1
|
Kamps FS, Rennert RJ, Radwan SF, Wahab S, Pincus JE, Dilks DD. Dissociable Cognitive Systems for Recognizing Places and Navigating through Them: Developmental and Neuropsychological Evidence. J Neurosci 2023; 43:6320-6329. [PMID: 37580121 PMCID: PMC10490455 DOI: 10.1523/jneurosci.0153-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Recent neural evidence suggests that the human brain contains dissociable systems for "scene categorization" (i.e., recognizing a place as a particular kind of place, for example, a kitchen), including the parahippocampal place area, and "visually guided navigation" (e.g., finding our way through a kitchen, not running into the kitchen walls or banging into the kitchen table), including the occipital place area. However, converging behavioral data - for instance, whether scene categorization and visually guided navigation abilities develop along different timelines and whether there is differential breakdown under neurologic deficit - would provide even stronger support for this two-scene-systems hypothesis. Thus, here we tested scene categorization and visually guided navigation abilities in 131 typically developing children between 4 and 9 years of age, as well as 46 adults with Williams syndrome, a developmental disorder with known impairment on "action" tasks, yet relative sparing on "perception" tasks, in object processing. We found that (1) visually guided navigation is later to develop than scene categorization, and (2) Williams syndrome adults are impaired in visually guided navigation, but not scene categorization, relative to mental age-matched children. Together, these findings provide the first developmental and neuropsychological evidence for dissociable cognitive systems for recognizing places and navigating through them.SIGNIFICANCE STATEMENT Two decades ago, Milner and Goodale showed us that identifying objects and manipulating them involve distinct cognitive and neural systems. Recent neural evidence suggests that the same may be true of our interactions with our environment: identifying places and navigating through them are dissociable systems. Here we provide converging behavioral evidence supporting this two-scene-systems hypothesis - finding both differential development and breakdown of "scene categorization" and "visually guided navigation." This finding suggests that the division of labor between perception and action systems is a general organizing principle for the visual system, not just a principle of the object processing system in particular.
Collapse
Affiliation(s)
- Frederik S Kamps
- Department of Psychology, Emory University, Atlanta, Georgia 30322
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | - Samaher F Radwan
- Department of Psychology, Emory University, Atlanta, Georgia 30322
| | - Stephanie Wahab
- Department of Psychology, Emory University, Atlanta, Georgia 30322
| | - Jordan E Pincus
- Department of Psychology, Emory University, Atlanta, Georgia 30322
| | - Daniel D Dilks
- Department of Psychology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
2
|
Lee SA. Navigational roots of spatial and temporal memory structure. Anim Cogn 2023; 26:87-95. [PMID: 36480071 DOI: 10.1007/s10071-022-01726-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Our minds are constantly in transit, from the present to the past to the future, across places we have and have not directly experienced. Nevertheless, memories of our mental time travel are not organized continuously and are adaptively chunked into contexts and episodes. In this paper, I will review evidence that suggests that spatial boundary representations play a critical role in providing structure to both our spatial and temporal memories. I will illustrate the intimate connection between hippocampal spatial mapping and temporal sequencing of episodic memory to propose that high-level cognitive processes like mental time travel and conceptual mapping are rooted in basic navigational mechanisms that we humans and nonhuman animals share. Our neuroscientific understanding of hippocampal function across species may provide new insight into the origins of even the most uniquely human cognitive abilities.
Collapse
Affiliation(s)
- Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-Ro 1, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Rah YJ, Kim J, Lee SA. Effects of spatial boundaries on episodic memory development. Child Dev 2022; 93:1574-1583. [PMID: 35467753 DOI: 10.1111/cdev.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Children's spatial mapping starts out particularly sensitive to 3D wall-like boundaries and develops over early childhood to flexibly include other boundary types. This study investigated whether spatial boundaries influence children's episodic memory, as in adults, and whether this effect is modulated by boundary type. Eighty-one Korean children (34 girls, 36-84 months old) re-enacted a sequence of three discrete hiding events within a space containing one of three boundaries: 3D wall, aligned objects, or 2D line. Children's memory of events occurring on one side of the boundary developed earlier than those that crossed the boundary. At first, this interaction only applied to the 3D wall and extended to other boundary types with age, suggesting that children's changing spatial representations influence their episodic memory development.
Collapse
Affiliation(s)
- Yu Jin Rah
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jiyun Kim
- Department of Education, Korea University, Seoul, Korea
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
4
|
Farran EK, Hudson KD, Bennett A, Ameen A, Misheva I, Bechlem B, Blades M, Courbois Y. Anxiety and Spatial Navigation in Williams Syndrome and Down Syndrome. Dev Neuropsychol 2022; 47:136-157. [PMID: 35282728 DOI: 10.1080/87565641.2022.2047685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Individuals with Down Syndrome (DS) and individuals with Williams syndrome (WS) present with poor navigation and elevated anxiety. The aim of this study was to determine the relationship between these two characteristics. Parent report questionnaires measured navigation abilities and anxiety in WS (N = 55) and DS (N = 42) as follows. Anxiety: Spence Children's Anxiety Scale and a novel measure of navigation anxiety. Navigation: Santa Barbara Sense of Direction Scale (SBSOD) and a novel measure of navigation competence. Most individuals were not permitted to travel independently. A relationship between navigation anxiety and SBSOD scores (but not navigation competence) was observed for both groups.
Collapse
Affiliation(s)
- Emily K Farran
- Department of Psychological Science, School of Psychology, University of Surrey, Guildford, UK
| | - Kerry D Hudson
- Department of Psychology and Human Development, UCL Institute of Education, University College London, London, UK
| | - Amelia Bennett
- Department of Psychological Science, School of Psychology, University of Surrey, Guildford, UK
| | - Aan Ameen
- Department of Psychological Science, School of Psychology, University of Surrey, Guildford, UK
| | - Iliana Misheva
- Department of Psychological Science, School of Psychology, University of Surrey, Guildford, UK
| | - Badri Bechlem
- Department of Psychology and Human Development, UCL Institute of Education, University College London, London, UK
| | - Mark Blades
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Yannick Courbois
- Univ. Lille, ULR 4072 - PSITEC - Psychologie: Interactions Temps Émotions Cognition, Lille, France
| |
Collapse
|
5
|
Doerr EM, Carretti B, Toffalini E, Lanfranchi S, Meneghetti C. Developmental Trajectories in Spatial Visualization and Mental Rotation in Individuals with Down Syndrome. Brain Sci 2021; 11:610. [PMID: 34068802 PMCID: PMC8150385 DOI: 10.3390/brainsci11050610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The analysis of developmental trajectories of visuospatial abilities in individuals with Down Syndrome (DS) remains an unexplored field of investigation to examine in depth. The study aimed to fill such a gap by examining changes in two visuospatial abilities: spatial visualization (the ability to manage spatial stimuli) and mental rotation (the ability to rotate spatial stimuli). METHOD Eighty-seven participants with DS, aged between 7 and 53 years (forty-seven males and forty females), completed spatial visualization and mental rotation tasks. Changes in these two abilities were analyzed in relation to chronological age and developmental level, the latter derived from Raven's Colored Progressive Matrices. RESULTS Chronological age was linearly associated with spatial visualization performance, whereas mental rotation performance increased until 14 years of age and then decreased. Developmental level was linearly associated with increased performance in spatial visualization, the trend in mental rotation was segmented with an increase after 5 years of age. Furthermore, developmental trajectories in mental rotation depended on the rotation degree. CONCLUSION Chronological age explains a modest quote of variance. Developmental level better describes changes in spatial visualization and mental rotation of individuals with DS.
Collapse
Affiliation(s)
- Elizabeth Maria Doerr
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (B.C.); (E.T.); (C.M.)
| | - Barbara Carretti
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (B.C.); (E.T.); (C.M.)
| | - Enrico Toffalini
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (B.C.); (E.T.); (C.M.)
| | - Silvia Lanfranchi
- Department of Developmental Psychology and Socialization, University of Padova, 35131 Padova, Italy;
| | - Chiara Meneghetti
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (B.C.); (E.T.); (C.M.)
| |
Collapse
|
6
|
Luongo A, Lukowski A, Protho T, Van Vorce H, Pisani L, Edgin J. Sleep's role in memory consolidation: What can we learn from atypical development? ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 60:229-260. [PMID: 33641795 DOI: 10.1016/bs.acdb.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research conducted over the last century has suggested a role for sleep in the processes guiding healthy cognition and development, including memory consolidation. Children with intellectual and developmental disabilities (IDDs) tend to have higher rates of sleep disturbances, which could relate to behavior issues, developmental delays, and learning difficulties. While several studies examine whether sleep exacerbates daytime difficulties and attention deficits in children with IDDs, this chapter focuses on the current state of knowledge regarding sleep and memory consolidation in typically developing (TD) groups and those at risk for learning difficulties. In particular, this chapter summarizes the current literature on sleep-dependent learning across developmental disabilities, including Down syndrome, Williams syndrome, Autism Spectrum Disorder, and Learning Disabilities (Attention-Deficit/Hyperactivity Disorder and Dyslexia). We also highlight the gaps in the current literature and identify challenges in studying sleep-dependent memory in children with different IDDs. This burgeoning new field highlights the importance of considering the role of sleep in memory retention across long delays when evaluating children's memory processes. Further, an understanding of typical and atypical development can mutually inform recent theories of sleep's role in memory.
Collapse
Affiliation(s)
- A Luongo
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - A Lukowski
- Department of Psychological Sciences, University of California Irvine, Irvine, CA, United States
| | - T Protho
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - H Van Vorce
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - L Pisani
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - J Edgin
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States; University of Arizona Sonoran UCEDD, Tucson, AZ, United States.
| |
Collapse
|
7
|
Bostelmann M, Ruggeri P, Rita Circelli A, Costanzo F, Menghini D, Vicari S, Lavenex P, Banta Lavenex P. Path Integration and Cognitive Mapping Capacities in Down and Williams Syndromes. Front Psychol 2020; 11:571394. [PMID: 33362636 PMCID: PMC7759488 DOI: 10.3389/fpsyg.2020.571394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Williams (WS) and Down (DS) syndromes are neurodevelopmental disorders with distinct genetic origins and different spatial memory profiles. In real-world spatial memory tasks, where spatial information derived from all sensory modalities is available, individuals with DS demonstrate low-resolution spatial learning capacities consistent with their mental age, whereas individuals with WS are severely impaired. However, because WS is associated with severe visuo-constructive processing deficits, it is unclear whether their impairment is due to abnormal visual processing or whether it reflects an inability to build a cognitive map. Here, we tested whether blindfolded individuals with WS or DS, and typically developing (TD) children with similar mental ages, could use path integration to perform an egocentric homing task and return to a starting point. We then evaluated whether they could take shortcuts and navigate along never-traveled trajectories between four objects while blindfolded, thus demonstrating the ability to build a cognitive map. In the homing task, 96% of TD children, 84% of participants with DS and 44% of participants with WS were able to use path integration to return to their starting point consistently. In the cognitive mapping task, 64% of TD children and 74% of participants with DS were able to take shortcuts and use never-traveled trajectories, the hallmark of cognitive mapping ability. In contrast, only one of eighteen participants with WS demonstrated the ability to build a cognitive map. These findings are consistent with the view that hippocampus-dependent spatial learning is severely impacted in WS, whereas it is relatively preserved in DS.
Collapse
Affiliation(s)
| | - Paolo Ruggeri
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | | | - Floriana Costanzo
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Deny Menghini
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy.,Faculty of Medicine and Surgery, Catholic University, Rome, Italy
| | - Pierre Lavenex
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Pamela Banta Lavenex
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland.,Faculty of Psychology, Swiss Distance University Institute, Brig, Switzerland
| |
Collapse
|
8
|
The spatiotemporal organization of episodic memory and its disruption in a neurodevelopmental disorder. Sci Rep 2019; 9:18447. [PMID: 31804517 PMCID: PMC6895173 DOI: 10.1038/s41598-019-53823-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/06/2019] [Indexed: 02/05/2023] Open
Abstract
Recent theories of episodic memory (EM) posit that the hippocampus provides a spatiotemporal framework necessary for representing events. If such theories hold true, then does the development of EM in children depend on the ability to first bind spatial and temporal information? And does this ability rely, at least in part, on normal hippocampal function? We investigated the development of EM in children 2–8 years of age (Study 1) and its impairment in Williams Syndrome, a genetic neurodevelopmental disorder characterized by visuospatial deficits and irregular hippocampal function, (Study 2) by implementing a nonverbal object-placement task that dissociates the what, where, and when components of EM. Consistent with the spatiotemporal-framework view of hippocampal EM, our results indicate that the binding of where and when in memory emerges earliest in development, around the age of 3, and is specifically impaired in WS. Space-time binding both preceded and was critical to full EM (what + where + when), and the successful association of objects to spatial locations seemed to mediate this developmental process.
Collapse
|
9
|
Ferrara K, Landau B, Park S. Impaired behavioral and neural representation of scenes in Williams syndrome. Cortex 2019; 121:264-276. [PMID: 31655392 DOI: 10.1016/j.cortex.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/12/2019] [Accepted: 09/01/2019] [Indexed: 01/08/2023]
Abstract
Boundaries are crucial to our representation of the geometric shape of scenes, which can be used to reorient in space. Behavioral research has shown that children and adults share exquisite sensitivity to a defining feature of a boundary: its vertical extent. Imaging studies have shown that this boundary property is represented in the parahippocampal place area (PPA) among typically developed (TD) adults. Here, we show that sensitivity to the vertical extent of scene boundaries is impaired at both the behavioral and neural level in people with Williams syndrome (WS), a genetic deficit that results in severely impaired spatial functions. Behavioral reorientation was tested in three boundary conditions: a flat Mat, a 5 cm high Curb, and full Walls. Adults with WS could reorient in a rectangular space defined by Wall boundaries, but not Curb or Mat boundaries. In contrast, TD age-matched controls could reorient by all three boundary types and TD 4-year-olds could reorient by either Wall or Curb boundaries. Using fMRI, we find that the WS behavioral deficit is echoed in their neural representation of boundaries. While TD age-matched controls showed distinct neural responses to scenes depicting Mat, Curb, and Wall boundaries in the PPA, people with WS showed only a distinction between the Wall and Mat or Curb, but no distinction between the Mat and Curb. Taken together, these results reveal a close coupling between the representation of boundaries as they are used in behavioral reorientation and neural encoding, suggesting that damage to this key element of spatial representation may have a genetic foundation.
Collapse
Affiliation(s)
- Katrina Ferrara
- Department of Cognitive Science, Johns Hopkins University, USA; Center for Brain Plasticity and Recovery, Georgetown University, USA.
| | - Barbara Landau
- Department of Cognitive Science, Johns Hopkins University, USA.
| | - Soojin Park
- Department of Cognitive Science, Johns Hopkins University, USA; Department of Psychology, Yonsei University, South Korea.
| |
Collapse
|
10
|
Standing on shoulders of a giant: Marcia Spetch’s contributions to the study of spatial reorientation. Behav Processes 2019; 160:33-41. [DOI: 10.1016/j.beproc.2018.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 11/19/2022]
|
11
|
Julian JB, Kamps FS, Epstein RA, Dilks DD. Dissociable spatial memory systems revealed by typical and atypical human development. Dev Sci 2019; 22:e12737. [PMID: 30176106 PMCID: PMC6391167 DOI: 10.1111/desc.12737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/28/2023]
Abstract
Rodent lesion studies have revealed the existence of two causally dissociable spatial memory systems, localized to the hippocampus and striatum that are preferentially sensitive to environmental boundaries and landmark objects, respectively. Here we test whether these two memory systems are causally dissociable in humans by examining boundary- and landmark-based memory in typical and atypical development. Adults with Williams syndrome (WS)-a developmental disorder with known hippocampal abnormalities-and typical children and adults, performed a navigation task that involved learning locations relative to a boundary or a landmark object. We found that boundary-based memory was severely impaired in WS compared to typically-developing mental-age matched (MA) children and chronological-age matched (CA) adults, whereas landmark-based memory was similar in all groups. Furthermore, landmark-based memory matured earlier in typical development than boundary-based memory, consistent with the idea that the WS cognitive phenotype arises from developmental arrest of late maturing cognitive systems. Together, these findings provide causal and developmental evidence for dissociable spatial memory systems in humans.
Collapse
Affiliation(s)
- Joshua B. Julian
- Department of Psychology, University of Pennsylvania
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology
| | | | | | | |
Collapse
|
12
|
Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum. J Neurosci 2018; 38:3265-3272. [PMID: 29467145 DOI: 10.1523/jneurosci.3216-17.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one's own body.SIGNIFICANCE STATEMENT Spatial computations using environmental boundaries are an integral part of the brain's spatial mapping system. In rodents, border/boundary cells in the subiculum and entorhinal cortex reveal boundary coding at the single-neuron level. Although there is good reason to believe that such representations also exist in humans, the evidence has thus far been limited to functional neuroimaging studies that broadly implicate the hippocampus in boundary-based navigation. By combining intracranial recordings with high-resolution imaging of hippocampal subregions, we identified a neural marker of boundary representation in the human subiculum.
Collapse
|
13
|
|
14
|
Bostelmann M, Fragnière E, Costanzo F, Di Vara S, Menghini D, Vicari S, Lavenex P, Lavenex PB. Dissociation of spatial memory systems in Williams syndrome. Hippocampus 2017; 27:1192-1203. [PMID: 28710800 DOI: 10.1002/hipo.22764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 11/07/2022]
Abstract
Williams syndrome (WS), a genetic deletion syndrome, is characterized by severe visuospatial deficits affecting performance on both tabletop spatial tasks and on tasks which assess orientation and navigation. Nevertheless, previous studies of WS spatial capacities have ignored the fact that two different spatial memory systems are believed to contribute parallel spatial representations supporting navigation. The place learning system depends on the hippocampal formation and creates flexible relational representations of the environment, also known as cognitive maps. The spatial response learning system depends on the striatum and creates fixed stimulus-response representations, also known as habits. Indeed, no study assessing WS spatial competence has used tasks which selectively target these two spatial memory systems. Here, we report that individuals with WS exhibit a dissociation in their spatial abilities subserved by these two memory systems. As compared to typically developing (TD) children in the same mental age range, place learning performance was impaired in individuals with WS. In contrast, their spatial response learning performance was facilitated. Our findings in individuals with WS and TD children suggest that place learning and response learning interact competitively to control the behavioral strategies normally used to support human spatial navigation. Our findings further suggest that the neural pathways supporting place learning may be affected by the genetic deletion that characterizes WS, whereas those supporting response learning may be relatively preserved. The dissociation observed between these two spatial memory systems provides a coherent theoretical framework to characterize the spatial abilities of individuals with WS, and may lead to the development of new learning strategies based on their facilitated response learning abilities.
Collapse
Affiliation(s)
- Mathilde Bostelmann
- Laboratory of Brain and Cognitive Development, The Institute of Psychology, University of Lausanne, Lausanne, 1005, Switzerland
| | - Emilie Fragnière
- Laboratory of Brain and Cognitive Development, The Institute of Psychology, University of Lausanne, Lausanne, 1005, Switzerland
| | - Floriana Costanzo
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, 00165, Italy
| | - Silvia Di Vara
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, 00165, Italy
| | - Deny Menghini
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, 00165, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, 00165, Italy
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, The Institute of Psychology, University of Lausanne, Lausanne, 1005, Switzerland
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, The Institute of Psychology, University of Lausanne, Lausanne, 1005, Switzerland
| |
Collapse
|
15
|
Yousif SR, Lourenco SF. Are all geometric cues created equal? Children’s use of distance and length for reorientation. COGNITIVE DEVELOPMENT 2017. [DOI: 10.1016/j.cogdev.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Lee SA, Tucci V, Vallortigara G. Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models. Brain Sci 2017; 7:E17. [PMID: 28208764 PMCID: PMC5332960 DOI: 10.3390/brainsci7020017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/15/2017] [Accepted: 02/07/2017] [Indexed: 11/28/2022] Open
Abstract
Research across the cognitive and brain sciences has begun to elucidate some of the processes that guide navigation and spatial memory. Boundary geometry and featural landmarks are two distinct classes of environmental cues that have dissociable neural correlates in spatial representation and follow different patterns of learning. Consequently, spatial navigation depends both on the type of cue available and on the type of learning provided. We investigated this interaction between spatial representation and memory by administering two different tasks (working memory, reference memory) using two different environmental cues (rectangular geometry, striped landmark) in mouse models of human genetic disorders: Prader-Willi syndrome (PWScrm+/p- mice, n = 12) and Beta-catenin mutation (Thr653Lys-substituted mice, n = 12). This exploratory study provides suggestive evidence that these models exhibit different abilities and impairments in navigating by boundary geometry and featural landmarks, depending on the type of memory task administered. We discuss these data in light of the specific deficits in cognitive and brain function in these human syndromes and their animal model counterparts.
Collapse
Affiliation(s)
- Sang Ah Lee
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy.
| | - Valter Tucci
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova 16163, Italy.
| | | |
Collapse
|
17
|
Mastrogiuseppe M, Lee SA. What gestures reveal about cognitive deficits in Williams Syndrome. Dev Neuropsychol 2017; 42:470-481. [PMID: 29505309 DOI: 10.1080/87565641.2017.1393685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gestures have a central role in speaking and thinking about spatial information. The goal of the present study is to examine the function of gestures in Williams Syndrome (WS), a genetic disorder characterized by spatial impairments and a preservation of communication. The study's subjects were 11 WS individuals and 22 typically-developing controls who performed a narrative task. We analyzed offline gesture production and its relation with language and spatial information. Compared to the control groups, WS individuals produced more representational gestures that anticipated, supplemented, or gesture-only communication. Gestures produced by WS participants serve a compensatory role particularly in representing spatial contents.
Collapse
Affiliation(s)
| | - Sang Ah Lee
- a Center for Mind/Brain Sciences , University of Trento , Rovereto , Italy.,b Department of Bio and Brain Engineering , Korea Advanced Institute of Science and Technology , Daejeon , Korea
| |
Collapse
|
18
|
Ferretti F. The Social Brain Is Not Enough: On the Importance of the Ecological Brain for the Origin of Language. Front Psychol 2016; 7:1138. [PMID: 27531987 PMCID: PMC4969565 DOI: 10.3389/fpsyg.2016.01138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
In this paper, I assume that the study of the origin of language is strictly connected to the analysis of the traits that distinguish human language from animal communication. Usually, human language is said to be unique in the animal kingdom because it enables and/or requires intentionality or mindreading. By emphasizing the importance of mindreading, the social brain hypothesis has provided major insights within the origin of language debate. However, as studies on non-human primates have demonstrated that intentional forms of communication are already present in these species to a greater or lesser extent, I maintain that the social brain is a necessary but not a sufficient condition to explain the uniqueness of language. In this paper, I suggest that the distinctive feature of human communication resides in the ability to tell stories, and that the origin of language should be traced with respect to the capacity to produce discourses, rather than phrases or words. As narrative requires the ability to link events distant from one another in space and time, my proposal is that in order to explain the origin of language, we need to appeal to both the social brain and the ecological brain - that is, the cognitive devices which allow us to mentally travel in space and time.
Collapse
Affiliation(s)
- Francesco Ferretti
- Department of Philosophy, Communication and Performing Arts, Roma Tre UniversityRome, Italy
| |
Collapse
|
19
|
Array CGH - A Powerful Tool in Molecular Diagnostic of Pathogenic Microdeletions - Williams-Beuren Syndrome - A Case Report. CURRENT HEALTH SCIENCES JOURNAL 2016; 42:207-212. [PMID: 30568834 PMCID: PMC6256167 DOI: 10.12865/chsj.42.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
ABSTRACT: Williams-Beuren syndrome (WBS) (OMIM 194050) is caused by interstitial deletions or duplications of the 7q11.23 chromosomal region and characterised through a complex phenotype. We described a case diagnosed clinically and genetically confirmed through aCGH. Genetic assessment identified three microdeletions with a total size of 1.35 Mb located at 7q11.23. The deleted regions encompasses more than 30 genes including several protein coding genes such as ELN, LIMK1, FZDS, WBSCR22, WBSCR27, WBSCR28, STX1A, CLDN3, CLDN4, LAT2, ABHD11 or EIF4H .
Collapse
|
20
|
Pitts CH, Mervis CB. Performance on the Kaufman Brief Intelligence Test-2 by Children With Williams Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2016; 121:33-47. [PMID: 26701073 PMCID: PMC5005797 DOI: 10.1352/1944-7558-121.1.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We describe the performance of 292 4- to 17-year-olds with Williams syndrome (WS) on the Kaufman Brief Intelligence Test-2 (KBIT-2; Kaufman & Kaufman, 2004). Mean IQ Composite, Verbal standard score (SS), and Nonverbal SS were in the borderline range relative to the general population, with variability similar to the general population. Correlations between SSs and CA were close to 0, with no significant sex differences. There was a significant effect of maternal education on Verbal SS. The KBIT-2 appropriately captures the full range of performance of 8- to 17-year-olds with WS for the abilities measured and of all but the very lowest-functioning 5- to 7-year-olds. However, the KBIT-2 does not contain easy enough items to adequately assess the abilities of the lowest quartile of 4-year-olds.
Collapse
Affiliation(s)
- C. Holley Pitts
- Correspondence: Correspondence concerning this article should be addressed to C. Holley Pitts, Department of Psychological and Brain Sciences, 317 Life Sciences Building, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
21
|
Farran EK, Purser HRM, Courbois Y, Ballé M, Sockeel P, Mellier D, Blades M. Route knowledge and configural knowledge in typical and atypical development: a comparison of sparse and rich environments. J Neurodev Disord 2015; 7:37. [PMID: 26870305 PMCID: PMC4750629 DOI: 10.1186/s11689-015-9133-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/04/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Individuals with Down syndrome (DS) and individuals with Williams syndrome (WS) have poor navigation skills, which impact their potential to become independent. Two aspects of navigation were investigated in these groups, using virtual environments (VE): route knowledge (the ability to learn the way from A to B by following a fixed sequence of turns) and configural knowledge (knowledge of the spatial relationships between places within an environment). METHODS Typically developing (TD) children aged 5 to 11 years (N = 93), individuals with DS (N = 29) and individuals with WS (N = 20) were presented with a sparse and a rich VE grid maze. Within each maze, participants were asked to learn a route from A to B and a route from A to C before being asked to find a novel shortcut from B to C. RESULTS Performance was broadly similar across sparse and rich mazes. The majority of participants were able to learn novel routes, with poorest performance in the DS group, but the ability to find a shortcut, our measure of configural knowledge, was limited for all three groups. That is, 59 % TD participants successfully found a shortcut, compared to 10 % participants with DS and 35 % participants with WS. Differences in the underlying mechanisms associated with route knowledge and configural knowledge and in the developmental trajectories of performance across groups were observed. Only the TD participants walked a shorter distance in the last shortcut trial compared to the first, indicative of increased configural knowledge across trials. The DS group often used an alternative strategy to get from B to C, summing the two taught routes together. CONCLUSIONS Our findings demonstrate impaired configural knowledge in DS and in WS, with the strongest deficit in DS. This suggests that these groups rely on a rigid route knowledge based method for navigating and as a result are likely to get lost easily. Route knowledge was also impaired in both DS and WS groups and was related to different underlying processes across all three groups. These are discussed with reference to limitations in attention and/or visuo-spatial processing in the atypical groups.
Collapse
Affiliation(s)
- Emily K Farran
- Department of Psychology and Human Development, UCL Institute of Education, University College London, 25 Woburn Square, London, WC1H 0AA UK
| | | | - Yannick Courbois
- Laboratoire PSITEC (EA 4072), Université de Lille, Villeneuve d'Ascq, France
| | - Marine Ballé
- Laboratoire PSITEC (EA 4072), Université de Lille, Villeneuve d'Ascq, France
| | - Pascal Sockeel
- Laboratoire PSITEC (EA 4072), Université de Lille, Villeneuve d'Ascq, France
| | - Daniel Mellier
- Laboratoire PSY-NCA (EA 4306), Université de Rouen, Rouen, France
| | - Mark Blades
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Lourenco SF, Cabrera J. The potentiation of geometry by features in human children: Evidence against modularity in the domain of navigation. J Exp Child Psychol 2015; 140:184-96. [DOI: 10.1016/j.jecp.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/27/2022]
|
23
|
Tran DMD, Westbrook RF. Rats Fed a Diet Rich in Fats and Sugars Are Impaired in the Use of Spatial Geometry. Psychol Sci 2015; 26:1947-57. [DOI: 10.1177/0956797615608240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
A diet rich in fats and sugars is associated with cognitive deficits in people, and rodent models have shown that such a diet produces deficits on tasks assessing spatial learning and memory. Spatial navigation is guided by two distinct types of information: geometrical, such as distance and direction, and featural, such as luminance and pattern. To clarify the nature of diet-induced spatial impairments, we provided rats with standard chow supplemented with sugar water and a range of energy-rich foods eaten by people, and then we assessed their place- and object-recognition memory. Rats exposed to this diet performed comparably with control rats fed only chow on object recognition but worse on place recognition. This impairment on the place-recognition task was present after only a few days on the diet and persisted across tests. Critically, this spatial impairment was specific to the processing of distance and direction.
Collapse
|
24
|
Lee SA, Ferrari A, Vallortigara G, Sovrano VA. Boundary primacy in spatial mapping: Evidence from zebrafish (Danio rerio). Behav Processes 2015; 119:116-22. [DOI: 10.1016/j.beproc.2015.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022]
|
25
|
Ferrara K, Landau B. Geometric and featural systems, separable and combined: Evidence from reorientation in people with Williams syndrome. Cognition 2015; 144:123-33. [PMID: 26275835 DOI: 10.1016/j.cognition.2015.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 11/26/2022]
Abstract
Spatial reorientation by humans and other animals engages geometric representations of surface layouts as well as featural landmarks; however, the two types of information are thought to be behaviorally and neurally separable. In this paper, we examine the use of these two types of information during reorientation among children and adults with Williams syndrome (WS), a genetic disorder accompanied by abnormalities in brain regions that support use of both geometry and landmarks. Previous studies of reorientation in adolescents and adults with WS have shown deficits in the ability to use geometry for reorientation, but intact ability to use features, suggesting that the two systems can be differentially impaired by genetic disorder. Using a slightly modified layout, we found that many WS participants could use geometry, and most could use features along with geometry. However, the developmental trajectories for the two systems were quite different from one other, and different from those found in typical development. Purely geometric responding was not correlated with age in WS, and search processes appeared similar to those in typically developing (TD) children. In contrast, use of features in combination with geometry was correlated with age in WS, and search processes were distinctly different from TD children. The results support the view that use of geometry and features stem from different underlying mechanisms, that the developmental trajectories and operation of each are altered in WS, and that combination of information from the two systems is atypical. Given brain abnormalities in regions supporting the two kinds of information, our findings suggest that the co-operation of the two systems is functionally altered in this genetic syndrome.
Collapse
Affiliation(s)
- Katrina Ferrara
- Department of Cognitive Science, Johns Hopkins University, United States.
| | - Barbara Landau
- Department of Cognitive Science, Johns Hopkins University, United States
| |
Collapse
|
26
|
Vieites V, Nazareth A, Reeb-Sutherland BC, Pruden SM. A new biomarker to examine the role of hippocampal function in the development of spatial reorientation in children: a review. Front Psychol 2015; 6:490. [PMID: 25964770 PMCID: PMC4408750 DOI: 10.3389/fpsyg.2015.00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/06/2015] [Indexed: 12/15/2022] Open
Abstract
Spatial navigation is an adaptive skill that involves determining the route to a particular goal or location, and then traveling that path. A major component of spatial navigation is spatial reorientation, or the ability to reestablish a sense of direction after being disoriented. The hippocampus is known to be critical for navigating, and has more recently been implicated in reorienting in adults, but relatively little is known about the development of the hippocampus in relation to these large-scale spatial abilities in children. It has been established that, compared to school-aged children, preschool children tend to perform poorly on certain spatial reorientation tasks, suggesting that their hippocampi may not be mature enough to process the demands of such a task. Currently, common techniques used to examine underlying brain activity, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), are not suitable for examining hippocampal development in young children. In the present paper, we argue instead for the use of eyeblink conditioning (EBC), a relatively under-utilized, inexpensive, and safe method that is easy to implement in developing populations. In addition, EBC has a well defined neural circuitry, which includes the hippocampus, making it an ideal tool to indirectly measure hippocampal functioning in young children. In this review, we will evaluate the literature on EBC and its relation to hippocampal development, and discuss the possibility of using EBC as an objective measure of associative learning in relation to large-scale spatial skills. We support the use of EBC as a way to indirectly access hippocampal function in typical and atypical populations in order to characterize the neural substrates associated with the development of spatial reorientation abilities in early childhood. As such, EBC is a potential, simple biomarker for success in tasks that require the hippocampus, including spatial reorientation.
Collapse
Affiliation(s)
- Vanessa Vieites
- Department of Psychology, Florida International University, Miami, FL, USA
| | | | | | | |
Collapse
|
27
|
Vallortigara G. Foundations of Number and Space Representations in Non-Human Species. EVOLUTIONARY ORIGINS AND EARLY DEVELOPMENT OF NUMBER PROCESSING 2015. [DOI: 10.1016/b978-0-12-420133-0.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychon Bull Rev 2014; 20:1033-54. [PMID: 23456412 DOI: 10.3758/s13423-013-0416-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this article is to review and evaluate the range of theories proposed to explain findings on the use of geometry in reorientation. We consider five key approaches and models associated with them and, in the course of reviewing each approach, five key issues. First, we take up modularity theory itself, as recently revised by Lee and Spelke (Cognitive Psychology, 61, 152-176, 2010a; Experimental Brain Research, 206, 179-188, 2010b). In this context, we discuss issues concerning the basic distinction between geometry and features. Second, we review the view-matching approach (Stürzl, Cheung, Cheng, & Zeil, Journal of Experimental Psychology: Animal Behavior Processes, 34, 1-14, 2008). In this context, we highlight the possibility of cross-species differences, as well as commonalities. Third, we review an associative theory (Miller & Shettleworth, Journal of Experimental Psychology: Animal Behavior Processes, 33, 191-212, 2007; Journal of Experimental Psychology: Animal Behavior Processes, 34, 419-422, 2008). In this context, we focus on phenomena of cue competition. Fourth, we take up adaptive combination theory (Newcombe & Huttenlocher, 2006). In this context, we focus on discussing development and the effects of experience. Fifth, we examine various neurally based approaches, including frameworks proposed by Doeller and Burgess (Proceedings of the National Academy of Sciences of the United States of America, 105, 5909-5914, 2008; Doeller, King, & Burgess, Proceedings of the National Academy of Sciences of the United States of America, 105, 5915-5920, 2008) and by Sheynikhovich, Chavarriaga, Strösslin, Arleo, and Gerstner (Psychological Review, 116, 540-566, 2009). In this context, we examine the issue of the neural substrates of spatial navigation. We conclude that none of these approaches can account for all of the known phenomena concerning the use of geometry in reorientation and clarify what the challenges are for each approach.
Collapse
|
29
|
Libertus ME, Feigenson L, Halberda J, Landau B. Understanding the mapping between numerical approximation and number words: evidence from Williams syndrome and typical development. Dev Sci 2014; 17:905-19. [PMID: 24581047 DOI: 10.1111/desc.12154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/14/2013] [Indexed: 01/29/2023]
Abstract
All numerate humans have access to two systems of number representation: an exact system that is argued to be based on language and that supports formal mathematics, and an Approximate Number System (ANS) that is present at birth and appears independent of language. Here we examine the interaction between these two systems by comparing the profiles of people with Williams syndrome (WS) with those of typically developing children between ages 4 and 9 years. WS is a rare genetic deficit marked by fluent and well-structured language together with severe spatial deficits, deficits in formal math, and abnormalities of the parietal cortex, which is thought to subserve the ANS. One of our tasks, requiring approximate number comparison but no number words, revealed that the ANS precision of adolescents with WS was in the range of typically developing 2- to 4-year-olds. Their precision improved with age but never reached the level of typically developing 6- or 9-year-olds. The second task, requiring verbal number estimation using number words, revealed that the estimates produced by adolescents with WS were comparable to those of typically developing 6- and 9-year-olds, i.e. were more advanced than their ANS precision. These results suggest that ANS precision is somewhat separable from the mapping between approximate numerosities and number words, as the former can be severely damaged in a genetic disorder without commensurate impairment in the latter.
Collapse
Affiliation(s)
- Melissa E Libertus
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA; Department of Psychology, Learning Research and Development Center, University of Pittsburgh, USA
| | | | | | | |
Collapse
|
30
|
Landau B, Ferrara K. Space and language in Williams syndrome: insights from typical development. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:693-706. [PMID: 24839539 PMCID: PMC4019450 DOI: 10.1002/wcs.1258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
One of the holy grails of cognitive science is to understand the causal chain that links genes and cognition. Genetic syndromes accompanied by cognitive effects offer natural experiments that can uniquely inform our understanding of this chain. In this article, we discuss the case of Williams syndrome (WS), which is characterized by a set of missing genes on chromosome 7q11.23, and presents with a unique cognitive profile that includes severe spatial impairment along with strikingly fluent and well-structured language. An early inference from this profile was the idea that a small group of genes could directly target one cognitive system while leaving others unaffected. Recent evidence shows that this inference fails. First, the profile within the spatial domain is varied, with relative strength in some aspects of spatial representation but severe impairment in others. Second, some aspects of language may fail to develop fully, raising the question of how to compare the resilience and fragility of the two key cognitive domains in this syndrome. Third, much research on the profile fails to place findings in the context of typical developmental trajectories. We explore these points and propose a new hypothesis that explains the unusual WS cognitive profile by considering normal mechanisms of cognitive development that undergo change on an extremely prolonged timetable. This hypothesis places the elements of the WS cognitive profile in a new light, refocuses the discussion of the gene-cognition causal chain for WS and other disorders, and more generally, underlines the importance of understanding cognitive structure in both typical and atypical development. WIREs Cogn Sci 2013, 4:693-703. doi: 10.1002/wcs.1258 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website.
Collapse
|
31
|
Lee SA, Vallortigara G, Flore M, Spelke ES, Sovrano VA. Navigation by environmental geometry: the use of zebrafish as a model. ACTA ACUST UNITED AC 2013; 216:3693-9. [PMID: 23788708 DOI: 10.1242/jeb.088625] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sensitivity to environmental shape in spatial navigation has been found, at both behavioural and neural levels, in virtually every species tested, starting early in development. Moreover, evidence that genetic deletions can cause selective deficits in such navigation behaviours suggests a genetic basis to navigation by environmental geometry. Nevertheless, the geometric computations underlying navigation have not been specified in any species. The present study teases apart the geometric components within the traditionally used rectangular enclosure and finds that zebrafish selectively represent distance and directional relationships between extended boundary surfaces. Similar behavioural results in geometric navigation tasks with human children provide prima facie evidence for similar underlying cognitive computations and open new doors for probing the genetic foundations that give rise to these computations.
Collapse
Affiliation(s)
- Sang Ah Lee
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | | | | | | | | |
Collapse
|
32
|
Ferretti F, Cosentino E. Time, language and flexibility of the mind: The role of mental time travel in linguistic comprehension and production. PHILOSOPHICAL PSYCHOLOGY 2013. [DOI: 10.1080/09515089.2011.625119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
Haas BW, Reiss AL. Social brain development in williams syndrome: the current status and directions for future research. Front Psychol 2012; 3:186. [PMID: 22701108 PMCID: PMC3370330 DOI: 10.3389/fpsyg.2012.00186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/21/2012] [Indexed: 12/21/2022] Open
Abstract
Williams syndrome (WS) is a neurodevelopmental condition that occurs as a result of a contiguous deletion of ∼26–28 genes on chromosome 7q11.23. WS is often associated with a distinctive social phenotype characterized by an increased affinity toward processing faces, reduced sensitivity to fear related social stimuli and a reduced ability to form concrete social relationships. Understanding the biological mechanisms that underlie the social phenotype in WS may elucidate genetic and neural factors influencing the typical development of the social brain. In this article, we review available studies investigating the social phenotype of WS throughout development and neuroimaging studies investigating brain structure and function as related to social and emotional functioning in this condition. This review makes an important contribution by highlighting several neuro-behavioral mechanisms that may be a cause or a consequence of atypical social development in WS. In particular, we discuss how distinctive social behaviors in WS may be associated with alterations or delays in the cortical representation of faces, connectivity within the ventral stream, structure and function of the amygdala and how long- and short-range connections develop within the brain. We integrate research on typical brain development and from existing behavioral and neuroimaging research on WS. We conclude with a discussion of how genetic and environmental factors might interact to influence social brain development in WS and how future neuroimaging and behavioral research can further elucidate social brain development in WS. Lastly, we describe how ongoing studies may translate to improved social developmental outcomes for individuals with WS.
Collapse
Affiliation(s)
- Brian W Haas
- Department of Psychology, The University of Georgia Athens, GA, USA
| | | |
Collapse
|
34
|
|
35
|
Mervis CB, Kistler DJ, John AE, Morris CA. Longitudinal assessment of intellectual abilities of children with Williams syndrome: multilevel modeling of performance on the Kaufman Brief Intelligence Test-Second Edition. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2012; 117:134-55. [PMID: 22515828 PMCID: PMC3334347 DOI: 10.1352/1944-7558-117.2.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Multilevel modeling was used to address the longitudinal stability of standard scores (SSs) measuring intellectual ability for children with Williams syndrome (WS). Participants were 40 children with genetically confirmed WS who completed the Kaufman Brief Intelligence Test-Second Edition (KBIT-2; A. S. Kaufman & N. L. Kaufman, 2004 ) 4-7 times over a mean of 5.06 years. Mean age at first assessment was 7.44 years (range = 4.00-13.97 years). On average, KBIT-2 Composite IQ, Verbal SS, and Nonverbal SS were stable from 4 to 17 years, although there were significant individual differences in intercept (Composite IQ, Verbal SS, Nonverbal SS) and slope (Composite IQ, Nonverbal SS). Maternal education was significantly related to Verbal SS intercept. No significant sex differences were found. Implications for studies of genotype/phenotype correlations in WS are discussed.
Collapse
Affiliation(s)
- Carolyn B Mervis
- Department of Psychology and Brain Sciences, University of Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
36
|
From natural geometry to spatial cognition. Neurosci Biobehav Rev 2012; 36:799-824. [PMID: 22206900 DOI: 10.1016/j.neubiorev.2011.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 01/29/2023]
|
37
|
Vallortigara G. Core knowledge of object, number, and geometry: a comparative and neural approach. Cogn Neuropsychol 2012; 29:213-36. [PMID: 22292801 DOI: 10.1080/02643294.2012.654772] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Studies on the ontogenetic origins of human knowledge provide evidence for a small set of separable systems of core knowledge dealing with the representation of inanimate and animate objects, number, and geometry. Because core knowledge systems are evolutionarily ancient, they can be investigated from a comparative perspective, making use of various animal models. In this review, I discuss evidence showing precocious abilities in nonhuman species to represent (a) objects that move partly or fully out of view and their basic mechanical properties such as solidity, (b) the cardinal and ordinal/sequential aspects of numerical cognition and rudimentary arithmetic with small numerosities, and (c) the geometrical relationships among extended surfaces in the surrounding layout. Controlled rearing studies suggest that the abilities associated with core knowledge systems of objects, number, and geometry are observed in animals in the absence (or with very reduced) experience, supporting a nativistic foundation of such cognitive mechanisms. Animal models also promise a fresh approach to the issue of the neurobiological and genetic mechanisms underlying the expression of core knowledge systems.
Collapse
|
38
|
Farran EK, Courbois Y, Van Herwegen J, Blades M. How useful are landmarks when learning a route in a virtual environment? Evidence from typical development and Williams syndrome. J Exp Child Psychol 2012; 111:571-86. [PMID: 22244218 DOI: 10.1016/j.jecp.2011.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 07/25/2011] [Accepted: 10/14/2011] [Indexed: 10/14/2022]
Abstract
The ability to learn a route through a virtual environment was assessed in 19 older children and adults with Williams syndrome (WS) and 40 typically developing (TD) children aged 6-9 years. In addition to comparing route-learning ability across groups, we were interested in whether participants show an adult-like differentiation between "useful" and "less useful" landmarks when learning a route and the relative salience of landmark position versus landmark identity. Each virtual environment consisted of a brick wall maze with six junctions. There were 16 landmarks in the maze, half of which were on the correct path and half on incorrect paths. Results showed that both groups could learn each route to criterion (two successful completions of a route without error). During the learning phase, the WS group produced more errors than the TD group and took longer to reach criterion. This was predominantly due to the large number of perseverative errors (i.e., errors that were made at the same choice point on consecutive learning trials) made by the WS group relative to the TD children. We suggest that this reflects a difficulty in inhibiting erroneous responses in WS. During the test phase, the TD group showed stronger recall of landmarks adjacent to junctions (more useful landmarks) than of landmarks along path sections (less useful landmarks) independent of each individual's level of nonverbal ability. This pattern was also evident in the WS group but was related to level of nonverbal maturation; the differentiation between recall of junction and path landmarks increased as nonverbal ability increased across WS participants. Overall, the results demonstrate that individuals with WS can learn a route but that the development of this ability is atypical.
Collapse
Affiliation(s)
- Emily K Farran
- Department of Psychology and Human Development, Institute of Education, University of London, 25 Woburn Square, London WC1H 0AA, UK.
| | | | | | | |
Collapse
|
39
|
Abstract
Genetics has fascinated societies since ancient times, and references to traits or behaviors that appear to be shared or different among related individuals have permeated legends, literature, and popular culture. Biomedical advances from the past century, and particularly the discovery of the DNA double helix, the increasing numbers of links that were established between mutations and medical conditions or phenotypes, and technological advances that facilitated the sequencing of the human genome, catalyzed the development of genetic testing. Genetic tests were initially performed in health care facilities, interpreted by health care providers, and included the availability of counseling. Recent years have seen an increased availability of genetic tests that are offered by companies directly to consumers, a phenomenon that became known as direct-to-consumer genetic testing. Tests offered in this setting range from the ones that are also provided in health care establishments to tests known as ‘recreational genomics,’ and consumers directly receive the test results. In addition, testing in this context often does not involve the availability of counseling and, when this is provided, it frequently occurs on-line or over the phone. As a field situated at the interface between biotechnology, biomedical research, and social sciences, direct-to-consumer genetic testing opens multiple challenges that can be appropriately addressed only by developing a complex, inter-disciplinary framework.
Collapse
|
40
|
Shusterman A, Ah Lee S, Spelke ES. Cognitive effects of language on human navigation. Cognition 2011; 120:186-201. [PMID: 21665199 DOI: 10.1016/j.cognition.2011.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 04/18/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
Language has been linked to spatial representation and behavior in humans, but the nature of this effect is debated. Here, we test whether simple verbal expressions improve 4-year-old children's performance in a disoriented search task in a small rectangular room with a single red landmark wall. Disoriented children's landmark-guided search for a hidden object was dramatically enhanced when the experimenter used certain verbal expressions to designate the landmark during the hiding event. Both a spatial expression ("I'm hiding the sticker at the red/white wall") and a non-spatial but task-relevant expression ("The red/white wall can help you get the sticker") enhanced children's search, relative to uncued controls. By contrast, a verbal expression that drew attention to the landmark in a task-irrelevant manner ("Look at this pretty red/white wall") produced no such enhancement. These findings provide further evidence that language changes spatial behavior in children and illuminate one mechanism through which language exerts its effect: by helping children understand the relevance of landmarks for encoding locations.
Collapse
Affiliation(s)
- Anna Shusterman
- Department of Psychology, Wesleyan University, Middletown, CT 06459, United States.
| | | | | |
Collapse
|
41
|
Impaired representation of geometric relationships in humans with damage to the hippocampal formation. PLoS One 2011; 6:e19507. [PMID: 21611122 PMCID: PMC3097200 DOI: 10.1371/journal.pone.0019507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/30/2011] [Indexed: 11/19/2022] Open
Abstract
The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks.
Collapse
|
42
|
Cosentino E. Self in time and language. Conscious Cogn 2011; 20:777-83. [PMID: 21212002 DOI: 10.1016/j.concog.2010.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/24/2010] [Accepted: 12/10/2010] [Indexed: 11/30/2022]
Abstract
Time has been considered a crucial factor in distinguishing between two levels of self-awareness: the "core," or "minimal self," and the "extended," or "narrative self." Herein, I focus on this last concept of the self and, in particular, on the relationship between the narrative self and language. In opposition to the claim that the narrative self is a linguistic construction, my idea is that it is created by the functioning of mental time travel, that is, the faculty of human beings to project themselves mentally backwards in time to relive, or forward to anticipate, events. Moreover, I propose that narrative language itself should be considered a product of a core brain network that includes mechanisms, such as mental time travel, mindreading, and visuo-spatial systems.
Collapse
Affiliation(s)
- Erica Cosentino
- Department of Philosophical Researches, University of Rome Tor Vergata, via Columbia, 1-00133 Roma, Italy.
| |
Collapse
|
43
|
O'Hearn K, Roth JK, Courtney SM, Luna B, Street W, Terwillinger R, Landau B. Object recognition in Williams syndrome: uneven ventral stream activation. Dev Sci 2010; 14:549-65. [PMID: 21477194 DOI: 10.1111/j.1467-7687.2010.01002.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Williams syndrome (WS) is a genetic disorder associated with severe visuospatial deficits, relatively strong language skills, heightened social interest, and increased attention to faces. On the basis of the visuospatial deficits, this disorder has been characterized primarily as a deficit of the dorsal stream, the occipitoparietal brain regions that subserve visuospatial processing. However, some evidence indicates that this disorder may also affect the development of the ventral stream, the occipitotemporal cortical regions that subserve face and object recognition. The present studies examined ventral stream function in WS, with the hypothesis that faces would produce a relatively more mature pattern of ventral occipitotemporal activation, relative to other objects that are also represented across these visual areas. Using functional magnetic imaging, we compared activation patterns during viewing of human faces, cat faces, houses and shoes in individuals with WS (age 14-27), typically developing 6-9-year-olds (matched approximately on mental age), and typically developing 14-26-year-olds (matched on chronological age). Typically developing individuals exhibited changes in the pattern of activation over age, consistent with previous reports. The ventral stream topography of individuals with WS differed from both control groups, however, reflecting the same level of activation to face stimuli as chronological age matches, but less activation to house stimuli than either mental age or chronological age matches. We discuss the possible causes of this unusual topography and implications for understanding the behavioral profile of people with WS.
Collapse
|
44
|
Origins of spatial, temporal and numerical cognition: Insights from comparative psychology. Trends Cogn Sci 2010; 14:552-60. [PMID: 20971031 DOI: 10.1016/j.tics.2010.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 11/20/2022]
Abstract
Contemporary comparative cognition has a large repertoire of animal models and methods, with concurrent theoretical advances that are providing initial answers to crucial questions about human cognition. What cognitive traits are uniquely human? What are the species-typical inherited predispositions of the human mind? What is the human mind capable of without certain types of specific experiences with the surrounding environment? Here, we review recent findings from the domains of space, time and number cognition. These findings are produced using different comparative methodologies relying on different animal species, namely birds and non-human great apes. The study of these species not only reveals the range of cognitive abilities across vertebrates, but also increases our understanding of human cognition in crucial ways.
Collapse
|
45
|
Lee SA, Spelke ES. Two systems of spatial representation underlying navigation. Exp Brain Res 2010; 206:179-88. [PMID: 20614214 DOI: 10.1007/s00221-010-2349-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 06/19/2010] [Indexed: 01/29/2023]
Abstract
We review evidence for two distinct cognitive processes by which humans and animals represent the navigable environment. One process uses the shape of the extended 3D surface layout to specify the navigator's position and orientation. A second process uses objects and patterns as beacons to specify the locations of significant objects. Although much of the evidence for these processes comes from neurophysiological studies of navigating animals and neuroimaging studies of human adults, behavioral studies of navigating children shed light both on the nature of these systems and on their interactions.
Collapse
Affiliation(s)
- Sang Ah Lee
- Department of Psychology, Harvard University, 11th Floor, Cambridge, MA 02138, USA.
| | | |
Collapse
|
46
|
A modular geometric mechanism for reorientation in children. Cogn Psychol 2010; 61:152-76. [PMID: 20570252 DOI: 10.1016/j.cogpsych.2010.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 04/25/2010] [Accepted: 04/27/2010] [Indexed: 11/22/2022]
Abstract
Although disoriented young children reorient themselves in relation to the shape of the surrounding surface layout, cognitive accounts of this ability vary. The present paper tests three theories of reorientation: a snapshot theory based on visual image-matching computations, an adaptive combination theory proposing that diverse environmental cues to orientation are weighted according to their experienced reliability, and a modular theory centering on encapsulated computations of the shape of the extended surface layout. Seven experiments test these theories by manipulating four properties of objects placed within a cylindrical space: their size, motion, dimensionality, and distance from the space's borders. Their findings support the modular theory and suggest that disoriented search behavior centers on two processes: a reorientation process based on the geometry of the 3D surface layout, and a beacon-guidance process based on the local features of objects and surface markings.
Collapse
|
47
|
Edgin JO, Pennington BF, Mervis CB. Neuropsychological components of intellectual disability: the contributions of immediate, working, and associative memory. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2010; 54:406-17. [PMID: 20537047 PMCID: PMC3088787 DOI: 10.1111/j.1365-2788.2010.01278.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Efficient memory functions are important to the development of cognitive and functional skills, allowing individuals to manipulate and store information. Theories of memory have suggested the presence of domain-specific (i.e. verbal and spatial) and general processing mechanisms across memory domains, including memory functions dependent on the prefrontal cortex (PFC) and the hippocampus. Comparison of individuals who have syndromes associated with striking contrasts in skills on verbal and spatial tasks [e.g. Down syndrome (DS) and Williams syndrome (WS)] allows us to test whether or not these dissociations may extend across cognitive domains, including PFC and hippocampal memory processes. METHODS The profile of memory function, including immediate memory (IM), working memory (WM) and associative memory (AM), was examined in a sample of adolescents and young adults with DS (n = 27) or WS (n = 28), from which closely CA- and IQ-matched samples of individuals with DS (n = 18) or WS (n = 18) were generated. Relations between memory functions and IQ and adaptive behaviour were also assessed in the larger sample. RESULTS Comparisons of the two matched groups indicated significant differences in verbal IM (DS < WS), spatial IM (DS > WS) and spatial and verbal AM (DS > WS), but no between-syndrome differences in WM. For individuals with DS, verbal IM was the most related to variation in IQ, and spatial AM related to adaptive behaviour. The pattern was clearly different for individuals with WS. Verbal and spatial AM were the most related to variation in IQ, and verbal WM related to adaptive behaviour. CONCLUSIONS These results suggest that individuals with these two syndromes have very different patterns of relative strengths and weaknesses on memory measures, which do not fully mirror verbal and spatial dissociations. Furthermore, different patterns of memory dysfunction relate to outcome in individuals with each syndrome.
Collapse
Affiliation(s)
- Jamie O Edgin
- Department of Psychology, University of Denver, Denver, Colorado, USA.
| | | | | |
Collapse
|
48
|
Merla G, Brunetti-Pierri N, Micale L, Fusco C. Copy number variants at Williams–Beuren syndrome 7q11.23 region. Hum Genet 2010; 128:3-26. [DOI: 10.1007/s00439-010-0827-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/13/2010] [Indexed: 01/06/2023]
|