapse
|
50
|
Yao S, Chen Z, Yu Y, Zhang N, Jiang H, Zhang G, Zhang Z, Zhang B. Current Pharmacological Strategies for Duchenne Muscular Dystrophy. Front Cell Dev Biol 2021; 9:689533. [PMID: 34490244 PMCID: PMC8417245 DOI: 10.3389/fcell.2021.689533] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder caused by the absence of dystrophin protein, which is essential for muscle fiber integrity. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. There is still no cure for DMD so far and the standard of care is principally limited to symptom relief through glucocorticoids treatments. Current therapeutic strategies could be divided into two lines. Dystrophin-targeted therapeutic strategies that aim at restoring the expression and/or function of dystrophin, including gene-based, cell-based and protein replacement therapies. The other line of therapeutic strategies aims to improve muscle function and quality by targeting the downstream pathological changes, including inflammation, fibrosis, and muscle atrophy. This review introduces the important developments in these two lines of strategies, especially those that have entered the clinical phase and/or have great potential for clinical translation. The rationale and efficacy of each agent in pre-clinical or clinical studies are presented. Furthermore, a meta-analysis of gene profiling in DMD patients has been performed to understand the molecular mechanisms of DMD.
Collapse
Affiliation(s)
- Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|