1
|
Bonaventura R, Zito F, Morroni L, Pellegrini D, Regoli F, Pinsino A. Development and validation of new analytical methods using sea urchin embryo bioassay to evaluate dredged marine sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111862. [PMID: 33385898 DOI: 10.1016/j.jenvman.2020.111862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Management of dredged materials disposal is regulated by several environmental normative requirements, and it is often supported by the integration of chemical data with ecotoxicological characterization. The reliability of a bioassay to assess the potential toxicity of dredged sediments requires the selection of quality criteria that should be based on simple analytical methods and easily understandable hazard for politicians and environmental managers. The sea urchin embryo-toxicity bioassay is considered an essential component for evaluating the quality of sediments in harbour areas but its use, when based exclusively on the observation of normal vs. abnormal embryos, may alter the interpretation of the results, overestimating the risk assessment. To improve the reliability of this assay in establishing a causative relationship between quality of sediments and sea urchin embryonic development, here we developed and validated three Integrative Toxicity Indexes (ITI 2.0, ITI 3.0, ITI 4.0), modifying the already-known ITI (here ITI 1.0). Based on this aim, we used Taranto harbour as a model pilot-study to compare results to those obtained from standard criteria. Among the tested indexes, the ITI 4.0, discriminating strictly developmental delay and morphological defects from fertilized egg to gastrula stage, resulted in the most promising.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Istituto per La Ricerca e L'Innovazione Biomedica (IRIB), Consiglio Nazionale Delle Ricerche, Via Ugo La Malfa, 153, Palermo, 90146, Italy
| | - Francesca Zito
- Istituto per La Ricerca e L'Innovazione Biomedica (IRIB), Consiglio Nazionale Delle Ricerche, Via Ugo La Malfa, 153, Palermo, 90146, Italy
| | - Lorenzo Morroni
- Istituto Superiore per La Protezione e La Ricerca Ambientale (ISPRA), Via Del Cedro 38, Livorno, 57122, Italy
| | - David Pellegrini
- Istituto Superiore per La Protezione e La Ricerca Ambientale (ISPRA), Via Del Cedro 38, Livorno, 57122, Italy
| | - Francesco Regoli
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Annalisa Pinsino
- Istituto per La Ricerca e L'Innovazione Biomedica (IRIB), Consiglio Nazionale Delle Ricerche, Via Ugo La Malfa, 153, Palermo, 90146, Italy.
| |
Collapse
|
2
|
Buckley KM, Dong P, Cameron RA, Rast JP. Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms. Brief Funct Genomics 2019; 17:362-371. [PMID: 29045542 DOI: 10.1093/bfgp/elx031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome sequences contain all the necessary information-both coding and regulatory sequences-to construct an organism. The developmental process translates this genomic information into a three-dimensional form. One interpretation of this translation process can be described using gene regulatory network (GRN) models, which are maps of interactions among regulatory gene products in time and space. As high throughput investigations reveal increasing complexity within these GRNs, it becomes apparent that efficient methods are required to test the necessity and sufficiency of regulatory interactions. One of the most complete GRNs for early development has been described in the purple sea urchin, Strongylocentrotus purpuratus. This work has been facilitated by two resources: a well-annotated genome sequence and transgenes generated in bacterial artificial chromosome (BAC) constructs. BAC libraries played a central role in assembling the S. purpuratus genome sequence and continue to serve as platforms for generating reporter constructs for use in expression and regulatory analyses. Optically transparent echinoderm larvae are highly amenable to transgenic approaches and are therefore particularly well suited for experiments that rely on BAC-based reporter transgenes. Here, we discuss the experimental utility of BAC constructs in the context of understanding developmental processes in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Ping Dong
- California Institute of Technology, California, USA
| | - R Andrew Cameron
- Beckman Institute Center for Computational Regulatory Genomics, California Institute for Technology, California, USA
| | | |
Collapse
|
3
|
Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins. Proc Natl Acad Sci U S A 2018; 114:5870-5877. [PMID: 28584090 DOI: 10.1073/pnas.1610603114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Establishing a timeline for the evolution of novelties is a common, unifying goal at the intersection of evolutionary and developmental biology. Analyses of gene regulatory networks (GRNs) provide the ability to understand the underlying genetic and developmental mechanisms responsible for the origin of morphological structures both in the development of an individual and across entire evolutionary lineages. Accurately dating GRN novelties, thereby establishing a timeline for GRN evolution, is necessary to answer questions about the rate at which GRNs and their subcircuits evolve, and to tie their evolution to paleoenvironmental and paleoecological changes. Paleogenomics unites the fossil record and all aspects of deep time, with modern genomics and developmental biology to understand the evolution of genomes in evolutionary time. Recent work on the regulatory genomic basis of development in cidaroid echinoids, sand dollars, heart urchins, and other nonmodel echinoderms provides an ideal dataset with which to explore GRN evolution in a comparative framework. Using divergence time estimation and ancestral state reconstructions, we have determined the age of the double-negative gate (DNG), the subcircuit which specifies micromeres and skeletogenic cells in Strongylocentrotus purpuratus We have determined that the DNG has likely been used for euechinoid echinoid micromere specification since at least the Late Triassic. The innovation of the DNG thus predates the burst of post-Paleozoic echinoid morphological diversification that began in the Early Jurassic. Paleogenomics has wide applicability for the integration of deep time and molecular developmental data, and has wide utility in rigorously establishing timelines for GRN evolution.
Collapse
|
4
|
Minokawa T. Comparative studies on the skeletogenic mesenchyme of echinoids. Dev Biol 2017; 427:212-218. [PMID: 27856261 DOI: 10.1016/j.ydbio.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022]
Abstract
Skeletogenic mesenchyme cells in echinoids are suitable for studying developmental mechanisms, and have been used extensively. Most of these studies have been performed on species in the order Camarodonta, which are modern echinoids (subclass Euechinoidea) and are considered "model" echinoid species. In contrast, species belonging to other orders are studied less frequently, especially investigations of their molecular developmental biology such as gene regulatory networks. Recent studies on mesenchyme development in non-camarodont species suggest that these species are potential sources of comparative information to elucidate the mechanisms underlying skeletogenic mesenchyme development. In this review, the importance of using comparative data to understand development and evolution is discussed.
Collapse
Affiliation(s)
- Takuya Minokawa
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, Aomori 039-3501, Japan.
| |
Collapse
|
5
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
6
|
Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses. Proc Natl Acad Sci U S A 2015; 112:E4075-84. [PMID: 26170318 DOI: 10.1073/pnas.1509845112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of animal body plans occurs with changes in the encoded genomic programs that direct development, by alterations in the structure of encoded developmental gene-regulatory networks (GRNs). However, study of this most fundamental of evolutionary processes requires experimentally tractable, phylogenetically divergent organisms that differ morphologically while belonging to the same monophyletic clade, plus knowledge of the relevant GRNs operating in at least one of the species. These conditions are met in the divergent embryogenesis of the two extant, morphologically distinct, echinoid (sea urchin) subclasses, Euechinoidea and Cidaroidea, which diverged from a common late Paleozoic ancestor. Here we focus on striking differences in the mode of embryonic skeletogenesis in a euechinoid, the well-known model Strongylocentrotus purpuratus (Sp), vs. the cidaroid Eucidaris tribuloides (Et). At the level of descriptive embryology, skeletogenesis in Sp and Et has long been known to occur by distinct means. The complete GRN controlling this process is known for Sp. We carried out targeted functional analyses on Et skeletogenesis to identify the presence, or demonstrate the absence, of specific regulatory linkages and subcircuits key to the operation of the Sp skeletogenic GRN. Remarkably, most of the canonical design features of the Sp skeletogenic GRN that we examined are either missing or operate differently in Et. This work directly implies a dramatic reorganization of genomic regulatory circuitry concomitant with the divergence of the euechinoids, which began before the end-Permian extinction.
Collapse
|
7
|
Sun M, Cheng X, Socolar JES. Regulatory logic and pattern formation in the early sea urchin embryo. J Theor Biol 2014; 363:80-92. [PMID: 25093827 DOI: 10.1016/j.jtbi.2014.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 06/10/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
We model the endomesoderm tissue specification process in the vegetal half of the early sea urchin embryo using Boolean models with continuous-time updating to represent the regulatory network that controls gene expression. Our models assume that the network interaction rules remain constant over time and the dynamics plays out on a predetermined program of cell divisions. An exhaustive search of two-node models, in which each node may represent a module of several genes in the real regulatory network, yields a unique network architecture that can accomplish the pattern formation task at hand--the formation of three latitudinal tissue bands from an initial state with only two distinct cell types. Analysis of an eight-gene model constructed from available experimental data reveals that it has a modular structure equivalent to the successful two-node case. Our results support the hypothesis that the gene regulatory network provides sufficient instructions for producing the correct pattern of tissue specification at this stage of development (between the fourth and tenth cleavages in the urchin embryo).
Collapse
Affiliation(s)
- Mengyang Sun
- Duke University, Physics Department, Box 90305, Durham, NC 27708, USA.
| | - Xianrui Cheng
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, CCSR Building, Stanford, CA 94305, USA.
| | - Joshua E S Socolar
- Duke University, Physics Department, Box 90305, Durham, NC 27708, USA; Duke University, Duke Center for Systems Biology, Durham, NC 27708, USA.
| |
Collapse
|
8
|
Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo. Proc Natl Acad Sci U S A 2014; 111:E5029-38. [PMID: 25385617 DOI: 10.1073/pnas.1419141111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Wnt signaling affects cell-fate specification processes throughout embryonic development. Here we take advantage of the well-studied gene regulatory networks (GRNs) that control pregastrular sea urchin embryogenesis to reveal the gene regulatory functions of the entire Wnt-signaling system. Five wnt genes, three frizzled genes, two secreted frizzled-related protein 1 genes, and two Dickkopf genes are expressed in dynamic spatial patterns in the pregastrular embryo of Strongylocentrotus purpuratus. We present a comprehensive analysis of these genes in each embryonic domain. Total functions of the Wnt-signaling system in regulatory gene expression throughout the embryo were studied by use of the Porcupine inhibitor C59, which interferes with zygotic Wnt ligand secretion. Morpholino-mediated knockdown of each expressed Wnt ligand demonstrated that individual Wnt ligands are functionally distinct, despite their partially overlapping spatial expression. They target specific embryonic domains and affect particular regulatory genes. The sum of the effects of blocking expression of individual wnt genes is shown to equal C59 effects. Remarkably, zygotic Wnt-signaling inputs are required for only three general aspects of embryonic specification: the broad activation of endodermal GRNs, the regional specification of the immediately adjacent stripe of ectoderm, and the restriction of the apical neurogenic domain. All Wnt signaling in this pregastrular embryo is short range (and/or autocrine). Furthermore, we show that the transcriptional drivers of wnt genes execute important specification functions in the embryonic domains targeted by the ligands, thus connecting the expression and function of wnt genes by encoded cross-regulatory interactions within the specific regional GRNs.
Collapse
|
9
|
Yamazaki A, Kidachi Y, Yamaguchi M, Minokawa T. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate. Development 2014; 141:2669-79. [PMID: 24924196 DOI: 10.1242/dev.104331] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Echinoids (sea urchins) are divided into two major groups - cidaroids (a 'primitive' group) and euechinoids (a 'derived' group). The cidaroids are a promising model species for understanding the ancestral developmental mechanisms in echinoids, but little is known about the molecular mechanisms of cidaroid development. In euechinoids, skeletogenic mesenchyme cell specification is regulated by the double-negative gate (DNG), in which hesC represses the transcription of the downstream mesenchyme specification genes (alx1, tbr and ets1), thereby defining the prospective mesenchyme region. To estimate the ancestral mechanism of larval mesenchyme cell specification in echinoids, the expression patterns and roles of mesenchyme specification genes in the cidaroid Prionocidaris baculosa were examined. The present study reveals that the expression pattern and function of hesC in P. baculosa were inconsistent with the DNG model, suggesting that the euechinoid-type DNG is not utilized during cidaroid mesenchyme specification. In contrast with hesC, the expression patterns and functions of alx1, tbr and ets1 were similar between P. baculosa and euechinoids. Based on these results, we propose that the roles of alx1, tbr and ets1 in mesenchyme specification were established in the common ancestor of echinoids, and that the DNG system was acquired in the euechinoid lineage after divergence from the cidaroid ancestor. The evolutionary timing of the establishment of the DNG suggests that the DNG was originally related to micromere and/or primary mesenchyme cell formation but not to skeletogenic cell differentiation.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, Aomori 039-3501, Japan
| | - Yumi Kidachi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori, Aomori 030-0943, Japan
| | - Masaaki Yamaguchi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, Aomori 039-3501, Japan
| |
Collapse
|
10
|
Fischer AHL, Tulin S, Fredman D, Smith J. Employing BAC-reporter constructs in the sea anemone Nematostella vectensis. Integr Comp Biol 2013; 53:832-46. [PMID: 23956207 DOI: 10.1093/icb/ict091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Changes in the expression and function of genes drive evolutionary change. Comparing how genes are regulated in different species is therefore becoming an important part of evo-devo studies. A key tool for investigating the regulation of genes is represented by bacterial artificial chromosomes (BAC)-reporter constructs. BACs are large insert libraries, often >100 kb, which thus capture the genomic sequences surrounding a gene of interest, including all, or nearly all, of the elements underpinning regulation. Recombinant BACs, containing a reporter gene in place of the endogenous coding sequence of genes, can be utilized to drive the expression of reporter genes under the regulatory control of the gene of interest while still embedded within its genomic context. Systematic deletions within the BAC-reporter construct can be used to identify the minimal reporter in an unbiased way, avoiding the risk of overlooking regulatory elements that may be many kilobases away from the transcription start-site. Nematostella vectensis (Edwardsiidae, Anthozoa, Cnidaria) has become an important model in regenerative biology, ecology, and especially in studies of evo-devo and gene-regulatory networks due to its interesting phylogenetic position and amenability to molecular techniques. The increasing interest in this rising model system also led to a demand for methods that can be used to study the regulation of genes in Nematostella. Here, we present our progress in employing BAC-reporter constructs to visualize gene-expression in Nematostella. Using a new Nematostella-specific recombination cassette, we made nine different BAC-reporter constructs. Although five BAC recombinants gave variable effects, three constructs, namely Nv-bra:eGFP::L10 BAC, Nv-dpp:eGFP::L10 BAC, and Nv-grm:eGFP::L10 BAC delivered promising results. We show that these three constructs express the reporter gene eGFP in 10.4-17.2% of all analyzed larvae, out of which 26.2-41.9% express GFP in a mosaic fashion within the expected domain. In addition to the expression within the known domains, we also observed cases of misexpression of eGFP and examples that could represent actual expression outside the described domain. Furthermore, we deep-sequenced and assembled five different BACs containing Nv-chordin, Nv-foxa, Nv-dpp, Nv-wnta, and Nv-wnt1, to improve assembly around these genes. The use of BAC-reporter constructs will foster cis-regulatory analyses in Nematostella and thus help to improve our understanding of the regulatory network in this cnidarian system. Ultimately, this will advance the comparison of gene-regulation across species and lead to a much better understanding of evolutionary changes and novelties.
Collapse
Affiliation(s)
- Antje H L Fischer
- *Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Department of Molecular Evolution and Development, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
11
|
Ben-Tabou de-Leon S, Su YH, Lin KT, Li E, Davidson EH. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev Biol 2012; 374:245-54. [PMID: 23211652 DOI: 10.1016/j.ydbio.2012.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/10/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
The regulation of oral-aboral ectoderm specification in the sea urchin embryo has been extensively studied in recent years. The oral-aboral polarity is initially imposed downstream of a redox gradient induced by asymmetric maternal distribution of mitochondria. Two TGF-β signaling pathways, Nodal and BMP, are then respectively utilized in the generation of oral and aboral regulatory states. However, a causal understanding of the regulation of aboral ectoderm specification has been lacking. In this work control of aboral ectoderm regulatory state specification was revealed by combining detailed regulatory gene expression studies, perturbation and cis-regulatory analyses. Our analysis illuminates a dynamic system where different factors dominate at different developmental times. We found that the initial activation of aboral genes depends directly on the redox sensitive transcription factor, hypoxia inducible factor 1α (HIF-1α). Two BMP ligands, BMP2/4 and BMP5/8, then significantly enhance aboral regulatory gene transcription. Ultimately, encoded feedback wiring lockdown the aboral ectoderm regulatory state. Our study elucidates the different regulatory mechanisms that sequentially dominate the spatial localization of aboral regulatory states.
Collapse
Affiliation(s)
- Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Advanced genomics tools enable powerful new strategies for understanding complex biological processes, including development. By extension, we should be able to use these methods in a comparative fashion to capture evolutionary mechanisms. This requires a capacity to go deep and broad, to analyze developmental gene regulatory networks in many organisms, especially nontraditional models. As we usher in a new era of next-generation GRN (gene regulatory network) analysis, it is important to ask how to evaluate the evolution of network interactions. Particularly problematic, as always, is defining "independence": Are two character traits found together because they are functionally linked or because of historical accident? The same basic question applies to understanding developmental GRN evolution. However, the essential difference here is that a GRN defines a causal chain of events. An understanding of causal relations--how Genes A and B work in concert to drive expression of Genes C and D to create a new Territory E--gives hope for establishing "trait independence" in a way that purely correlative arguments--the association of the expression of Gene D in Territory E--never could. Insight into causality provides the key to interpretation, as seen in this simplified scenario. Real-world networks bring new degrees of complexity, but the elucidation of causal relations remains the same. Has the day arrived when a single laboratory has the wherewithal to conduct multiorganism gene network projects in parallel? No. However, we argue that day is closer than one might suppose. We describe how a speedboat GRN project in one's favorite nonmodel organism(s) might look and provide a framework for comparative network analysis.
Collapse
Affiliation(s)
- Antje H L Fischer
- Marine Biology Laboratory, Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02540, USA
| | | |
Collapse
|
13
|
Lyons DC, Kaltenbach SL, McClay DR. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:231-52. [PMID: 23801438 DOI: 10.1002/wdev.18] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The nonskeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events, an increasingly complex input of transcription factors controls the specification and the cell biological events that conduct the gastrulation movements.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Department of Biology, French Family Science Center, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
14
|
Abstract
Embryos of the echinoderms, especially those of sea urchins and sea stars, have been studied as model organisms for over 100 years. The simplicity of their early development, and the ease of experimentally perturbing this development, provides an excellent platform for mechanistic studies of cell specification and morphogenesis. As a result, echinoderms have contributed significantly to our understanding of many developmental mechanisms, including those that govern the structure and design of gene regulatory networks, those that direct cell lineage specification, and those that regulate the dynamic morphogenetic events that shape the early embryo.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
15
|
Smith J, Morgan JR, Zottoli SJ, Smith PJ, Buxbaum JD, Bloom OE. Regeneration in the era of functional genomics and gene network analysis. THE BIOLOGICAL BULLETIN 2011; 221:18-34. [PMID: 21876108 PMCID: PMC4109899 DOI: 10.1086/bblv221n1p18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
What gives an organism the ability to regrow tissues and to recover function where another organism fails is the central problem of regenerative biology. The challenge is to describe the mechanisms of regeneration at the molecular level, delivering detailed insights into the many components that are cross-regulated. In other words, a broad, yet deep dissection of the system-wide network of molecular interactions is needed. Functional genomics has been used to elucidate gene regulatory networks (GRNs) in developing tissues, which, like regeneration, are complex systems. Therefore, we reason that the GRN approach, aided by next generation technologies, can also be applied to study the molecular mechanisms underlying the complex functions of regeneration. We ask what characteristics a model system must have to support a GRN analysis. Our discussion focuses on regeneration in the central nervous system, where loss of function has particularly devastating consequences for an organism. We examine a cohort of cells conserved across all vertebrates, the reticulospinal (RS) neurons, which lend themselves well to experimental manipulations. In the lamprey, a jawless vertebrate, there are giant RS neurons whose large size and ability to regenerate make them particularly suited for a GRN analysis. Adding to their value, a distinct subset of lamprey RS neurons reproducibly fail to regenerate, presenting an opportunity for side-by-side comparison of gene networks that promote or inhibit regeneration. Thus, determining the GRN for regeneration in RS neurons will provide a mechanistic understanding of the fundamental cues that lead to success or failure to regenerate.
Collapse
Affiliation(s)
- Joel Smith
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering and The Josephine Bay Pau Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543
- Co-corresponding authors: and obloom@ nshs.edu
| | - Jennifer R. Morgan
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Steven J. Zottoli
- Department of Biology, 59 Lab Campus Drive, Williams College, Williamstown, Massachusetts 01267 and Cellular Dynamics Program, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02453
| | - Peter J. Smith
- The Biocurrents Research Center, Cellular Dynamics Program, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543
| | - Joseph D. Buxbaum
- Department of Psychiatry and the Friedman Brain Institute, Mount Sinai School of Medicine, One Gustave L Levy Plc, Box 1668, New York, New York 10029
| | - Ona E. Bloom
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030
- Co-corresponding authors: and obloom@ nshs.edu
| |
Collapse
|
16
|
Croce J, Range R, Wu SY, Miranda E, Lhomond G, Peng JCF, Lepage T, McClay DR. Wnt6 activates endoderm in the sea urchin gene regulatory network. Development 2011; 138:3297-306. [PMID: 21750039 PMCID: PMC3133919 DOI: 10.1242/dev.058792] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2011] [Indexed: 12/22/2022]
Abstract
In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network.
Collapse
Affiliation(s)
- Jenifer Croce
- Biologie du Développement, Observatoire Océanologique de Villefranche-sur-Mer, UPMC, UMR7009 CNRS, 06230 Villefranche-sur-Mer, France
| | - Ryan Range
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shu-Yu Wu
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA
| | - Esther Miranda
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA
| | - Guy Lhomond
- Biologie du Développement, Observatoire Océanologique de Villefranche-sur-Mer, UPMC, UMR7009 CNRS, 06230 Villefranche-sur-Mer, France
| | - Jeff Chieh-fu Peng
- Department of Biology, Cox Science Center, University of Miami, Coral Gables, FL 33124, USA
| | - Thierry Lepage
- Biologie du Développement, Observatoire Océanologique de Villefranche-sur-Mer, UPMC, UMR7009 CNRS, 06230 Villefranche-sur-Mer, France
| | - David R. McClay
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Davidson EH. Evolutionary bioscience as regulatory systems biology. Dev Biol 2011; 357:35-40. [PMID: 21320483 DOI: 10.1016/j.ydbio.2011.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/02/2011] [Accepted: 02/06/2011] [Indexed: 01/14/2023]
Abstract
At present several entirely different explanatory approaches compete to illuminate the mechanisms by which animal body plans have evolved. Their respective relevance is briefly considered here in the light of modern knowledge of genomes and the regulatory processes by which development is controlled. Just as development is a system property of the regulatory genome, causal explanation of evolutionary change in developmental process must be considered at a system level. Here I enumerate some mechanistic consequences that follow from the conclusion that evolution of the body plan has occurred by alteration of the structure of developmental gene regulatory networks. The hierarchy and multiple additional design features of these networks act to produce Boolean regulatory state specification functions at upstream phases of development of the body plan. These are created by the logic outputs of network subcircuits, and in modern animals these outputs are impervious to continuous adaptive variation unlike genes operating more peripherally in the network.
Collapse
Affiliation(s)
- Eric H Davidson
- Division of Biology, California Institute of Technology, Pasadena, 91125, USA.
| |
Collapse
|
18
|
Abstract
The evolution of phenotype is often based on changes in gene expression rather than changes in protein-coding sequence. Gene expression is controlled by complex networks of interacting regulators that act through a variety of biochemical mechanisms. Perturbation of these networks can have profound effects on the fitness of organisms. This highlights an important challenge: the investigation of whether the mechanisms and network architectures we observe in Nature evolved in response to selective pressure--and, if so, what that pressure might have been--or whether the architectures are a result of non-adaptive forces. Synthetic biologists aim to construct artificial genetic and biological systems to increase our understanding of Nature as well as for a number of biotechnological applications. In this review, I will highlight how engineering 'synthetic' control of gene expression provides a way to test evolutionary hypotheses. Synthetic biology might allow us to investigate experimentally the evolutionary paths not taken by extant organisms.
Collapse
Affiliation(s)
- Travis S Bayer
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK.
| |
Collapse
|
19
|
Yamazaki A, Furuzawa Y, Yamaguchi M. Conserved early expression patterns of micromere specification genes in two echinoid species belonging to the orders clypeasteroida and echinoida. Dev Dyn 2010; 239:3391-403. [DOI: 10.1002/dvdy.22476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
20
|
Amore G, Casares F. Size matters: the contribution of cell proliferation to the progression of the specification Drosophila eye gene regulatory network. Dev Biol 2010; 344:569-77. [PMID: 20599903 DOI: 10.1016/j.ydbio.2010.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 01/02/2023]
Abstract
Organ development is a complex process in which the activity of scores of interacting transcription factors and signaling pathways need to be integrated with proliferative growth. Developmental gene regulatory networks (GRNs) allow capturing essential regulatory pathways at a systems-level and provide an effective way of approaching such complexity. However typical GRNs studies focus on very early embryonic stages (usually pre-gastrulation) or late stages, when there is little or no cell proliferation, and therefore do not consider how organ growth is integrated in the developmental process. This can be conveniently investigated in the Drosophila melanogaster eye primordium. Here we present a working model meant to illustrate how during a critical period, the second larval stage, changes in cells' proliferative pattern are coordinated with the initiation of the Retinal Determination (RD) gene program. Such changes are regulated in response to two different sources of signal (Wnt1/wg and BMP2/4/dpp) produced by the anterior and posterior ends of the primordium, respectively. The dpp signaling is necessary to trigger the RD program. However in order for it to be effective, cells receiving Dpp have to be out of the wg signaling range. This is obtained thanks to the proliferative growth that precedes the onset of RD expression. With this network model many of the gene regulatory steps previously known to participate in growth and patterning are linked. Analysis of the model highlights a few essential regulatory principles, as well as poses new questions. In addition, these principles might operate during the growth and patterning of other organs.
Collapse
Affiliation(s)
- Gabriele Amore
- Animal Physiology and Evolutionary Laboratory-Stazione Zoologica Anton Dohrn, Napoli, Italy.
| | | |
Collapse
|
21
|
Peter IS, Davidson EH. Modularity and design principles in the sea urchin embryo gene regulatory network. FEBS Lett 2010; 583:3948-58. [PMID: 19932099 DOI: 10.1016/j.febslet.2009.11.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 11/16/2009] [Indexed: 01/22/2023]
Abstract
The gene regulatory network (GRN) established experimentally for the pre-gastrular sea urchin embryo provides causal explanations of the biological functions required for spatial specification of embryonic regulatory states. Here we focus on the structure of the GRN which controls the progressive increase in complexity of territorial regulatory states during embryogenesis; and on the types of modular subcircuits of which the GRN is composed. Each of these subcircuit topologies executes a particular operation of spatial information processing. The GRN architecture reflects the particular mode of embryogenesis represented by sea urchin development. Network structure not only specifies the linkages constituting the genomic regulatory code for development, but also indicates the various regulatory requirements of regional developmental processes.
Collapse
Affiliation(s)
- Isabelle S Peter
- California Institute of Technology, Division of Biology, Pasadena, CA 91125, USA.
| | | |
Collapse
|