1
|
Perra M, Castangia I, Aroffu M, Fulgheri F, Abi-Rached R, Manca ML, Cortés H, Del Prado-Audelo ML, Nomura-Contreras C, Romero-Montero A, Büsselberg D, Leyva-Gómez G, Sharifi-Rad J, Calina D. Maytansinoids in cancer therapy: advancements in antibody-drug conjugates and nanotechnology-enhanced drug delivery systems. Discov Oncol 2025; 16:73. [PMID: 39838217 PMCID: PMC11751265 DOI: 10.1007/s12672-025-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Cancer remains the second leading cause of death globally, driving the need for innovative therapies. Among natural compounds, maytansinoids have shown significant promise, contributing to nearly 25% of recently approved anticancer drugs. Despite their potential, early clinical trials faced challenges due to severe side effects, prompting advancements in delivery systems such as antibody-maytansinoid conjugates (AMCs). This review highlights the anticancer activity of maytansinoids, with a focus on AMCs designed to target cancer cells specifically. Preclinical and clinical studies show that AMCs, including FDA-approved drugs like Kadcyla and Elahere, effectively inhibit tumor growth while reducing systemic toxicity. Key developments include improved synthesis methods, linker chemistry and payload design. Ongoing research aims to enhance the safety and efficacy of AMCs, integrate nanotechnology for drug delivery, and identify novel therapeutic targets. These advancements hold potential to transform maytansinoid-based cancer treatments in the future.
Collapse
Affiliation(s)
- Matteo Perra
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Ines Castangia
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Matteo Aroffu
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Federica Fulgheri
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Rita Abi-Rached
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Maria Letizia Manca
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | | | | | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
2
|
von Arx C, Calderaio C, Calabrese A, Marciano B, Martinelli C, Di Lauro V, Cerillo I, Cianniello D, De Laurentiis M. The multidisciplinary management of HER2-positive breast cancer brain metastases: from new biological insights to future therapeutic options. Front Oncol 2024; 14:1447508. [PMID: 39749036 PMCID: PMC11693720 DOI: 10.3389/fonc.2024.1447508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The advent and success of new drugs for treating HER2-positive metastatic breast cancer has led to a constant improvement in disease and progression-free survival as well as overall survival. Despite these advantages, the overall survival and quality of life of patients with HER2-positive breast cancer brain metastases are significantly worse than the ones of patients with HER2-positive breast cancer metastases outside the brain. For this reason, prevention and treatment of brain metastasis remain a major clinical challenge and the keys to further improving the clinical and survival outcomes of HER2-positive breast cancer patients. This review discusses the etiopathogenesis of brain metastasis, the currently available treatments, and the future perspective on new treatment strategies and diagnostic tools.
Collapse
Affiliation(s)
- Claudia von Arx
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Claudia Calderaio
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alessandra Calabrese
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Benedetta Marciano
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Claudia Martinelli
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Lauro
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Ivana Cerillo
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Daniela Cianniello
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Michelino De Laurentiis
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
| |
Collapse
|
3
|
Gärditz KF, Czesnick H. Paclitaxel - a Product of Fungal Secondary Metabolism or an Artefact? PLANTA MEDICA 2024; 90:726-735. [PMID: 38754434 PMCID: PMC11254485 DOI: 10.1055/a-2309-6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Taxol (common name: paclitaxel) is an extremely important component of drugs for the treatment of various cancers. Thirty years after the discovery of its effectiveness, a metabolic precursor of Taxol (10-deacetylbaccatin III) is still primarily extracted from needles of European yew trees. In order to meet the considerable demand, hopes were pinned on the possibilities of biotechnological production from the very beginning. In 1993, as if by chance, Taxol was supposedly discovered in fungi that grow endobiotically in yew trees. This finding aroused hopes of biotechnological use to produce fungal Taxol in large quantities in fermenters. It never came to that. Instead, a confusing flood of publications emerged that claimed to have detected Taxol in more and more eukaryotic and even prokaryotic species. However, researchers never reproduced these rather puzzling results, and they could certainly not be applied on an industrial scale. This paper will show that some of the misguided approaches were apparently based on a seemingly careless handling of sparse evidence and on at least questionable publications. Apparently, the desired gold rush of commercial exploitation was seductive. Scientific skepticism as an indispensable core of good scientific practice was often neglected, and the peer review process has not exerted its corrective effect. Self-critical reflection and more healthy skepticism could help to reduce the risk of such aberrations in drug development. This article uses this case study as a striking example to show what can be learned from the Taxol case in terms of research ethics and the avoidance of questionable research practices.
Collapse
Affiliation(s)
- Klaus Ferdinand Gärditz
- Institute of Public Law, University of Bonn, Bonn, Germany
- Ombudsman for suspected cases of scientific misconduct, University of Bonn, Bonn, Germany
| | | |
Collapse
|
4
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
5
|
Quiros-Guerrero LM, Allard PM, Nothias LF, David B, Grondin A, Wolfender JL. Comprehensive mass spectrometric metabolomic profiling of a chemically diverse collection of plants of the Celastraceae family. Sci Data 2024; 11:415. [PMID: 38649352 PMCID: PMC11035674 DOI: 10.1038/s41597-024-03094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Natural products exhibit interesting structural features and significant biological activities. The discovery of new bioactive molecules is a complex process that requires high-quality metabolite profiling data to properly target the isolation of compounds of interest and enable their complete structural characterization. The same metabolite profiling data can also be used to better understand chemotaxonomic links between species. This Data Descriptor details a dataset resulting from the untargeted liquid chromatography-mass spectrometry metabolite profiling of 76 natural extracts of the Celastraceae family. The spectral annotation results and related chemical and taxonomic metadata are shared, along with proposed examples of data reuse. This data can be further studied by researchers exploring the chemical diversity of natural products. This can serve as a reference sample set for deep metabolome investigation of this chemically rich plant family.
Collapse
Affiliation(s)
- Luis-Manuel Quiros-Guerrero
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211, Geneva, Switzerland.
| | | | - Louis-Felix Nothias
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211, Geneva, Switzerland
| | - Bruno David
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Antonio Grondin
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211, Geneva, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211, Geneva, Switzerland.
| |
Collapse
|
6
|
Liu Q, Wang Y, Xia X, Li Z, Li Y, Shen Y, Wang H. Combinatorial Biosynthesis of 3- O-Carbamoylmaytansinol by Rational Engineering of the Tailoring Steps of Ansamitocins. ACS Synth Biol 2024; 13:721-727. [PMID: 38377312 DOI: 10.1021/acssynbio.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Currently, most maytansine-containing antibody-drug conjugates (ADCs) in clinical trials are prepared with DM1 or DM4, which in turn is synthesized mainly from ansamitocin P-3 (AP-3), a bacterial maytansinoid, isolated from Actinosynnema pretiosum. However, due to the high self-toxicity of AP-3 to A. pretiosum, the yield of AP-3 has been difficult to improve. Herein, a new maytansinoid with much lower self-toxicity to A. pretiosum, 3-O-carbamoylmaytansinol (CAM, 3), was designed and generated by introducing the 3-O-carbamoyltransferase gene asc21b together with the N-methyltransferase genes from exogenous maytansinoid gene clusters into the 3-O-acyltransferase gene (asm19) deleted mutant HGF052. Meanwhile, two new shunt products, 20-O-demethyl-19-dechloro-N-demethyl-4,5-desepoxy-CAM (4) and 20-O-demethyl-N-demethyl-4,5-desepoxy-CAM (5) were identified from the recombinant strain. Furthermore, by screening of liquid fermentation media, overexpression of bottleneck tailoring enzymes and the pathway-specific activator, the titer of CAM reached 498 mg/L in the engineered strain. Since the 3-O-carbamoyl group of CAM can be removed by chemical cleavage as AP-3 to produce maytansinol, our work suggests that CAM may be a promising alternative to AP-3 in the future development of ADCs.
Collapse
Affiliation(s)
- Qingqing Liu
- State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yu Wang
- State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xin Xia
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongyue Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Xu Z, Li F, Liu Q, Ma T, Feng X, Zhao G, Zeng D, Li D, Jie H. Chemical composition and microbiota changes across musk secretion stages of forest musk deer. Front Microbiol 2024; 15:1322316. [PMID: 38505545 PMCID: PMC10948612 DOI: 10.3389/fmicb.2024.1322316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Forest musk deer is the most important animal for natural musk production, and the musk composition changes periodically during musk secretion, accompanied by variation in the com-position of deer-symbiotic bacteria. GC-MS and 16S rRNA sequencing were conducted in this study, the dynamic changes to correlated chemical composition and the microbiota across musk secretion periods (prime musk secretion period, vigorous musk secretion period and late musk secretion period) were investigated by integrating its serum testosterone level in different mating states. Results showed that the testosterone level, musk composition and microbiota changed with annual cycle of musk secretion and affected by its mating state. Muscone and the testosterone level peaked at vigorous musk secretion period, and the microbiota of this stage was distinct from the other 2 periods. Actinobacteria, Firmicutes and Proteobacteria were dominant bacteria across musk secretion period. PICRUSt analysis demonstrated that bacteria were ubiquitous in musk pod and involved in the metabolism of antibiotics and terpenoids in musk. "Carbohydrates and amino acids," "fatty acids and CoA" and "secretion of metabolites" were enriched at 3 periods, respectively. Pseudomonas, Corynebacterium, Clostridium, Sulfuricurvum were potential biomarkers across musk secretion. This study provides a more comprehensive understanding of genetic mechanism during musk secretion, emphasizing the importance of Actinobacteria and Corynebacterium in the synthesis of muscone and etiocholanone during musk secretion, which required further validation.
Collapse
Affiliation(s)
- Zhongxian Xu
- Sichuan Wildlife Rehabilitation and Breeding Research Center, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feng Li
- Sichuan Wildlife Rehabilitation and Breeding Research Center, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qian Liu
- Sichuan Wildlife Rehabilitation and Breeding Research Center, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Tianyuan Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Feng
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Guijun Zhao
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Dejun Zeng
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hang Jie
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
8
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Herisse M, Ishida K, Staiger-Creed J, Judd L, Williams SJ, Howden BP, Stinear TP, Dahse HM, Voigt K, Hertweck C, Pidot SJ. Discovery and Biosynthesis of the Cytotoxic Polyene Terpenomycin in Human Pathogenic Nocardia. ACS Chem Biol 2023; 18:1872-1879. [PMID: 37498707 DOI: 10.1021/acschembio.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nocardia are opportunistic human pathogens that can cause a range of debilitating and difficult to treat infections of the lungs, brain, skin, and soft tissues. Despite their close relationship to the well-known secondary metabolite-producing genus, Streptomyces, comparatively few natural products are known from the Nocardia, and even less is known about their involvement in the pathogenesis. Here, we combine chemistry, genomics, and molecular microbiology to reveal the production of terpenomycin, a new cytotoxic and antifungal polyene from a human pathogenic Nocardia terpenica isolate. We unveil the polyketide synthase (PKS) responsible for terpenomycin biosynthesis and show that it combines several unusual features, including "split", skipped, and iteratively used modules, and the use of the unusual extender unit methoxymalonate as a starter unit. To link genes to molecules, we constructed a transposon mutant library in N. terpenica, identifying a terpenomycin-null mutant with an inactivated terpenomycin PKS. Our findings show that the neglected actinomycetes have an unappreciated capacity for the production of bioactive molecules with unique biosynthetic pathways waiting to be uncovered and highlights these organisms as producers of diverse natural products.
Collapse
Affiliation(s)
- Marion Herisse
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, Jena 07745, Germany
| | - Jordan Staiger-Creed
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Louise Judd
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Spencer J Williams
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3000, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria3000, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, Jena 07745, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, Jena 07745, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, Jena 07745, Germany
- Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
10
|
Eida AA, Samadi A, Tsunoda T, Mahmud T. Modifications of Acyl Carrier Protein-Bound Glycosylated Polyketides in Pactamycin Biosynthesis. Chemistry 2023; 29:e202301056. [PMID: 37015882 PMCID: PMC10330135 DOI: 10.1002/chem.202301056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
The potent antitumor antibiotic pactamycin is an aminocyclopentitol-containing natural product produced by the soil bacterium Streptomyces pactum. Recent studies showed that the aminocyclopentitol unit is derived from N-acetyl-D-glucosamine, which is attached to an acyl carrier protein (ACP)-bound polyketide by a glycosyltransferase enzyme, PtmJ. Here, we report a series of post-glycosylation modifications of the sugar moiety of the glycosylated polyketide while it is still attached to the carrier protein. In vitro reconstitution of PtmS (an AMP-ligase), PtmI (an ACP), PtmJ, PtmN (an oxidoreductase), PtmA (an aminotransferase), and PtmB (a putative carbamoyltransferase) showed that the N-acetyl-D-glucosamine moiety of the glycosylated polyketide is first oxidized by PtmN and then transaminated by PtmA to give ACP-bound 3-amino-3-deoxy-N-acetyl-D-glucosaminyl polyketide. The amino group is then coupled with carbamoyl phosphate by PtmB to give a urea functionality. We also show that PtmG is a deacetylase that hydrolyses the C-2 N-acetyl group to give a free amine.
Collapse
Affiliation(s)
- Auday A Eida
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331-3507, USA
| | - Arash Samadi
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331-3507, USA
| | - Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331-3507, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331-3507, USA
| |
Collapse
|
11
|
Wei B, Du AQ, Ying TT, Hu GA, Zhou ZY, Yu WC, He J, Yu YL, Wang H, Xu XW. Secondary Metabolic Potential of Kutzneria. JOURNAL OF NATURAL PRODUCTS 2023; 86:1120-1127. [PMID: 36912649 DOI: 10.1021/acs.jnatprod.3c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Kutzneria is a rare genus of Actinobacteria that harbors a variety of secondary metabolite gene clusters and produces several interesting types of bioactive secondary metabolites. Recent efforts have partially elucidated the biosynthetic pathways of some of these bioactive natural products, suggesting the diversity and specificity of secondary metabolism within this genus. Here, we summarized the chemical structures, biosynthetic pathways, and key metabolic enzymes of the secondary metabolites isolated from Kutzneria strains. In-depth comparative genomic analysis of all six available high-quality Kutzneria genomes revealed that the majority (77%) of the biosynthetic gene cluster families of Kutzneria were untapped and identified homologues of key metabolic enzymes in the putative gene clusters, including cytochrome P450s, halogenases, and flavin-dependent N-hydroxylases. The present study suggests that Kutzneria exhibits great potential to synthesize novel secondary metabolites, encodes a variety of valuable metabolic enzymes, and also provides valuable information for the targeted discovery and biosynthesis of novel natural products from Kutzneria.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ao-Qi Du
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ti-Ti Ying
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gang-Ao Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Chao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing He
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan-Lei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| |
Collapse
|
12
|
Kudo F, Kishikawa K, Tsuboi K, Kido T, Usui T, Hashimoto J, Shin-Ya K, Miyanaga A, Eguchi T. Acyltransferase Domain Exchange between Two Independent Type I Polyketide Synthases in the Same Producer Strain of Macrolide Antibiotics. Chembiochem 2023; 24:e202200670. [PMID: 36602093 DOI: 10.1002/cbic.202200670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Streptomyces graminofaciens A-8890 produces two macrolide antibiotics, FD-891 and virustomycin A, both of which show significant biological activity. In this study, we identified the virustomycin A biosynthetic gene cluster, which encodes type I polyketide synthases (PKSs), ethylmalonyl-CoA biosynthetic enzymes, methoxymalony-acyl carrier protein biosynthetic enzymes, and post-PKS modification enzymes. Next, we demonstrated that the acyltransferase domain can be exchanged between the Vsm PKSs and the PKSs involved in FD-891 biosynthesis (Gfs PKSs), without any supply problems of the unique extender units. We exchanged the malonyltransferase domain in the loading module of Gfs PKS with the ethylmalonyltransferase domain and the methoxymalonyltransferase domain of Vsm PKSs. Consequently, the expected two-carbon-elongated analog 26-ethyl-FD-891 was successfully produced with a titer comparable to FD-891 production by the wild type; however, exchange with the methoxymalonyltransferase domain did not produce any FD-891 analogs. Furthermore, 26-ethyl-FD-891 showed potent cytotoxic activity against HeLa cells, like natural FD-891.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Kosuke Kishikawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Kazuma Tsuboi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Takafusa Kido
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| |
Collapse
|
13
|
Multifunctional Enzymes in Microbial Secondary Metabolic Processes. Catalysts 2023. [DOI: 10.3390/catal13030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Microorganisms possess a strong capacity for secondary metabolite synthesis, which is represented by tightly controlled networks. The absence of any enzymes leads to a change in the original metabolic pathway, with a decrease in or even elimination of a synthetic product, which is not permissible under conditions of normal life activities of microorganisms. In order to improve the efficiency of secondary metabolism, organisms have evolved multifunctional enzymes (MFEs) that can catalyze two or more kinds of reactions via multiple active sites. However, instead of interfering, the multifunctional catalytic properties of MFEs facilitate the biosynthetic process. Among the numerous MFEs considered of vital importance in the life activities of living organisms are the synthases involved in assembling the backbone of compounds using different substrates and modifying enzymes that confer the final activity of compounds. In this paper, we review MFEs in terms of both synthetic and post-modifying enzymes involved in secondary metabolic biosynthesis, focusing on polyketides, non-ribosomal peptides, terpenoids, and a wide range of cytochrome P450s(CYP450s), and provide an overview and describe the recent progress in the research on MFEs.
Collapse
|
14
|
Xu D, Metz J, Harmody D, Peterson T, Winder P, Guzmán EA, Russo R, McCarthy PJ, Wright AE, Wang G. Brominated and Sulfur-Containing Angucyclines Derived from a Single Pathway: Identification of Nocardiopsistins D-F. Org Lett 2022; 24:7900-7904. [PMID: 36269561 DOI: 10.1021/acs.orglett.2c02879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One novel brominated nocardiopsistin D (1) and two new sulfur-containing nocardiopsistins E-F (2-3) were identified from Nocardiopsis sp. HB-J378. The biosynthetic gene cluster ncd featuring a brominase was identified. Compounds 1-3 exhibited significant anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activities with minimum inhibitory concentrations (MICs) of 0.098, 3.125, and 0.195 μg/mL, respectively. The single bromination in 1 drastically enhanced the anti-MRSA activity by 128-fold without altering cell toxicity and acquired new activities against the bacterial pathogens vancomycin-resistant S. aureus (VRSA), Enterococcus faecium, and Bacillus cereus.
Collapse
Affiliation(s)
- Dongbo Xu
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Jackie Metz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Dedra Harmody
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Tara Peterson
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Priscilla Winder
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Esther A Guzmán
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Riccardo Russo
- Regional Bio-Containment Laboratory, Department of Medicine, Rutgers University, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Peter J McCarthy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Amy E Wright
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| |
Collapse
|
15
|
Guo S, Sun X, Li R, Zhang T, Hu F, Liu F, Hua Q. Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR-Cas9. BIORESOUR BIOPROCESS 2022; 9:90. [PMID: 38647752 PMCID: PMC10991131 DOI: 10.1186/s40643-022-00583-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR-Cas9apre system was developed from pCRISPR-Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR-Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a "glycolate" extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR-Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR-Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tianyao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
16
|
Vu MT, Geraldi A, Do HDK, Luqman A, Nguyen HD, Fauzia FN, Amalludin FI, Sadila AY, Wijaya NH, Santoso H, Manuhara YSW, Bui LM, Hariyanto S, Wibowo AT. Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes. BIOLOGY 2022; 11:biology11050695. [PMID: 35625422 PMCID: PMC9138652 DOI: 10.3390/biology11050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Soil salinity and mineral deficiency are major problems in agriculture. Many studies have reported that plant-associated microbiota, particularly rhizosphere and root microbiota, play a crucial role in tolerance against salinity and mineral deficiency. Nevertheless, there are still many unknown parts of plant–microbe interaction, especially regarding their role in halophyte adaptation to coastal ecosystems. Here, we report the bacterial community associated with the roots of coastal sand dune halophytes Spinifex littoreus and Calotropis gigantea, and the soil properties that affect their composition. Strong correlations were observed between root bacterial diversity and soil mineral composition, especially with soil Calcium (Ca), Titanium (Ti), Cuprum (Cu), and Zinc (Zn) content. Soil Ti and Zn content showed a positive correlation with bacterial diversity, while soil Ca and Cu had a negative effect on bacterial diversity. A strong correlation was also found between the abundance of several bacterial species with soil salinity and mineral content, suggesting that some bacteria are responsive to changes in soil salinity and mineral content. Some of the identified bacteria, such as Bacillus idriensis and Kibdelosporangium aridum, are known to have growth-promoting effects on plants. Together, the findings of this work provided valuable information regarding bacterial communities associated with the roots of sand dune halophytes and their interactions with soil properties. Furthermore, we also identified several bacterial species that might be involved in tolerance against stresses. Further work will be focused on isolation and transplantation of these potential microbes, to validate their role in plant tolerance against stresses, not only in their native hosts but also in crops.
Collapse
Affiliation(s)
- Minh Thiet Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (M.T.V.); (H.D.K.D.); (H.D.N.)
| | - Almando Geraldi
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Biotechnology of Tropical Medicinal Plants Research Group, Airlangga University, Surabaya 60115, Indonesia
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (M.T.V.); (H.D.K.D.); (H.D.N.)
| | - Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
| | - Hoang Danh Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (M.T.V.); (H.D.K.D.); (H.D.N.)
| | - Faiza Nur Fauzia
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Fahmi Ikhlasul Amalludin
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Aliffa Yusti Sadila
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Nabilla Hapsari Wijaya
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Heri Santoso
- Generasi Biologi Indonesia (Genbinesia) Foundation, Gresik 61171, Indonesia;
| | - Yosephine Sri Wulan Manuhara
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Biotechnology of Tropical Medicinal Plants Research Group, Airlangga University, Surabaya 60115, Indonesia
| | - Le Minh Bui
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Sucipto Hariyanto
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Correspondence: (S.H.); (A.T.W.)
| | - Anjar Tri Wibowo
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Biotechnology of Tropical Medicinal Plants Research Group, Airlangga University, Surabaya 60115, Indonesia
- Correspondence: (S.H.); (A.T.W.)
| |
Collapse
|
17
|
Zhang P, Zhang K, Liu Y, Fu J, Zong G, Ma X, Cao G. Deletion of the Response Regulator PhoP Accelerates the Formation of Aerial Mycelium and Spores in Actinosynnema pretiosum. Front Microbiol 2022; 13:845620. [PMID: 35464974 PMCID: PMC9019756 DOI: 10.3389/fmicb.2022.845620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
PhoPR is an important two-component signal transduction system (TCS) for microorganisms to sense and respond to phosphate limitation. Although the response regulator PhoP controls morphological development and secondary metabolism in various Streptomyces species, the function of PhoP in Actinosynnema pretiosum remains unclear. In this study, we showed that PhoP significantly represses the morphological development of the A. pretiosum X47 strain. Production of aerial mycelium and spore formation occurred much earlier in the ΔphoP strain than in X47 during growth on ISP2 medium. Transcription analysis indicated that 222 genes were differentially expressed in ∆phoP compared to strain X47. Chemotaxis genes (cheA, cheW, cheX, and cheY); flagellum biosynthesis and motility genes (flgBCDGKLN, flaD, fliD-R, motA, and swrD); and differentiation genes (whiB and ssgB) were significantly upregulated in ∆phoP. Gel-shift analysis indicated that PhoP binds to the promoters of flgB, flaD, and ssgB genes, and PHO box-like motif with the 8-bp conserved sequence GTTCACGC was identified. The transcription of phoP/phoR of X47 strain was induced at low phosphate concentration. Our results demonstrate that PhoP is a negative regulator that controls the morphological development of A. pretiosum X47 by repressing the transcription of differentiation genes.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kunyu Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yayu Liu
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiafang Fu
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Gongli Zong
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Ma
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guangxiang Cao
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
18
|
Cheng H, Xiong G, Li Y, Zhu J, Xiong X, Wang Q, Zhang L, Dong H, Zhu C, Liu G, Chen H. Increased yield of AP-3 by inactivation of asm25 in Actinosynnema pretiosum ssp. auranticum ATCC 31565. PLoS One 2022; 17:e0265517. [PMID: 35316825 PMCID: PMC8939807 DOI: 10.1371/journal.pone.0265517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Asamitocins are maytansinoids produced by Actinosynnema pretiosum ssp. auranticum ATCC 31565 (A. pretiosum ATCC 31565), which have a structure similar to that of maytansine, therefore serving as a precursor of maytansine in the development of antibody-drug conjugates (ADCs). Currently, there are more than 20 known derivatives of ansamitocins, among which ansamitocin P-3 (AP-3) exhibits the highest antitumor activity. Despite its importance, the application of AP-3 is restricted by low yield, likely due to a substrate competition mechanism underlying the synthesis pathways of AP-3 and its byproducts. Given that N-demethylansamitocin P-3, the precursor of AP-3, is regulated by asm25 and asm10 to synthesize AGP-3 and AP-3, respectively, asm25 is predicted to be an inhibitory gene for AP-3 production. In this study, we inactivated asm25 in A. pretiosum ATCC 31565 by CRISPR-Cas9-guided gene editing. asm25 depletion resulted in a more than 2-fold increase in AP-3 yield. Surprisingly, the addition of isobutanol further improved AP-3 yield in the asm25 knockout strain by more than 6 times; in contrast, only a 1.53-fold increase was found in the WT strain under the parallel condition. Thus, we uncovered an unknown function of asm25 in AP-3 yield and identified asm25 as a promising target to enhance the large-scale industrial production of AP-3.
Collapse
Affiliation(s)
- Hong Cheng
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Guoqing Xiong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Yi Li
- Academy of Military Medical Sciences, Beijing, China
| | - Jiaqi Zhu
- Academy of Military Medical Sciences, Beijing, China
- School of Life Science and Technology, Dalian University, Dalian, China
| | | | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, China
| | | | - Haolong Dong
- Academy of Military Medical Sciences, Beijing, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Skrzypczak N, Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat Prod Rep 2022; 39:1678-1704. [PMID: 35262153 DOI: 10.1039/d2np00004k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2011 to 2021The structural division of ansamycins, including those of atypical cores and different lengths of the ansa chains, is presented. Recently discovered benzenoid and atypical ansamycin scaffolds are presented in relation to their natural source and biosynthetic routes realized in bacteria as well as their muta and semisynthetic modifications influencing biological properties. To better understand the structure-activity relationships among benzenoid ansamycins structural aspects together with mechanisms of action regarding different targets in cells, are discussed. The most promising directions for structural optimizations of benzenoid ansamycins, characterized by predominant anticancer properties, were discussed in view of their potential medical and pharmaceutical applications. The bibliography of the review covers mainly years from 2011 to 2021.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
20
|
Pearson C, Tindall S, Potts JR, Thomas GH, van der Woude MW. Diverse functions for acyltransferase-3 proteins in the modification of bacterial cell surfaces. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001146. [PMID: 35253642 PMCID: PMC9558356 DOI: 10.1099/mic.0.001146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022]
Abstract
The acylation of sugars, most commonly via acetylation, is a widely used mechanism in bacteria that uses a simple chemical modification to confer useful traits. For structures like lipopolysaccharide, capsule and peptidoglycan, that function outside of the cytoplasm, their acylation during export or post-synthesis requires transport of an activated acyl group across the membrane. In bacteria this function is most commonly linked to a family of integral membrane proteins - acyltransferase-3 (AT3). Numerous studies examining production of diverse extracytoplasmic sugar-containing structures have identified roles for these proteins in O-acylation. Many of the phenotypes conferred by the action of AT3 proteins influence host colonisation and environmental survival, as well as controlling the properties of biotechnologically important polysaccharides and the modification of antibiotics and antitumour drugs by Actinobacteria. Herein we present the first systematic review, to our knowledge, of the functions of bacterial AT3 proteins, revealing an important protein family involved in a plethora of systems of importance to bacterial function that is still relatively poorly understood at the mechanistic level. By defining and comparing this set of functions we draw out common themes in the structure and mechanism of this fascinating family of membrane-bound enzymes, which, due to their role in host colonisation in many pathogens, could offer novel targets for the development of antimicrobials.
Collapse
Affiliation(s)
| | - Sarah Tindall
- Department of Biology, University of York, Heslington, UK
| | | | - Gavin H. Thomas
- Department of Biology, University of York, Heslington, UK
- York Biomedical Institute, University of York, Heslington, UK
| | - Marjan W. van der Woude
- York Biomedical Institute, University of York, Heslington, UK
- Hull York Medical School, Heslington, UK
| |
Collapse
|
21
|
Vardhan S, Sahoo SK. Virtual screening by targeting proteolytic sites of furin and TMPRSS2 to propose potential compounds obstructing the entry of SARS-CoV-2 virus into human host cells. J Tradit Complement Med 2022; 12:6-15. [PMID: 33868970 PMCID: PMC8040387 DOI: 10.1016/j.jtcme.2021.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND AIM The year 2020 begins with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that cause the disease COVID-19, and continue till today. As of March 23, 2021, the outbreak has infected 124,313,054 worldwide with a total death of 2,735,707. The use of traditional medicines as an adjuvant therapy with western drugs can lower the fatality rate due to the COVID-19. Therefore, in silico molecular docking study was performed to search potential phytochemicals and drugs that can block the entry of SARS-CoV-2 into host cells by inhibiting the proteolytic cleavage activity of furin and TMPRSS2. EXPERIMENTAL PROCEDURE The protein-protein docking of the host proteases furin and TMPRSS2 was carried out with the virus spike (S) protein to examine the conformational details and residues involved in the complex formation. Subsequently, a library of 163 ligands containing phytochemicals and drugs was virtually screened to propose potential hits that can inhibit the proteolytic cleavage activity of furin and TMPRSS2. RESULTS AND CONCLUSION The phytochemicals like limonin, gedunin, eribulin, pedunculagin, limonin glycoside and betunilic acid bind at the active site of both furin and TMPRSS2. Limonin and gedunin found mainly in the citrus fruits and neem showed the highest binding energy at the active site of furin and TMPRSS2, respectively. The polyphenols found in green tea can also be useful in suppressing the furin activity. Among the drugs, the drug nafamostat may be more beneficial than the camostat in suppressing the activity of TMPRSS2.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| |
Collapse
|
22
|
Ekaney LYE, Eni DB, Ntie-Kang F. Chemical similarity methods for analyzing secondary metabolite structures. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The relation that exists between the structure of a compound and its function is an integral part of chemoinformatics. The similarity principle states that “structurally similar molecules tend to have similar properties and similar molecules exert similar biological activities”. The similarity of the molecules can either be studied at the structure level or at the descriptor level (properties level). Generally, the objective of chemical similarity measures is to enhance prediction of the biological activities of molecules. In this article, an overview of various methods used to compare the similarity between metabolite structures has been provided, including two-dimensional (2D) and three-dimensional (3D) approaches. The focus has been on methods description; e.g. fingerprint-based similarity in which the molecules under study are first fragmented and their fingerprints are computed, 2D structural similarity by comparing the Tanimoto coefficients and Euclidean distances, as well as the use of physiochemical properties descriptor-based similarity methods. The similarity between molecules could also be measured by using data mining (clustering) techniques, e.g. by using virtual screening (VS)-based similarity methods. In this approach, the molecules with the desired descriptors or /and structures are screened from large databases. Lastly, SMILES-based chemical similarity search is an important method for studying the exact structure search, substructure search and also descriptor similarity. The use of a particular method depends upon the requirements of the researcher.
Collapse
Affiliation(s)
- Lena Y. E. Ekaney
- Faculty of Science, Department of Chemistry , University of Buea , P.O. Box 63 , Buea , Cameroon
| | - Donatus B. Eni
- Faculty of Science, Department of Chemistry , University of Buea , P.O. Box 63 , Buea , Cameroon
- Department of Inorganic Chemistry, Faculty of Science , University of Yaoundé I , Yaoundé , Cameroon
| | - Fidele Ntie-Kang
- Faculty of Science, Department of Chemistry , University of Buea , P.O. Box 63 , Buea , Cameroon
- Department of Pharmaceutical Chemistry , Martin-Luther University Halle-Wittenberg , Kurt-Mothes-Str. 3 , Halle (Saale) , 06120 Germany
- Department of Informatics and Chemistry , University of Chemistry and Technology Prague , Technická 5 Prague 6 , Dejvice , 166 28 Czech Republic
| |
Collapse
|
23
|
Li J, Guo S, Hua Q, Hu F. Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling. Biotechnol Lett 2021; 43:1143-1154. [PMID: 33751317 DOI: 10.1007/s10529-020-03034-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Ansamitocin (AP-3) is an ansamycins antibiotic isolated from Actinosynnema pretiosum and demonstrating high anti-tumor activity. To improve AP-3 production, the A. pretiosum ATCC 31565 strain was treated with atmospheric and room temperature plasma (ARTP). Four stable mutants were obtained by ARTP, of which the A. pretiosum L-40 mutant produced 242.9 mg/L AP-3, representing a 22.5% increase compared to the original wild type strain. With seed medium optimization, AP-3 production of mutant L-40 reached 307.8 mg/L; qRT-PCR analysis revealed that AP-3 biosynthesis-related gene expression was significantly up-regulated under optimized conditions. To further improve the AP-3 production, genome shuffling (GS) technology was used on the four A. pretiosum mutants by ARTP. After three rounds of GS combined with high-throughput screening, the genetically stable recombinant strain G3-96 was obtained. The production of AP-3 in the G3-96 strain was 410.1 mg/L in shake flask cultures, which was 44.5% higher than the L-40 production from the parental strain, and AP-3 was increased by 93.8% compared to the wild-type A. pretiosum. These results suggest that the combination of mutagenesis, seed medium optimization, and GS technology can effectively improve the AP-3 production capacity of A. pretiosum and provide an enabling methodology for AP-3 industrial production.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
24
|
Wang X, Wei J, Xiao Y, Luan S, Ning X, Bai L. Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Appl Microbiol Biotechnol 2021; 105:695-706. [PMID: 33394151 DOI: 10.1007/s00253-020-11044-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 12/31/2022]
Abstract
Ansamitocin P-3 (AP-3) exhibits potent biological activities against various tumor cells. As an important drug precursor, reliable supply of AP-3 is limited by low fermentation yield. Although different strategies have been implemented to improve AP-3 yield, few have investigated the impact of efflux on AP-3 production. In this study, AP-3 efflux genes were identified through combined analysis of two sets of transcriptomes. The production-based transcriptome was implemented to search for efflux genes highly expressed in response to AP-3 accumulation during the fermentation process, while the resistance-based transcriptome was designed to screen for genes actively expressed in response to the exogenous supplementation of AP-3. After comprehensive analysis of two transcriptomes, six efflux genes outside the ansamitocin BGC were identified. Among the six genes, individual deletion of APASM_2704, APASM_6861, APASM_3193, and APASM_2805 resulted in decreased AP-3 production, and alternative overexpression led to AP-3 yield increase from 264.6 to 302.4, 320.4, 330.6, and 320.6 mg/L, respectively. Surprisingly, APASM_2704 was found to be responsible for exportation of AP-3 and another macro-lactam antibiotic pretilactam. Furthermore, growth of APASM_2704, APASM_3193, or APASM_2805 overexpression mutants was obviously improved under 300 mg/L AP-3 supplementation. In summary, our study has identified AP-3 efflux genes outside the ansamitocin BGC by comparative transcriptomic analysis, and has shown that enhancing the transcription of transporter genes can improve AP-3 production, shedding light on strategies used for exporter screening and antibiotic production improvement. KEY POINTS: • AP-3-related efflux genes were identified by transcriptomic analysis. • Deletion of the identified efflux genes led in AP-3 yield decrease. • Overexpression of the efflux genes resulted in increased AP-3 production.
Collapse
Affiliation(s)
- Xinran Wang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes for Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianhua Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhui Luan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinjuan Ning
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Menon BRK, Richmond D, Menon N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1823788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binuraj R. K. Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel Richmond
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Navya Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
26
|
Wesemann F, Heutling A, Wienecke P, Kirschning A. First Ring-Expanded Maytansin Lactone Accessed by a New Mutasynthetic Variant. Chembiochem 2020; 21:2927-2930. [PMID: 32484951 PMCID: PMC7689855 DOI: 10.1002/cbic.202000336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/15/2022]
Abstract
A multiblocked mutant strain (ΔAHBA and Δasm12, asm21) of Actinosynnema pretiosum, the producer of the highly toxic maytansinoid ansamitocin, has been used for the mutasynthetic production of new proansamitocin derivatives. The use of mutant strains that are blocked in the biosynthesis of an early building block as well as in the expression of two tailoring enzymes broadens the scope of chemo-biosynthetic access to new maytansinoids. Remarkably, a ring-expanded macrolactone derived from ansamitocin was created for the first time.
Collapse
Affiliation(s)
- Friederike Wesemann
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Anja Heutling
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Paul Wienecke
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
27
|
Wu Y, Kang Q, Zhang LL, Bai L. Subtilisin-Involved Morphology Engineering for Improved Antibiotic Production in Actinomycetes. Biomolecules 2020; 10:biom10060851. [PMID: 32503302 PMCID: PMC7356834 DOI: 10.3390/biom10060851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
In the submerged cultivation of filamentous microbes, including actinomycetes, complex morphology is one of the critical process features for the production of secondary metabolites. Ansamitocin P-3 (AP-3), an antitumor agent, is a secondary metabolite produced by Actinosynnema pretiosum ATCC 31280. An excessive mycelial fragmentation of A. pretiosum ATCC 31280 was observed during the early stage of fermentation. Through comparative transcriptomic analysis, a subtilisin-like serine peptidase encoded gene APASM_4178 was identified to be responsible for the mycelial fragmentation. Mutant WYT-5 with the APASM_4178 deletion showed increased biomass and improved AP-3 yield by 43.65%. We also found that the expression of APASM_4178 is specifically regulated by an AdpA-like protein APASM_1021. Moreover, the mycelial fragmentation was alternatively alleviated by the overexpression of subtilisin inhibitor encoded genes, which also led to a 46.50 ± 0.79% yield increase of AP-3. Furthermore, APASM_4178 was overexpressed in salinomycin-producing Streptomyces albus BK 3-25 and validamycin-producing S. hygroscopicus TL01, which resulted in not only dispersed mycelia in both strains, but also a 33.80% yield improvement of salinomycin to 24.07 g/L and a 14.94% yield improvement of validamycin to 21.46 g/L. In conclusion, our work elucidates the involvement of a novel subtilisin-like serine peptidase in morphological differentiation, and modulation of its expression could be an effective strategy for morphology engineering and antibiotic yield improvement in actinomycetes.
Collapse
Affiliation(s)
- Yuanting Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Li Zhang
- College of Life Science, Tarim University, Alar 843300, China;
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Tarim University, Alar 843300, China;
- Correspondence:
| |
Collapse
|
28
|
Liu T, Jin Z, Wang Z, Chen J, Wei LJ, Hua Q. Metabolomics analysis of Actinosynnema pretiosum with improved AP-3 production by enhancing UDP-glucose biosynthesis. J Biosci Bioeng 2020; 130:36-47. [PMID: 32179024 DOI: 10.1016/j.jbiosc.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Ansamitocin P-3 (AP-3) shows strong anticancer effects and has used as a payload for antibody-drug conjugates. Our previous study have shown that although genetically engineered Actinosynnema pretiosum strains with enhanced UDP-glucose (UDPG) biosynthesis displayed improved AP-3 production compared to the wild-type strain, the increase in yield was far from meeting the industrial demand. In this study, comparative metabolomics analysis complemented with quantitative real-time PCR analysis was performed for the wild-type strain and two mutants (OpgmOugp, ΔzwfΔgnd) to identify possible metabolic bottlenecks and non-intuitive targets for further enhancement of AP-3 production. We observed that enhancing intracellular UDPG availability facilitated the accumulation of intracellular N-demethyl-AP-3 and AP-3, where the transporting of them outside the cell still needs to be developed. We also found that the UDPG biosynthesis was closely associated with the availability of fructose in the medium and a suitable fructose feeding strategy could promote the further improvement of AP-3 titer. In addition, pathway abundance analysis revealed that undesired fatty acid accumulation and down-regulation of amino acid metabolism may be unfavorable for ansamitocin biosynthesis in later stage of production. These results indicate that genetic modification of the UDPG biosynthetic pathways may have pleiotropic effects on AP-3 production. Efforts must be made to eliminate these newly identified metabolic bottlenecks to boost AP-3 production in A. pretiosum.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ziwen Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ziwei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
29
|
Zhang F, Ji H, Ali I, Deng Z, Bai L, Zheng J. Structural and Biochemical Insight into the Recruitment of Acyl Carrier Protein-Linked Extender Units in Ansamitocin Biosynthesis. Chembiochem 2020; 21:1309-1314. [PMID: 31777147 DOI: 10.1002/cbic.201900628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 01/17/2023]
Abstract
A few acyltransferase (AT) domains of modular polyketide synthases (PKSs) recruit acyl carrier protein (ACP)-linked extender units with unusual C2 substituents to confer functionalities that are not available in coenzyme A (CoA)-linked ones. In this study, an AT specific for methoxymalonyl (MOM)-ACP in the third module of the ansamitocin PKS was structurally and biochemically characterized. The AT uses a conserved tryptophan residue at the entrance of the substrate binding tunnel to discriminate between different carriers. A W275R mutation switches its carrier specificity from the ACP to the CoA molecule. The acyl-AT complex structures clearly show that the MOM-ACP accepted by the AT has the 2S instead of the opposite 2R stereochemistry that is predicted according to the biosynthetic derivation from a d-glycolytic intermediate. Together, these results reveal the structural basis of ATs recognizing ACP-linked extender units in polyketide biosynthesis.
Collapse
Affiliation(s)
- Fa Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, 200240, Shanghai, P. R. China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, 200240, Shanghai, P. R. China
| | - Imtiaz Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, 200240, Shanghai, P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, 200240, Shanghai, P. R. China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, 200240, Shanghai, P. R. China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, 200240, Shanghai, P. R. China
| |
Collapse
|
30
|
Kim HS, Park WK, Lee B, Seon G, Suh WI, Moon M, Chang YK. Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Sci Rep 2019; 9:19383. [PMID: 31852948 PMCID: PMC6920485 DOI: 10.1038/s41598-019-55854-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
The heterotrophic cultivation of microalgae has a number of notable advantages, which include allowing high culture density levels as well as enabling the production of biomass in consistent and predictable quantities. In this study, the full potential of Chlorella sp. HS2 is explored through optimization of the parameters for its heterotrophic cultivation. First, carbon and nitrogen sources were screened in PhotobioBox. Initial screening using the Plackett-Burman design (PBD) was then adopted and the concentrations of the major nutrients (glucose, sodium nitrate, and dipotassium phosphate) were optimized via response surface methodology (RSM) with a central composite design (CCD). Upon validation of the model via flask-scale cultivation, the optimized BG11 medium was found to result in a three-fold improvement in biomass amounts, from 5.85 to 18.13 g/L, in comparison to a non-optimized BG11 medium containing 72 g/L glucose. Scaling up the cultivation to a 5-L fermenter resulted in a greatly improved biomass concentration of 35.3 g/L owing to more efficient oxygenation of the culture. In addition, phosphorus feeding fermentation was employed in an effort to address early depletion of phosphate, and a maximum biomass concentration of 42.95 g/L was achieved, with biomass productivity of 5.37 g/L/D.
Collapse
Affiliation(s)
- Hee Su Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won-Kun Park
- Department of Chemistry and Energy Engineering, Sangmyung University, 20 Hongimun 2-gil, Jongno-gu, Seoul, 03016, Republic of Korea
| | - Bongsoo Lee
- Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea
| | - Gyeongho Seon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - William I Suh
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Buk-gu, Gwangju, 61003, Republic of Korea.
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
31
|
Guan H, Li Y, Zheng J, Liu N, Zhang J, Tan H. Important role of a LAL regulator StaR in the staurosporine biosynthesis and high-production of Streptomyces fradiae CGMCC 4.576. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1638-1654. [PMID: 31820200 DOI: 10.1007/s11427-019-1597-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 01/27/2023]
Abstract
Staurosporine, belonging to indolocarbazole compounds, is regarded as an excellent lead compound for synthesizing antitumor agents as a potent inhibitor against various protein kinases. In this study, two separate clusters (cluster A and cluster B), corresponding to biosyntheses of K-252c (staurosporine aglycone) and sugar moiety, were identified in Streptomyces fradiae CGMCC 4.576 and heterologously expressed in Streptomyces coelicolor M1146 separately or together. StaR, a cluster-situated LAL family regulator, activates staurosporine biosynthesis by binding to the promoter regions of staO-staC and staG-staN. The conserved sequences GGGGG and GCGCG were found through gradually truncating promoters of staO and staG, and further determined by mutational experiments. Overexpression of staR with the supplementation of 0.01 g L-1 FeSO4 increased staurosporine production to 5.2-fold compared with that of the parental strain Streptomyces fradiae CGMCC 4.576 in GYM medium. Our results provided an approach for improvement of staurosporine production mediated by a positive regulator and established the basis for dissecting the regulatory mechanisms of other indolocarbazole compounds with clinical application value.
Collapse
Affiliation(s)
- Hanye Guan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jiazhen Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Domergue J, Erdmann D, Fossey-Jouenne A, Petit JL, Debard A, de Berardinis V, Vergne-Vaxelaire C, Zaparucha A. XszenFHal, a novel tryptophan 5-halogenase from Xenorhabdus szentirmaii. AMB Express 2019; 9:175. [PMID: 31673806 PMCID: PMC6823310 DOI: 10.1186/s13568-019-0898-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 11/27/2022] Open
Abstract
Flavin-dependent halogenases (FHals) catalyse the halogenation of electron-rich substrates, mainly aromatics. Halogenated compounds have many applications, as pharmaceutical, agrochemicals or as starting materials for the synthesis of complex molecules. By exploring the sequenced bacterial diversity, we discovered and characterized XszenFHal, a novel FHal from Xenorhabdus szentirmaii, a symbiotic bacterium of entomopathogenic nematode. The substrate scope of XszenFHal was examined and revealed activities towards tryptophan, indole and indole derivatives, leading to the formation of the corresponding 5-chloro products. XszenFHal makes a valuable addition to the panel of flavin-dependent halogenases already discovered and enriches the potential for biotechnology applications by allowing access to 5-halogenated indole derivatives.
Collapse
|
33
|
Li X, Wu X, Shen Y. Identification of the Bacterial Maytansinoid Gene Cluster asc Provides Insights into the Post-PKS Modifications of Ansacarbamitocin Biosynthesis. Org Lett 2019; 21:5823-5826. [PMID: 31299158 DOI: 10.1021/acs.orglett.9b01891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new biosynthetic gene cluster for the bacterial maytansinoids, ansacarbamitocins (ASCs), was identified in Amycolatopsis alba DSM 44262. The post-PKS modifications of ASCs were elucidated on the basis of bioinformatics analysis. Specific gene disruption and heterologous expression led to the isolation of seven new bacterial maytansinoids. The 3'-O-methyltransferase and 3-O-carbamyltransferase involved in bacterial maytansinoid biosynthesis were identified for the first time. The new bacterial maytansinoids 7 and 13 showed strong antitumor activities against four human cancer cell lines.
Collapse
Affiliation(s)
- Xiaoman Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P. R. China
| | - Xingkang Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P. R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P. R. China
| |
Collapse
|
34
|
Eida AA, Abugrain ME, Brumsted CJ, Mahmud T. Glycosylation of acyl carrier protein-bound polyketides during pactamycin biosynthesis. Nat Chem Biol 2019; 15:795-802. [PMID: 31308531 PMCID: PMC6642016 DOI: 10.1038/s41589-019-0314-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 11/09/2022]
Abstract
Glycosylation is a common modification reaction in natural products biosynthesis and has been known to be a post assembly line tailoring process in glycosylated polyketide biosynthesis. Here, we show that in pactamycin biosynthesis glycosylation can take place on an acyl carrier protein (ACP)-bound polyketide intermediate. Using in vivo gene inactivation, chemical complementation, and in vitro pathway reconstitution we demonstrate that the 3-aminoacetophenone moiety of pactamycin is derived from 3-aminobenzoic acid by a set of discrete polyketide synthase proteins via a 3-[3-aminophenyl]3-oxopropionyl-ACP intermediate. This ACP-bound intermediate is then glycosylated by an N-glycosyltransferase, PtmJ, providing a sugar precursor for the formation of the aminocyclopentitol core structure of pactamycin. This is the first example of glycosylation of a small molecule while tethered to a carrier protein. Additionally, we demonstrate that PtmO is a hydrolase that is responsible for the release of the ACP-bound product to a free β-ketoacid that subsequently undergoes decarboxylation.
Collapse
Affiliation(s)
- Auday A Eida
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Mostafa E Abugrain
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Corey J Brumsted
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA. .,Department of Chemistry, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
35
|
Martín JF, Ramos A, Liras P. Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP. Antibiotics (Basel) 2019; 8:antibiotics8030087. [PMID: 31262015 PMCID: PMC6784220 DOI: 10.3390/antibiotics8030087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/16/2022] Open
Abstract
Geldanamycin and the closely related herbimycins A, B, and C are benzoquinone-type ansamycins with antitumoral activity. They are produced by Streptomyces hygroscopicus var. geldanus, Streptomyces lydicus and Streptomyces autolyticus among other Streptomyces strains. Geldanamycins interact with the Hsp-90 chaperone, a protein that has a key role in tumorigenesis of human cells. Geldanamycin is a polyketide antibiotic and the polyketide synthase contain seven modules organized in three geldanamycin synthases genes named gdmAI, gdmAII, and gdmAIII. The loading domain of GdmI activates AHBA, and also related hydroxybenzoic acid derivatives, forming geldanamycin analogues. Three regulatory genes, gdmRI, gdmRII, and gdmRIII were found associated with the geldanamycin gene cluster in S. hygroscopicus strains. GdmRI and GdmRII are LAL-type (large ATP binding regulators of the LuxR family) transcriptional regulators, while GdmRIII belongs to the TetR-family. All three are positive regulators of geldanamycin biosynthesis and are strictly required for expression of the geldanamycin polyketide synthases. In S. autolyticus the gdmRIII regulates geldanamycin biosynthesis and also expression of genes in the elaiophylin gene cluster, an unrelated macrodiolide antibiotic. The biosynthesis of geldanamycin is very sensitive to the inorganic phosphate concentration in the medium. This regulation is exerted through the two components system PhoR-PhoP. The phoRP genes of S. hygroscopicus are linked to phoU encoding a transcriptional modulator. The phoP gene was deleted in S. hygroscopicus var geldanus and the mutant was unable to grow in SPG medium unless supplemented with 5 mM phosphate. Also, the S. hygroscopicus pstS gene involved in the high affinity phosphate transport was cloned, and PhoP binding sequences (PHO boxes), were found upstream of phoU, phoRP, and pstS; the phoRP-phoU sequences were confirmed by EMSA and nuclease footprinting protection assays. The PhoP binding sequence consists of 11 nucleotide direct repeat units that are similar to those found in S. coelicolor Streptomyces avermitilis and other Streptomyces species. The available genetic information provides interesting tools for modification of the biosynthetic and regulatory mechanisms in order to increase geldanamycin production and to obtain new geldanamycin analogues with better antitumor properties.
Collapse
Affiliation(s)
- Juan F Martín
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain.
| | - Angelina Ramos
- Instituto de Biotecnología (INBIOTEC). Av. Real 1, 24006 León, Spain
| | - Paloma Liras
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain
| |
Collapse
|
36
|
Veeresh K, Gopi HN. Design of Helical Peptide Foldamers through α,β → β,γ Double-Bond Migration. Org Lett 2019; 21:4500-4504. [DOI: 10.1021/acs.orglett.9b01365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuruva Veeresh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Hosahudya N. Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411 008, India
| |
Collapse
|
37
|
Computational identification of co-evolving multi-gene modules in microbial biosynthetic gene clusters. Commun Biol 2019; 2:83. [PMID: 30854475 PMCID: PMC6395733 DOI: 10.1038/s42003-019-0333-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022] Open
Abstract
The biosynthetic machinery responsible for the production of bacterial specialised metabolites is encoded by physically clustered group of genes called biosynthetic gene clusters (BGCs). The experimental characterisation of numerous BGCs has led to the elucidation of subclusters of genes within BGCs, jointly responsible for the same biosynthetic function in different genetic contexts. We developed an unsupervised statistical method able to successfully detect a large number of modules (putative functional subclusters) within an extensive set of predicted BGCs in a systematic and automated manner. Multiple already known subclusters were confirmed by our method, proving its efficiency and sensitivity. In addition, the resulting large collection of newly defined modules provides new insights into the prevalence and putative biosynthetic role of these modular genetic entities. The automated and unbiased identification of hundreds of co-evolving group of genes is an essential breakthrough for the discovery and biosynthetic engineering of high-value compounds.
Collapse
|
38
|
Müller R, Wright GD. Dedication: Heinz Floss and Christopher Walsh-pioneers in natural product chemical biology. J Ind Microbiol Biotechnol 2019; 46:251-255. [PMID: 30729342 DOI: 10.1007/s10295-019-02139-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Rolf Müller
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Gerard D Wright
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada. .,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
39
|
Li Z, Zhu D, Shen Y. Discovery of novel bioactive natural products driven by genome mining. Drug Discov Ther 2018; 12:318-328. [DOI: 10.5582/ddt.2018.01066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhongyue Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University
| | - Deyu Zhu
- School of Basic Medical Sciences, Shandong University
| | - Yuemao Shen
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University
| |
Collapse
|
40
|
Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M, Hertweck C. Unexpected Bacterial Origin of the Antibiotic Icosalide: Two-Tailed Depsipeptide Assembly in Multifarious Burkholderia Symbionts. ACS Chem Biol 2018; 13:2414-2420. [PMID: 30160099 DOI: 10.1021/acschembio.8b00600] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Icosalide is an unusual two-tailed lipocyclopeptide antibiotic that was originally isolated from a fungal culture. Yet, its biosynthesis and ecological function have remained enigmatic. By genome mining and metabolic profiling of a bacterial endosymbiont ( Burkholderia gladioli) of the pest beetle Lagria villosa, we unveiled a bacterial origin of icosalide. Functional analysis of the biosynthetic gene locus revealed an unprecedented nonribosomal peptide synthetase (NRPS) that incorporates two β-hydroxy acids by means of two starter condensation domains in different modules. This unusual assembly line, which may inspire new synthetic biology approaches, is widespread among many symbiotic Burkholderia species from diverse habitats. Biological assays showed that icosalide is active against entomopathogenic bacteria, thus adding to the chemical armory protecting beetle offspring. By creating a null mutant, we found that icosalide is a swarming inhibitor, which may play a role in symbiotic interactions and bears the potential for therapeutic applications.
Collapse
Affiliation(s)
- Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Laura V. Flórez
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
41
|
Yang YH, Yang DS, Li GH, Liu R, Huang XW, Zhang KQ, Zhao PJ. New secondary metabolites from an engineering mutant of endophytic Streptomyces sp. CS. Fitoterapia 2018; 130:17-25. [PMID: 30076887 DOI: 10.1016/j.fitote.2018.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
In previous work, a series of bioactive natural products had been isolated from the plant endophytic Streptomyces sp. CS, which was isolated from Maytenus hookeri. To mine new active metabolites, we describe introducing an alien carbamoyltransferase (asm21) gene into the strain CS by conjugal transfer. As a result, three recombinatorial mutants named CS/asm21-1, CS/asm21-2 and CS/asm21-4 were successfully constructed. Three mutants and wild type CS were cultured on solid medium, and the extracts were detected and analyzed by liquid chromatography-mass spectrometry (LC-MS). The LC-MS profiles showed several unknown peaks that were present in the spectra of extracts of the CS/asm21-4 cultured on oatmeal solid medium. Then, three new naphthomycins O-Q (1-3), a new macrolide hookerolide (4) as well as nine known compounds were obtained from the solid cultured medium. Their structures were identified by spectra data. These new compounds showed moderate antimicrobial activities.
Collapse
Affiliation(s)
- Yin-He Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, PR China
| | - Da-Song Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China; Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Rui Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Xiao-Wei Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China.
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
42
|
Du Z, Zhong J. Rational approach to improve ansamitocin P‐3 production by integrating pathway engineering and substrate feeding in
Actinosynnema pretiosum. Biotechnol Bioeng 2018; 115:2456-2466. [DOI: 10.1002/bit.26775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zhi‐Qiang Du
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Joint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Laboratory of Molecular Biochemical Engineering and Advanced Fermentation TechnologySchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
| | - Jian‐Jiang Zhong
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Joint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Laboratory of Molecular Biochemical Engineering and Advanced Fermentation TechnologySchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
| |
Collapse
|
43
|
Complete Genome Sequence of Actinosynnema pretiosum X47, An Industrial Strain that Produces the Antibiotic Ansamitocin AP-3. Curr Microbiol 2018; 76:954-958. [PMID: 29858620 DOI: 10.1007/s00284-018-1521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
Ansamitocins are extraordinarily potent antitumor agents. Ansamitocin P-3 (AP-3), which is produced by Actinosynnema pretiosum, has been developed as a cytotoxic drug for breast cancer. Despite its importance, AP-3 is of limited applicability because of the low production yield. A. pretiosum strain X47 was developed from A. pretiosum ATCC 31565 by mutation breeding and shows a relatively high AP-3 yield. Here, we analyzed the A. pretiosum X47 genome, which is ~8.13 Mb in length with 6693 coding sequences, 58 tRNA genes, and 15 rRNA genes. The DNA sequence of the ansamitocin biosynthetic gene cluster is highly similar to that of the corresponding cluster in A. pretiosum ATCC 31565, with 99.9% identity. However, RT-qPCR analysis showed that the expression levels of ansamitocin biosynthetic genes were significantly increased in X47 compared with the levels in the wild-type strain, consistent with the higher yield of AP-3 in X47. The annotated complete genome sequence of this strain will facilitate understanding the molecular mechanisms of ansamitocin biosynthesis and regulation in A. pretiosum and help further genetic engineering studies to enhance the production of AP-3.
Collapse
|
44
|
Park SY, Yang D, Ha SH, Lee SY. Metabolic Engineering of Microorganisms for the Production of Natural Compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700190] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Shin Hee Ha
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon 34141 Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
45
|
Liu Y, Chen X, Li Z, Xu W, Tao W, Wu J, Yang J, Deng Z, Sun Y. Functional Analysis of Cytochrome P450s Involved in Streptovaricin Biosynthesis and Generation of Anti-MRSA Analogues. ACS Chem Biol 2017; 12:2589-2597. [PMID: 28858479 DOI: 10.1021/acschembio.7b00467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The streptovaricins, chemically related to the rifamycins, are highly effective antibacterial agents, particularly against mycobacteria. Herein, a bioassay-guided investigation of Streptomyces spectabilis CCTCC M2017417 has led to the characterization of streptovaricins as potent compounds against methicillin-resistant Staphylococcus aureus (MRSA). We identified the streptovaricin biosynthetic gene cluster from S. spectabilis CCTCC M2017417 based on genomic sequencing and bioinformatic analysis. Targeted in-frame deletion of five cytochrome P450 genes (stvP1-P5) resulted in the identification of four new streptovaricin analogues and revealed the functions of these genes as follows: stvP1, stvP4, and stvP5 are responsible for the hydroxylation of C-20, Me-24, and C-28, respectively. stvP2 is possibly involved in formation of the methylenedioxy bridge, and stvP3, a conserved gene found in the biosynthetic cluster for naphthalenic ansamycins, might be related to the formation of a naphthalene ring. Biochemical verification of the hydroxylase activity of StvP1, StvP4, and StvP5 was performed, and StvP1 showed unexpected biocatalytic specificity and promiscuity. More importantly, anti-MRSA studies of streptovaricins and derivatives revealed significant structure-activity relationships (SARs): The hydroxyl group at C-28 plays a vital role in antibacterial activity. The hydroxyl group at C-20 substantially enhances activity in the absence of the methoxycarbonyl side chain at C-24, which can increase the activity regardless of the presence of a hydroxyl group at C-20. The inner lactone ring between C-21 and C-24 shows a positive effect on activity. This work provides meaningful information on the SARs of streptovaricins and demonstrates the utility of the engineering of streptovaricins to yield novel anti-MRSA molecules.
Collapse
Affiliation(s)
- Yuanzhen Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Xu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Zhengyuan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Wei Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Weixin Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| | - Jie Wu
- Renmin Hospital of Wuhan University, Wuhan 430060, People’s Republic of China
| | - Jian Yang
- Renmin Hospital of Wuhan University, Wuhan 430060, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People’s Republic of China
| |
Collapse
|
46
|
Ning X, Wang X, Wu Y, Kang Q, Bai L. Identification and Engineering of Post-PKS Modification Bottlenecks for Ansamitocin P-3 Titer Improvement inActinosynnema pretiosumsubsp. pretiosumATCC 31280. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700484] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/21/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Xinjuan Ning
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Xinran Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yuanting Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
47
|
Identification and characterization of the ficellomycin biosynthesis gene cluster from Streptomyces ficellus. Appl Microbiol Biotechnol 2017; 101:7589-7602. [DOI: 10.1007/s00253-017-8465-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/03/2023]
|
48
|
Du ZQ, Zhang Y, Qian ZG, Xiao H, Zhong JJ. Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum. Biotechnol Bioeng 2017; 114:2794-2806. [DOI: 10.1002/bit.26396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Zhi-Qiang Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Yuan Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
49
|
Interpreting Microbial Biosynthesis in the Genomic Age: Biological and Practical Considerations. Mar Drugs 2017; 15:md15060165. [PMID: 28587290 PMCID: PMC5484115 DOI: 10.3390/md15060165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.
Collapse
|
50
|
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of Halogenase Enzymes for Use in Synthesis. Chem Rev 2017; 118:232-269. [PMID: 28466644 DOI: 10.1021/acs.chemrev.7b00032] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.
Collapse
Affiliation(s)
- Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|