1
|
Feliciello I, Ljubić S, Đermić E, Ivanković S, Zahradka D, Đermić D. Single-strand DNA-binding protein suppresses illegitimate recombination in Escherichia coli, acting in synergy with RecQ helicase. Sci Rep 2024; 14:20476. [PMID: 39227621 PMCID: PMC11372144 DOI: 10.1038/s41598-024-70817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Single-strand DNA-binding proteins SSB/RPA are ubiquitous and essential proteins that bind ssDNA in bacteria/eukaryotes and coordinate DNA metabolic processes such as replication, repair, and recombination. SSB protects ssDNA from degradation by nucleases, while also facilitating/regulating the activity of multiple partner proteins involved in DNA processes. Using Spi- assay, which detects aberrantly excised λ prophage from the E. coli chromosome as a measure of illegitimate recombination (IR) occurrence, we have shown that SSB inhibits IR in several DSB resection pathways. The conditional ssb-1 mutation produced a higher IR increase at the nonpermissive temperature than the recQ inactivation. A double ssb-1 recQ mutant had an even higher level of IR, while showing reduced homologous recombination (HR). Remarkably, the ssb gene overexpression complemented recQ deficiency in suppressing IR, indicating that the SSB function is epistatic to RecQ. Overproduced truncated SSBΔC8 protein, which binds to ssDNA, but does not interact with partner proteins, only partially complemented recQ and ssb-1 mutations, while causing an IR increase in otherwise wild-type bacteria, suggesting that ssDNA binding of SSB is required but not sufficient for effective IR inhibition, which rather entails interaction with RecQ and likely some other protein(s). Our results depict SSB as the main genome caretaker in E. coli, which facilitates HR while inhibiting IR. In enabling high-fidelity DSB repair under physiological conditions SSB is assisted by RecQ helicase, whose activity it controls. Conversely, an excess of SSB renders RecQ redundant for IR suppression.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Sven Ljubić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Edyta Đermić
- Division of Phytomedicine, Department of Plant Pathology, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Siniša Ivanković
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Zahradka
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Damir Đermić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
2
|
Courcelle J, Worley TK, Courcelle CT. Recombination Mediator Proteins: Misnomers That Are Key to Understanding the Genomic Instabilities in Cancer. Genes (Basel) 2022; 13:genes13030437. [PMID: 35327990 PMCID: PMC8950967 DOI: 10.3390/genes13030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recombination mediator proteins have come into focus as promising targets for cancer therapy, with synthetic lethal approaches now clinically validated by the efficacy of PARP inhibitors in treating BRCA2 cancers and RECQ inhibitors in treating cancers with microsatellite instabilities. Thus, understanding the cellular role of recombination mediators is critically important, both to improve current therapies and develop new ones that target these pathways. Our mechanistic understanding of BRCA2 and RECQ began in Escherichia coli. Here, we review the cellular roles of RecF and RecQ, often considered functional homologs of these proteins in bacteria. Although these proteins were originally isolated as genes that were required during replication in sexual cell cycles that produce recombinant products, we now know that their function is similarly required during replication in asexual or mitotic-like cell cycles, where recombination is detrimental and generally not observed. Cells mutated in these gene products are unable to protect and process replication forks blocked at DNA damage, resulting in high rates of cell lethality and recombination events that compromise genome integrity during replication.
Collapse
|
3
|
Lee IPA, Andam CP. Frequencies and characteristics of genome-wide recombination in Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus suis. Sci Rep 2022; 12:1515. [PMID: 35087075 PMCID: PMC8795270 DOI: 10.1038/s41598-022-04995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Streptococcus consists of ecologically diverse species, some of which are important pathogens of humans and animals. We sought to quantify and compare the frequencies and characteristics of within-species recombination in the pan-genomes of Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus suis. We used 1081, 1813 and 1204 publicly available genome sequences of each species, respectively. Based on their core genomes, S. agalactiae had the highest relative rate of recombination to mutation (11.5743) compared to S. pyogenes (1.03) and S. suis (0.57). The proportion of the species pan-genome that have had a history of recombination was 12.85%, 24.18% and 20.50% of the pan-genomes of each species, respectively. The composition of recombining genes varied among the three species, and some of the most frequently recombining genes are implicated in adhesion, colonization, oxidative stress response and biofilm formation. For each species, a total of 22.75%, 29.28% and 18.75% of the recombining genes were associated with prophages. The cargo genes of integrative conjugative elements and integrative and mobilizable elements contained genes associated with antimicrobial resistance and virulence. Homologous recombination and mobilizable pan-genomes enable the creation of novel combinations of genes and sequence variants, and the potential for high-risk clones to emerge.
Collapse
Affiliation(s)
| | - Cheryl P Andam
- University at Albany, State University of New York, New York, 12222, USA.
| |
Collapse
|
4
|
Abstract
Viral recombination is a major evolutionary mechanism driving adaptation processes, such as the ability of host-switching. Understanding global patterns of recombination could help to identify underlying mechanisms and to evaluate the potential risks of rapid adaptation. Conventional approaches (e.g., those based on linkage disequilibrium) are computationally demanding or even intractable when sequence alignments include hundreds of sequences, common in viral data sets. We present a comprehensive analysis of recombination across 30 genomic alignments from viruses infecting humans. In order to scale the analysis and avoid the computational limitations of conventional approaches, we apply newly developed topological data analysis methods able to infer recombination rates for large data sets. We show that viruses, such as ZEBOV and MARV, consistently displayed low levels of recombination, whereas high levels of recombination were observed in Sarbecoviruses, HBV, HEV, Rhinovirus A, and HIV. We observe that recombination is more common in positive single-stranded RNA viruses than in negatively single-stranded RNA ones. Interestingly, the comparison across multiple viruses suggests an inverse correlation between genome length and recombination rate. Positional analyses of recombination breakpoints along viral genomes, combined with our approach, detected at least 39 nonuniform patterns of recombination (i.e., cold or hotspots) in 18 viral groups. Among these, noteworthy hotspots are found in MERS-CoV and Sarbecoviruses (at spike, Nucleocapsid and ORF8). In summary, we have developed a fast pipeline to measure recombination that, combined with other approaches, has allowed us to find both common and lineage-specific patterns of recombination among viruses with potential relevance in viral adaptation.
Collapse
Affiliation(s)
- Juan Ángel Patiño-Galindo
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Ioan Filip
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Detection of Bleomycin-Induced DNA Double-Strand Breaks in Escherichia coli by Pulsed-Field Gel Electrophoresis Using a Rotating Gel Electrophoresis System. Methods Mol Biol 2020. [PMID: 31989523 DOI: 10.1007/978-1-0716-0323-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
DNA double-strand break (DSB) is one of the most genotoxic lesions, and unrepaired DSBs can lead to chromosomal instability and eventually cause cell death. Quantitative markers, such as phosphorylated histone H2AX (γ-H2AX) and p53-binding protein 1 (53BP1) foci in mammalian cells, are not available for the detection of DSBs in prokaryotes. Therefore, as an alternative method, pulsed-field gel electrophoresis (PFGE) is widely used to analyze broken DNA molecules by separating them from intact DNA. Here, we examined the accumulation of bleomycin (BLM)-induced DSBs by PFGE, using a rotating gel electrophoresis (RGE) system. We defined two sets of parameters with distinct advantages; the first one focuses on the analysis of the size of the broken DNA fragments, whereas the second allows for the direct comparison of the accumulation of DSBs among strains and treatments. This method represents a powerful tool for the study of genomic integrity and the characterization of genotoxic substances.
Collapse
|
6
|
Shimamura S, Kaneko T, Ozawa G, Matsumoto MN, Koshiishi T, Takaki Y, Kato C, Takai K, Yoshida T, Fujikura K, Barry JP, Maruyama T. Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams. PLoS One 2017; 12:e0171274. [PMID: 28199404 PMCID: PMC5310779 DOI: 10.1371/journal.pone.0171274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Intracellular thioautotrophic symbionts of deep-sea vesicomyid clams lack some DNA repair genes and are thought to be undergoing reductive genome evolution (RGE). In this study, we addressed two questions, 1) how these symbionts lost their DNA repair genes and 2) how such losses affect RGE. For the first question, we examined genes associated with nucleotide excision repair (NER; uvrA, uvrB, uvrC, uvrD, uvrD paralog [uvrDp] and mfd) in 12 symbionts of vesicomyid clams belonging to two clades (5 clade I and 7 clade II symbionts). While uvrA, uvrDp and mfd were conserved in all symbionts, uvrB and uvrC were degraded in all clade I symbionts but were apparently intact in clade II symbionts. UvrD was disrupted in two clade II symbionts. Among the intact genes in Ca. Vesicomyosocius okutanii (clade I), expressions of uvrD and mfd were detected by reverse transcription-polymerase chain reaction (RT-PCR), but those of uvrA and uvrDp were not. In contrast, all intact genes were expressed in the symbiont of Calyptogena pacifica (clade II). To assess how gene losses affect RGE (question 2), genetic distances of the examined genes in symbionts from Bathymodiolus septemdierum were shown to be larger in clade I than clade II symbionts. In addition, these genes had lower guanine+cytosine (GC) content and higher repeat sequence densities in clade I than measured in clade II. Our results suggest that NER genes are currently being lost from the extant lineages of vesicomyid clam symbionts. The loss of NER genes and mutY in these symbionts is likely to promote increases in genetic distance and repeat sequence density as well as reduced GC content in genomic genes, and may have facilitated reductive evolution of the genome.
Collapse
Affiliation(s)
- Shigeru Shimamura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takashi Kaneko
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Tokyo College of Biotechnology, Kitakoujiya, Ota-ku,Tokyo, Japan
| | - Genki Ozawa
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Mamiko Nishino Matsumoto
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takeru Koshiishi
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takao Yoshida
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Tadashi Maruyama
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
7
|
Study on The Mechanism of Effects of Lomefloxacin on Biological Properties of Bloom Syndrome Helicase*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Singh P, Patil KN, Khanduja JS, Kumar PS, Williams A, Rossi F, Rizzi M, Davis EO, Muniyappa K. Mycobacterium tuberculosis UvrD1 and UvrA proteins suppress DNA strand exchange promoted by cognate and noncognate RecA proteins. Biochemistry 2010; 49:4872-83. [PMID: 20455546 DOI: 10.1021/bi902021d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coli RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.
Collapse
Affiliation(s)
- Pawan Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Maintenance of genome stability is essential for the accurate propagation of genetic information and cell growth and survival. Organisms have therefore developed efficient strategies to prevent DNA lesions and rearrangements. Much of the information concerning these strategies has been obtained through the study of bacterial and nuclear genomes. Comparatively, little is known about how organelle genomes maintain a stable structure. Here, we report that the plastid-localized Whirly ssDNA-binding proteins are required for plastid genome stability in Arabidopsis. We show that a double KO of the genes AtWhy1 and AtWhy3 leads to the appearance of plants with variegated green/white/yellow leaves, symptomatic of nonfunctional chloroplasts. This variegation is maternally inherited, indicating defects in the plastid genome. Indeed, in all variegated lines examined, reorganized regions of plastid DNA are amplified as circular and/or head-tail concatemers. All amplified regions are delimited by short direct repeats of 10-18 bp, strongly suggesting that these regions result from illegitimate recombination between repeated sequences. This type of recombination occurs frequently in plants lacking both Whirlies, to a lesser extent in single KO plants and rarely in WT individuals. Maize mutants for the ZmWhy1 Whirly protein also show an increase in the frequency of illegitimate recombination. We propose a model where Whirlies contribute to plastid genome stability by protecting against illegitimate repeat-mediated recombination.
Collapse
|
10
|
Abstract
The persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. DNA damage is a major consequence of oxidative stress. Unlike the case for other organisms, our previous report suggests a role for a non-base excision repair mechanism for the removal of 8-oxo-7,8-dihydroguanine (8-oxo-G) in P. gingivalis. Because the uvrB gene is known to be important in nucleotide excision repair, the role of this gene in the repair of oxidative stress-induced DNA damage was investigated. A 3.1-kb fragment containing the uvrB gene was PCR amplified from the chromosomal DNA of P. gingivalis W83. This gene was insertionally inactivated using the ermF-ermAM antibiotic cassette and used to create a uvrB-deficient mutant by allelic exchange. When plated on brucella blood agar, the mutant strain, designated P. gingivalis FLL144, was similar in black pigmentation and beta-hemolysis to the parent strain. In addition, P. gingivalis FLL144 demonstrated no significant difference in growth rate, proteolytic activity, or sensitivity to hydrogen peroxide from that of the parent strain. However, in contrast to the wild type, P. gingivalis FLL144 was significantly sensitive to UV irradiation. The enzymatic removal of 8-oxo-G from duplex DNA was unaffected by the inactivation of the uvrB gene. DNA affinity fractionation identified unique proteins that preferentially bound to the oligonucleotide fragment carrying the 8-oxo-G lesion. Collectively, these results suggest that the repair of oxidative stress-induced DNA damage involving 8-oxo-G may occur by a still undescribed mechanism in P. gingivalis.
Collapse
|
11
|
Kuwahara H, Takaki Y, Yoshida T, Shimamura S, Takishita K, Reimer JD, Kato C, Maruyama T. Reductive genome evolution in chemoautotrophic intracellular symbionts of deep-sea Calyptogena clams. Extremophiles 2008; 12:365-74. [PMID: 18305898 DOI: 10.1007/s00792-008-0141-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
To understand reductive genome evolution (RGE), we comparatively analyzed the recently reported small genomes of two chemoautotrophic, intracellular symbionts of deep-sea clams, Calyptogena okutanii and C. magnifica. Both genomes lack most genes for DNA recombination and repair such as recA and mutY. Their genome architectures were highly conserved except one inversion. Many deletions from small (<100 bp) to large (1-11 kbp) sizes were detected and the deletion numbers decreased exponentially with size. Densities of deletions and short-repeats, as well as A+T content were higher in non-coding regions than in coding regions. Because Calyptogena symbiont genomes lack recA, we propose that deletions and the single inversion occurred by RecA-independent recombination (RIR) at short-repeats with simultaneous consumption of repeats, and that short-repeats were regenerated by accelerated mutations with enhanced A+T bias due to the absence of mutY. We further propose that extant Calyptogena symbiont genomes are in an actively reducing stage of RGE consisting of small and large deletions, and the deletions are caused by short-repeat dependent RIR along with regeneration of short-repeats. In future, the RGE rate will slowdown when the gene repertoires approach the minimum gene set necessary for intracellular symbiotic life.
Collapse
Affiliation(s)
- Hirokazu Kuwahara
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Involvement of recQ in the ultraviolet damage repair pathway in Deinococcus radiodurans. Mutat Res 2008; 641:48-53. [PMID: 18343459 DOI: 10.1016/j.mrfmmm.2008.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/27/2007] [Accepted: 02/05/2008] [Indexed: 11/23/2022]
Abstract
Deinococcus radiodurans is a bacterium which can survive extremely DNA damage. To investigate the relationship between recQ and the ultraviolet radiation (UV) damage repair pathway, we created a four mutant strain by constructing recQ knockout mutants in uvrA1, uvrA2, and uvsE backgrounds. Using the rpoB/Rif(r) system, we measured the mutation frequencies and rates in wild type, recQ (MQ), uvsE uvrA1 uvrA2 (TNK006), and uvsE uvrA1 uvrA2 recQ (TQ). We then isolated Rif(r) mutants of these strains and sequenced the rpoB gene. The mutation frequency of TQ was 6.4, 10.1, and 2.43 times that of wild type, MQ, and TNK006, respectively, and resulted in rates of 4.7, 6.71, and 2.15 folds higher than that of wild type, MQ, and TNK006, respectively. All the strains demonstrated specific mutational hotspots. Furthermore, the TQ strain showed a transversion bias that was different from the other three strains. The results indicate that recQ is involved in the ultraviolet damage repair pathway via the interaction between recQ and uvrA1, uvrA2, and uvsE in D. radiodurans.
Collapse
|
13
|
Hori M, Ishiguro C, Suzuki T, Nakagawa N, Nunoshiba T, Kuramitsu S, Yamamoto K, Kasai H, Harashima H, Kamiya H. UvrA and UvrB enhance mutations induced by oxidized deoxyribonucleotides. DNA Repair (Amst) 2007; 6:1786-93. [PMID: 17709303 DOI: 10.1016/j.dnarep.2007.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 10/22/2022]
Abstract
Oxidatively damaged DNA precursors (deoxyribonucleotides) are formed by reactive oxygen species. After the damaged DNA precursors are incorporated into DNA, they might be removed by DNA repair enzymes. In this study, to examine whether a nucleotide excision repair enzyme, Escherichia coli UvrABC, could suppress the mutations induced by oxidized deoxyribonucleotides in vivo, oxidized DNA precursors, 8-hydroxy-2'-deoxyguanosine 5'-triphosphate and 2-hydroxy-2'-deoxyadenosine 5'-triphosphate, were introduced into uvrA, uvrB, and uvrC E. coli strains, and mutations in the chromosomal rpoB gene were analyzed. Unexpectedly, these oxidized DNA precursors induced mutations only slightly in the uvrA and uvrB strains. In contrast, effect of the uvrC-deficiency was not observed. Next, mutT, mutT/uvrA, and mutT/uvrB E. coli strains were treated with H2O2, and the rpoB mutant frequencies were calculated. The frequency of the H2O2-induced mutations was increased in all of the strains tested; however, the increase was three- to four-fold lower in the mutT/uvrA and mutT/uvrB strains than in the mutT strain. Thus, UvrA and UvrB are involved in the enhancement, but not in the suppression, of the mutations induced by these oxidized deoxyribonucleotides. These results suggest a novel role for UvrA and UvrB in the processing of oxidative damage.
Collapse
Affiliation(s)
- Mika Hori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA.
| |
Collapse
|
15
|
Shiraishi K, Imai Y, Yoshizaki S, Tadaki T, Ogata Y, Ikeda H. The role of UvrD in RecET-mediated illegitimate recombination in Escherichia coli. Genes Genet Syst 2007; 81:291-7. [PMID: 17038801 DOI: 10.1266/ggs.81.291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To study the mechanism of RecET-mediated illegitimate recombination, we examined the formation of lambdabio-transducing phage in Escherichia coli in the presence or absence of UV irradiation. We have previously reported that coexpression of RecE and RecT enhances the frequency of recA-independent illegitimate recombination. RecJOR proteins are required for this RecET-mediated illegitimate recombination, and RecQ suppresses it. Here, we showed that the frequencies of both spontaneous and UV-induced RecET-mediated illegitimate recombination events are reduced by a uvrD mutation. It should be noted that UvrD is required for illegitimate recombination only in the presence, but not in the absence, of RecET. In contrast, frequencies of RecET-mediated illegitimate recombination were not affected by ruvAB, ruvC, recG, and recN mutations. The frequency of spontaneous and UV-induced illegitimate recombination in the uvrD recR double mutant was comparable to that of the uvrD single mutant, suggesting that UvrD works at the same step as RecR in the RecET-mediated recombination pathway. Nucleotide sequence analyses of the recombination junctions showed that RecET-mediated illegitimate recombination detected in UvrD-deficient strain is short-homology-dependent. Based on these and previous results, we propose a model for the role of UvrD on RecET-mediated illegitimate recombination.
Collapse
|
16
|
The bacterial RecA protein: structure, function, and regulation. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Kim SH, Gorski L, Reynolds J, Orozco E, Fielding S, Park YH, Borucki MK. Role of uvrA in the growth and survival of Listeria monocytogenes under UV radiation and acid and bile stress. J Food Prot 2006; 69:3031-6. [PMID: 17186676 DOI: 10.4315/0362-028x-69.12.3031] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes encounters numerous stresses both in the food environment and during infection of the host. The ability to survive and tolerate bile and low pH conditions, which are two major stresses, is of particular importance for survival within the host. The uvrA gene in other bacteria is involved in the repair of acid-induced DNA damage and in adaptation to low pH. Thus, a uvrA in-frame deletion mutant was constructed to identify the role of uvrA in the growth and survival of L. monocytogenes under various environmental conditions. The uvrA mutant was highly sensitive to UV radiation. Growth under normal laboratory conditions was impaired during the exponential phase, and the time to reach the exponential phase of growth, TV(max), was significantly delayed (P < 0.05). Growth of the uvrA mutant in acidic medium (pH 5) was slightly impaired, and the TV(max) was significantly delayed (P < 0.05). Growth and the TV(max) of the mutant in the presence of 0.3% bile salts also were significantly impaired (P < 0.05). These results suggest that uvrA is needed for optimal growth and survival of L. monocytogenes under various stressful environmental conditions.
Collapse
Affiliation(s)
- So Hyun Kim
- KRF Zoonotic Disease Priority Research Institute and Department of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
UvrD, a highly conserved helicase involved in mismatch repair, nucleotide excision repair (NER), and recombinational repair, plays a critical role in maintaining genomic stability and facilitating DNA lesion repair in many prokaryotic species. In this report, we focus on the UvrD homolog in Helicobacter pylori, a genetically diverse organism that lacks many known DNA repair proteins, including those involved in mismatch repair and recombinational repair, and that is noted for high levels of inter- and intragenomic recombination and mutation. H. pylori contains numerous DNA repeats in its compact genome and inhabits an environment rich in DNA-damaging agents that can lead to increased rearrangements between such repeats. We find that H. pylori UvrD functions to repair DNA damage and limit homologous recombination and DNA damage-induced genomic rearrangements between DNA repeats. Our results suggest that UvrD and other NER pathway proteins play a prominent role in maintaining genome integrity, especially after DNA damage; thus, NER may be especially critical in organisms such as H. pylori that face high-level genotoxic stress in vivo.
Collapse
Affiliation(s)
- Josephine Kang
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
19
|
Courcelle CT, Chow KH, Casey A, Courcelle J. Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli. Proc Natl Acad Sci U S A 2006; 103:9154-9. [PMID: 16754873 PMCID: PMC1482582 DOI: 10.1073/pnas.0600785103] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Indexed: 01/05/2023] Open
Abstract
DNA lesions that arrest replication can lead to rearrangements, mutations, or lethality when not processed accurately. After UV-induced DNA damage in Escherichia coli, RecA and several recF pathway proteins are thought to process arrested replication forks and ensure that replication resumes accurately. Here, we show that the RecJ nuclease and RecQ helicase, which partially degrade the nascent DNA at blocked replication forks, are required for the rapid recovery of DNA synthesis and prevent the potentially mutagenic bypass of UV lesions. In the absence of RecJ, or to a lesser extent RecQ, the recovery of replication is significantly delayed, and both the recovery and cell survival become dependent on translesion synthesis by polymerase V. The RecJ-mediated processing is proposed to restore the region containing the lesion to a form that allows repair enzymes to remove the blocking lesion and DNA synthesis to resume. In the absence of nascent DNA processing, polymerase V can synthesize past the lesion to prevent lethality, although this occurs with slower kinetics and a higher frequency of mutagenesis.
Collapse
Affiliation(s)
- Charmain T Courcelle
- Department of Biology, Portland State University, Box 751, Portland, OR 97207-0751, USA.
| | | | | | | |
Collapse
|
20
|
Gualco L, Roveta S, Marchese A, Debbia EA. Pleiotropic effect of sodium arsenite on Escherichia coli. Res Microbiol 2004; 155:275-82. [PMID: 15142625 DOI: 10.1016/j.resmic.2004.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 01/23/2004] [Indexed: 10/26/2022]
Abstract
The effects of sodium arsenite at a sub-MIC concentration (25 mg/l) upon different bacterial functions were studied. This compound reduced the killing activity of nalidixic acid, amikacin, and meropenem. It also promoted the loss of F'lac from bacterial hosts and increased the number of recombinants in conjugation and transduction experiments. Transposition of Tn9 was also enhanced by the salt. In addition, sodium arsenite abolished the lethal effect of temperature on thermosusceptible DNA synthesis mutants in a similar manner to that seen in an anaerobic environment. Finally at a low dose, it induced the SOS response, and the related production of recA-dependent enzymes was reduced as the sodium arsenite concentration increased. It has been suggested that arsenite primarily affects the uvrA gene product, influencing the other bacterial functions studied. The energetic depletion caused by this compound appears to play a role in the activity of autolytic enzymes.
Collapse
Affiliation(s)
- Laura Gualco
- Institute of Microbiology "C.A. Romanzi", University of Genoa, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | | | | | | |
Collapse
|
21
|
Liu JL, Rigolet P, Dou SX, Wang PY, Xi XG. The zinc finger motif of Escherichia coli RecQ is implicated in both DNA binding and protein folding. J Biol Chem 2004; 279:42794-802. [PMID: 15292213 DOI: 10.1074/jbc.m405008200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RecQ family of DNA helicases has been shown to be important for the maintenance of genomic integrity. Mutations in human RecQ genes lead to genomic instability and cancer. Several RecQ family of helicases contain a putative zinc finger motif of the C4 type at the C terminus that has been identified in the crystalline structure of RecQ helicase from Escherichia coli. To better understand the role of this motif in helicase from E. coli, we constructed a series of single mutations altering the conserved cysteines as well as other highly conserved residues. All of the resulting mutant proteins exhibited a high level of susceptibility to degradation, making functional analysis impossible. In contrast, a double mutant protein in which both cysteine residues Cys397 and Cys400 in the zinc finger motif were replaced by asparagine residues was purified to homogeneity. Slight local conformational changes were detected, but the rest of the mutant protein has a well defined tertiary structure. Furthermore, the mutant enzyme displayed ATP binding affinity similar to the wild-type enzyme but was severely impaired in DNA binding and in subsequent ATPase and helicase activities. These results revealed that the zinc finger binding motif is involved in maintaining the integrity of the whole protein as well as DNA binding. We also showed that the zinc atom is not essential to enzymatic activity.
Collapse
Affiliation(s)
- Jie Lin Liu
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée CNRS UMR 8113, Ecole Normale Supérieure (ENS) Cachan, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | | | | | |
Collapse
|
22
|
Sherratt DJ, Søballe B, Barre FX, Filipe S, Lau I, Massey T, Yates J. Recombination and chromosome segregation. Philos Trans R Soc Lond B Biol Sci 2004; 359:61-9. [PMID: 15065657 PMCID: PMC1693297 DOI: 10.1098/rstb.2003.1365] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated.
Collapse
Affiliation(s)
- David J Sherratt
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Dou SX, Wang PY, Xu HQ, Xi XG. The DNA binding properties of the Escherichia coli RecQ helicase. J Biol Chem 2003; 279:6354-63. [PMID: 14665634 DOI: 10.1074/jbc.m311272200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RecQ helicase family is highly conserved from bacteria to men and plays a conserved role in the preservation of genome integrity. Its deficiency in human cells leads to a marked genomic instability that is associated with premature aging and cancer. To determine the thermodynamic parameters for the interaction of Escherichia coli RecQ helicase with DNA, equilibrium binding studies have been performed using the thermodynamic rigorous fluorescence titration technique. Steady-state fluorescence anisotropy measurements of fluorescein-labeled oligonucleotides revealed that RecQ helicase bound to DNA with an apparent binding stoichiometry of 1 protein monomer/10 nucleotides. This stoichiometry was not altered in the presence of AMPPNP (adenosine 5'-(beta,gamma-imido) triphosphate) or ADP. Analyses of RecQ helicase interactions with oligonucleotides of different lengths over a wide range of pH, NaCl, and nucleic acid concentrations indicate that the RecQ helicase has a single strong DNA binding site with an association constant at 25 degrees C of K=6.7 +/- 0.95 x 10(6) M(-1) and a cooperativity parameter of omega=25.5 +/- 1.2. Both single-stranded DNA and double-stranded DNA bind competitively to the same site. The intrinsic affinities are salt-dependent, and the formation of DNA-helicase complex is accompanied by a net release of 3-4 ions. Allosteric effects of nucleotide cofactors on RecQ binding to DNA were observed only for single-stranded DNA in the presence of 1.5 mM AMPPNP, whereas both AMPPNP and ADP had no detectable effect on double-stranded DNA binding over a large range of nucleotide cofactor concentrations.
Collapse
Affiliation(s)
- Shuo-Xing Dou
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
24
|
Bernstein DA, Keck JL. Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Res 2003; 31:2778-85. [PMID: 12771204 PMCID: PMC156711 DOI: 10.1093/nar/gkg376] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RecQ DNA helicases function in DNA replication, recombination and repair. Although the precise cellular roles played by this family of enzymes remain elusive, the importance of RecQ proteins is clear; mutations in any of three human RecQ genes lead to genomic instability and cancer. In this report, proteolysis is used to define a two-domain structure for Escherichia coli RecQ, revealing a large (approximately 59 kDa) N-terminal and a small (approximately 9 kDa) C-terminal domain. A short N-terminal segment (7 or 21 residues) is also shown to be sensitive to proteases. The effects of removing these regions of RecQ are tested in vitro. Removing 21 N-terminal residues from RecQ severely diminishes its DNA-dependent ATPase and helicase activities, but does not affect its ability to bind DNA in electrophoretic mobility shift assays. In contrast, removing the approximately 9 kDa C-terminal domain from RecQ results in a fragment with normal levels of ATPase and helicase activity, but that has lost the ability to stably associate with DNA. These results establish the biochemical roles of an N-terminal sequence motif in RecQ catalytic function and for the C-terminal RecQ domain in stable DNA binding.
Collapse
Affiliation(s)
- Douglas A Bernstein
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin, Madison, WI 53706-1532, USA
| | | |
Collapse
|
25
|
Meier P, Wackernagel W. Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol Microbiol 2003; 48:1107-18. [PMID: 12753199 DOI: 10.1046/j.1365-2958.2003.03498.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intra- and interspecific natural transformation has been observed in many prokaryotic species and is considered a fundamental mechanism for the generation of genetic variation. Recently, it has been described in detail how, in transformable Acinetobacter BD413 and Streptococcus pneumoniae, long stretches of nucleotides lacking homology were integrated into recipient genomes when they were linked on one side to a small piece of DNA with homology to resident DNA serving as a recA-dependent recombination anchor. Now, such homology-facilitated illegitimate recombination (HFIR) has also been detected in transformable Pseudomonas stutzeri. However, analysis of the recombinants revealed qualitative and quantitative differences in their generation compared with that in Acinetobacter BD413. In P. stutzeri, foreign DNA with an anchor sequence was integrated 105- to 106-fold less frequently than fully homologous DNA, but still at least 200-fold more frequently than without the anchor. The anchor sequence could be as small as 311 bp. Remarkably, in 98% of the events, the 3' end was integrated within the homologous anchor, whereas the 5' end underwent illegitimate fusion. Moreover, about one-third of the illegitimate fusion sites shared no or only a single identical basepair in foreign and resident DNA. The other fusions occurred within microhomologies of up to 6 bp with a higher GC content on average than the interacting nucleotide sequences. Foreign DNA of 69-1903 bp was integrated, and resident DNA of 22-2345 bp was lost. In a recA mutant, HFIR was not detectable. The findings suggest that genomic acquisition of foreign DNA by HFIR during transformation occurs widely in prokaryotes, but that details of the required recombination and strand fusion mechanisms may differ between organisms from different genera.
Collapse
Affiliation(s)
- Petra Meier
- Genetik, Fachbereich Biologie, Geo- und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, POB 2503, D-26111 Oldenburg, Germany
| | | |
Collapse
|
26
|
Courcelle J, Donaldson JR, Chow KH, Courcelle CT. DNA damage-induced replication fork regression and processing in Escherichia coli. Science 2003; 299:1064-7. [PMID: 12543983 DOI: 10.1126/science.1081328] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DNA lesions that block replication are a primary cause of rearrangements, mutations, and lethality in all cells. After ultraviolet (UV)-induced DNA damage in Escherichia coli, replication recovery requires RecA and several other recF pathway proteins. To characterize the mechanism by which lesion-blocked replication forks recover, we used two-dimensional agarose gel electrophoresis to show that replication-blocking DNA lesions induce a transient reversal of the replication fork in vivo. The reversed replication fork intermediate is stabilized by RecA and RecF and is degraded by the RecQ-RecJ helicase-nuclease when these proteins are absent. We propose that fork regression allows repair enzymes to gain access to the replication-blocking lesion, allowing processive replication to resume once the blocking lesion is removed.
Collapse
Affiliation(s)
- Justin Courcelle
- Department of Biological Sciences, Box GY, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|
27
|
Asami Y, Jia DW, Tatebayashi K, Yamagata K, Tanokura M, Ikeda H. Effect of the DNA topoisomerase II inhibitor VP-16 on illegitimate recombination in yeast chromosomes. Gene 2002; 291:251-7. [PMID: 12095698 DOI: 10.1016/s0378-1119(02)00622-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Etoposide and teniposide, derivatives of podophyllotoxin, are inhibitors of DNA topoisomerase II and are potent anticancer agents. An adverse effect linked to the use of these drugs is the development of acute myeloid leukemia, a disorder usually associated with chromosomal translocation. To examine podophyllotoxin-induced DNA rearrangement, we developed an assay system to measure illegitimate recombination in Saccharomyces cerevisiae chromosomes. This approach uses juxtaposed CAN1-CYH2 negative selection markers that are introduced into the LEU2 locus, which is located on chromosome III, in a yeast strain carrying the mutated can1 and cyh2 genes. Upon formation of a deletion over the active CAN1-CYH2 genes, a cell becomes resistant to both canavanine and cycloheximide. To introduce drugs into the cell, we used a yeast strain carrying an ISE2 mutation, thereby making the cell drug-permeable. Here we show that treatment of cells with etoposide (VP-16) increases the rate of illegitimate recombination in yeast, indicating that VP-16 stimulates DNA topoisomerase-mediated illegitimate recombination. Structural analysis of the resulting recombinants indicate that most are formed by deletion mutations on chromosome III, which take place between short homologous regions of DNA. We propose a model for illegitimate recombination, in which VP-16 facilitates formation of a cleavable complex between DNA topoisomerase II and DNA, thus promoting DNA double-strand breakage with the resulting DNA ends joined by a non-homologous mechanism.
Collapse
Affiliation(s)
- Yasuo Asami
- Center for Basic Research, The Kitasato Institute, Minato-ku, Tokyo 108-8642, Japan
| | | | | | | | | | | |
Collapse
|
28
|
de Vries J, Wackernagel W. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci U S A 2002; 99:2094-9. [PMID: 11854504 PMCID: PMC122324 DOI: 10.1073/pnas.042263399] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The active uptake of extracellular DNA and its genomic integration is termed natural transformation and constitutes a major horizontal gene-transfer mechanism in prokaryotes. Chromosomal DNA transferred within a species can be integrated effectively by homologous recombination, whereas foreign DNA with low or no sequence homology would rely on illegitimate recombination events, which are rare. By using the nptII(+) gene (kanamycin resistance) as selectable marker, we found that the integration of foreign DNA into the genome of the Gram-negative Acinetobacter sp. BD413 during transformation indeed was at least 10(9)-fold lower than that of homologous DNA. However, integration of foreign DNA increased at least 10(5)-fold when it was linked on one side to a piece of DNA homologous to the recipient genome. Analysis of foreign DNA integration sites revealed short stretches of sequence identity (3-8 bp) between donor and recipient DNA, indicating illegitimate recombination events. These findings suggest that homologous DNA served as a recombinational anchor facilitating illegitimate recombination acting on the same molecule. Homologous stretches down to 183 nucleotides served as anchors. Transformation with heteroduplex DNA having different nucleotide sequence tags in the strands indicated that strands entered the cytoplasm 3' to 5' and that strands with either polarity were integrated by homologous recombination. The process led to the genomic integration of thousands of foreign nucleotides and often was accompanied by deletion of a roughly corresponding length of recipient DNA. Homology-facilitated illegitimate recombination would explain the introgression of DNA in prokaryotic genomes without the help of mobile genetic elements.
Collapse
Affiliation(s)
- Johann de Vries
- Genetik, Fachbereich Biologie, Universität Oldenburg, POB 2503, D-26111 Oldenburg, Germany
| | | |
Collapse
|
29
|
Hanada K, Yamashita T, Shobuike Y, Ikeda H. Role of DnaB helicase in UV-induced illegitimate recombination in Escherichia coli. J Bacteriol 2001; 183:4964-9. [PMID: 11489847 PMCID: PMC95370 DOI: 10.1128/jb.183.17.4964-4969.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the involvement of DNA replication in UV-induced illegitimate recombination, we examined the effect of temperature-sensitive dnaB mutations on illegitimate recombination and found that the frequency of illegitimate recombination was reduced by an elongation-deficient mutation, dnaB14, but not by an initiation-deficient mutation, dnaB252. This result indicates that DNA replication is required for UV-induced illegitimate recombination. In addition, the dnaB14 mutation also affected spontaneous or UV-induced illegitimate recombination enhanced by the recQ mutation. Nucleotide sequence analyses of the recombination junctions showed that DnaB-mediated illegitimate recombination is short homology dependent. Previously, Michel et al. (B. Michel, S. Ehrlich, and M. Uzest, EMBO J. 16:430--438, 1997) showed that thermal treatment of the temperature-sensitive dnaB8 mutant induces double-stranded breaks, implying that induction of illegitimate recombination occurs. To explain the discrepancy between the observations, we propose a model for DnaB function, in which the dnaB mutations may exhibit two types of responses, early and late responses, for double-stranded break formation. In the early response, replication forks stall at damaged DNA, resulting in the formation of double-stranded breaks, and the dnaB14 mutation reduces the double-stranded breaks shortly after temperature shift-up. On the other hand, in the late response, the arrested replication forks mediated by the dnaB8 mutation may induce double-stranded breaks after prolonged incubation.
Collapse
Affiliation(s)
- K Hanada
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|