1
|
Anderson DM, Jayanthi LP, Gosavi S, Meiering EM. Engineering the kinetic stability of a β-trefoil protein by tuning its topological complexity. Front Mol Biosci 2023; 10:1021733. [PMID: 36845544 PMCID: PMC9945329 DOI: 10.3389/fmolb.2023.1021733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023] Open
Abstract
Kinetic stability, defined as the rate of protein unfolding, is central to determining the functional lifetime of proteins, both in nature and in wide-ranging medical and biotechnological applications. Further, high kinetic stability is generally correlated with high resistance against chemical and thermal denaturation, as well as proteolytic degradation. Despite its significance, specific mechanisms governing kinetic stability remain largely unknown, and few studies address the rational design of kinetic stability. Here, we describe a method for designing protein kinetic stability that uses protein long-range order, absolute contact order, and simulated free energy barriers of unfolding to quantitatively analyze and predict unfolding kinetics. We analyze two β-trefoil proteins: hisactophilin, a quasi-three-fold symmetric natural protein with moderate stability, and ThreeFoil, a designed three-fold symmetric protein with extremely high kinetic stability. The quantitative analysis identifies marked differences in long-range interactions across the protein hydrophobic cores that partially account for the differences in kinetic stability. Swapping the core interactions of ThreeFoil into hisactophilin increases kinetic stability with close agreement between predicted and experimentally measured unfolding rates. These results demonstrate the predictive power of readily applied measures of protein topology for altering kinetic stability and recommend core engineering as a tractable target for rationally designing kinetic stability that may be widely applicable.
Collapse
Affiliation(s)
| | - Lakshmi P. Jayanthi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Elizabeth M. Meiering
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Elizabeth M. Meiering,
| |
Collapse
|
2
|
MacKenzie DWS, Schaefer A, Steckner J, Leo CA, Naser D, Artikis E, Broom A, Ko T, Shah P, Ney MQ, Tran E, Smith MTJ, Fuglestad B, Wand AJ, Brooks CL, Meiering EM. A fine balance of hydrophobic-electrostatic communication pathways in a pH-switching protein. Proc Natl Acad Sci U S A 2022; 119:e2119686119. [PMID: 35737838 PMCID: PMC9245636 DOI: 10.1073/pnas.2119686119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Allostery is the phenomenon of coupling between distal binding sites in a protein. Such coupling is at the crux of protein function and regulation in a myriad of scenarios, yet determining the molecular mechanisms of coupling networks in proteins remains a major challenge. Here, we report mechanisms governing pH-dependent myristoyl switching in monomeric hisactophilin, whereby the myristoyl moves between a sequestered state, i.e., buried within the core of the protein, to an accessible state, in which the myristoyl has increased accessibility for membrane binding. Measurements of the pH and temperature dependence of amide chemical shifts reveal protein local structural stability and conformational heterogeneity that accompany switching. An analysis of these measurements using a thermodynamic cycle framework shows that myristoyl-proton coupling at the single-residue level exists in a fine balance and extends throughout the protein. Strikingly, small changes in the stereochemistry or size of core and surface hydrophobic residues by point mutations readily break, restore, or tune myristoyl switch energetics. Synthesizing the experimental results with those of molecular dynamics simulations illuminates atomistic details of coupling throughout the protein, featuring a large network of hydrophobic interactions that work in concert with key electrostatic interactions. The simulations were critical for discerning which of the many ionizable residues in hisactophilin are important for switching and identifying the contributions of nonnative interactions in switching. The strategy of using temperature-dependent NMR presented here offers a powerful, widely applicable way to elucidate the molecular mechanisms of allostery in proteins at high resolution.
Collapse
Affiliation(s)
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Julia Steckner
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Christopher A. Leo
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Efrosini Artikis
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Aron Broom
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Travis Ko
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Purnank Shah
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mikaela Q. Ney
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Elisa Tran
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Martin T. J. Smith
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Brian Fuglestad
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - A. Joshua Wand
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Charles L. Brooks
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
3
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Doyle CM, Rumfeldt JA, Broom HR, Sekhar A, Kay LE, Meiering EM. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts. Biochemistry 2016; 55:1346-61. [PMID: 26849066 DOI: 10.1021/acs.biochem.5b01133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Lewis E Kay
- Program in Molecular Structure and Function, Hospital for Sick Children , Toronto, Canada
| | | |
Collapse
|
5
|
Using the folding landscapes of proteins to understand protein function. Curr Opin Struct Biol 2016; 36:67-74. [PMID: 26812092 DOI: 10.1016/j.sbi.2016.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/31/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
Proteins fold on a biologically-relevant timescale because of a funnel-shaped energy landscape. This landscape is sculpted through evolution by selecting amino-acid sequences that stabilize native interactions while suppressing stable non-native interactions that occur during folding. However, there is strong evolutionary selection for functional residues and these cannot be chosen to optimize folding. Their presence impacts the folding energy landscape in a variety of ways. Here, we survey the effects of functional residues on folding by providing several examples. We then review how such effects can be detected computationally and be used as assays for protein function. Overall, an understanding of how functional residues modulate folding should provide insights into the design of natural proteins and their homeostasis.
Collapse
|
6
|
Fisher KM, Haglund E, Noel JK, Hailey KL, Onuchic JN, Jennings PA. Geometrical Frustration in Interleukin-33 Decouples the Dynamics of the Functional Element from the Folding Transition State Ensemble. PLoS One 2015; 10:e0144067. [PMID: 26630011 PMCID: PMC4667907 DOI: 10.1371/journal.pone.0144067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/12/2015] [Indexed: 12/27/2022] Open
Abstract
Interleukin-33 (IL-33) is currently the focus of multiple investigations into targeting pernicious inflammatory disorders. This mediator of inflammation plays a prevalent role in chronic disorders such as asthma, rheumatoid arthritis, and progressive heart disease. In order to better understand the possible link between the folding free energy landscape and functional regions in IL-33, a combined experimental and theoretical approach was applied. IL-33 is a pseudo- symmetrical protein composed of three distinct structural elements that complicate the folding mechanism due to competition for nucleation on the dominant folding route. Trefoil 1 constitutes the majority of the binding interface with the receptor whereas Trefoils 2 and 3 provide the stable scaffold to anchor Trefoil 1. We identified that IL-33 folds with a three-state mechanism, leading to a rollover in the refolding arm of its chevron plots in strongly native conditions. In addition, there is a second slower refolding phase that exhibits the same rollover suggesting similar limitations in folding along parallel routes. Characterization of the intermediate state and the rate limiting steps required for folding suggests that the rollover is attributable to a moving transition state, shifting from a post- to pre-intermediate transition state as you move from strongly native conditions to the midpoint of the transition. On a structural level, we found that initially, all independent Trefoil units fold equally well until a QCA of 0.35 when Trefoil 1 will backtrack in order to allow Trefoils 2 and 3 to fold in the intermediate state, creating a stable scaffold for Trefoil 1 to fold onto during the final folding transition. The formation of this intermediate state and subsequent moving transition state is a result of balancing the difficulty in folding the functionally important Trefoil 1 onto the remainder of the protein. Taken together our results indicate that the functional element of the protein is geometrically frustrated, requiring the more stable elements to fold first, acting as a scaffold for docking of the functional element to allow productive folding to the native state.
Collapse
Affiliation(s)
- Kaitlin M. Fisher
- Department of Chemistry and Biochemistry, University of California at San Diego (UCSD), La Jolla, CA, United States of America
| | - Ellinor Haglund
- Center for Theoretical Biological Physics (CTBP) and Department of Physics, University of California at San Diego (UCSD), La Jolla, CA, United States of America
- Center for Theoretical Biological Physics (CTBP) and Department of Physics and Astronomy, Chemistry and Biochemistry and Cell Biology, Rice University, Houston, TX, United States of America
| | - Jeffrey K. Noel
- Center for Theoretical Biological Physics (CTBP) and Department of Physics and Astronomy, Chemistry and Biochemistry and Cell Biology, Rice University, Houston, TX, United States of America
| | - Kendra L. Hailey
- Department of Chemistry and Biochemistry, University of California at San Diego (UCSD), La Jolla, CA, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics (CTBP) and Department of Physics and Astronomy, Chemistry and Biochemistry and Cell Biology, Rice University, Houston, TX, United States of America
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego (UCSD), La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Broom A, Gosavi S, Meiering EM. Protein unfolding rates correlate as strongly as folding rates with native structure. Protein Sci 2014; 24:580-7. [PMID: 25422093 DOI: 10.1002/pro.2606] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/19/2023]
Abstract
Although the folding rates of proteins have been studied extensively, both experimentally and theoretically, and many native state topological parameters have been proposed to correlate with or predict these rates, unfolding rates have received much less attention. Moreover, unfolding rates have generally been thought either to not relate to native topology in the same manner as folding rates, perhaps depending on different topological parameters, or to be more difficult to predict. Using a dataset of 108 proteins including two-state and multistate folders, we find that both unfolding and folding rates correlate strongly, and comparably well, with well-established measures of native topology, the absolute contact order and the long range order, with correlation coefficient values of 0.75 or higher. In addition, compared to folding rates, the absolute values of unfolding rates vary more strongly with native topology, have a larger range of values, and correlate better with thermodynamic stability. Similar trends are observed for subsets of different protein structural classes. Taken together, these results suggest that choosing a scaffold for protein engineering may require a compromise between a simple topology that will fold sufficiently quickly but also unfold quickly, and a complex topology that will unfold slowly and hence have kinetic stability, but fold slowly. These observations, together with the established role of kinetic stability in determining resistance to thermal and chemical denaturation as well as proteases, have important implications for understanding fundamental aspects of protein unfolding and folding and for protein engineering and design.
Collapse
Affiliation(s)
- Aron Broom
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario, Canada, N2L 1W2
| | | | | |
Collapse
|
8
|
Abstract
When an amino-acid sequence cannot be optimized for both folding and function, folding can get compromised in favor of function. To understand this tradeoff better, we devise a novel method for extracting the "function-less" folding-motif of a protein fold from a set of structurally similar but functionally diverse proteins. We then obtain the β-trefoil folding-motif, and study its folding using structure-based models and molecular dynamics simulations. CompariA protein sequence serves two purpson with the folding of wild-type β-trefoil proteins shows that function affects folding in two ways: In the slower folding interleukin-1β, binding sites make the fold more complex, increase contact order and slow folding. In the faster folding hisactophilin, residues which could have been part of the folding-motif are used for function. This reduces the density of native contacts in functional regions and increases folding rate. The folding-motif helps identify subtle structural deviations which perturb folding. These may then be used for functional annotation. Further, the folding-motif could potentially be used as a first step in the sequence design of function-less scaffold proteins. Desired function can then be engineered into these scaffolds.
Collapse
Affiliation(s)
- Shachi Gosavi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
9
|
Schönichen A, Webb BA, Jacobson MP, Barber DL. Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys 2013; 42:289-314. [PMID: 23451893 DOI: 10.1146/annurev-biophys-050511-102349] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modification is an evolutionarily conserved mechanism for regulating protein activity, binding affinity, and stability. Compared with established posttranslational modifications such as phosphorylation or ubiquitination, posttranslational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, posttranslational modification by protons can drive dynamic changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and, in contrast to most other posttranslational modifications, does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton posttranslational modification of pH-sensing proteins regulating different cellular processes.
Collapse
Affiliation(s)
- André Schönichen
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
10
|
Nonnative interactions regulate folding and switching of myristoylated protein. Proc Natl Acad Sci U S A 2012; 109:17839-44. [PMID: 22847411 DOI: 10.1073/pnas.1201803109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present an integrated experimental and computational study of the molecular mechanisms by which myristoylation affects protein folding and function, which has been little characterized to date. Myristoylation, the covalent linkage of a hydrophobic C14 fatty acyl chain to the N-terminal glycine in a protein, is a common modification that plays a critical role in vital regulated cellular processes by undergoing reversible energetic and conformational switching. Coarse-grained folding simulations for the model pH-dependent actin- and membrane-binding protein hisactophilin reveal that nonnative hydrophobic interactions of the myristoyl with the protein as well as nonnative electrostatic interactions have a pronounced effect on folding rates and thermodynamic stability. Folding measurements for hydrophobic residue mutations of hisactophilin and atomistic simulations indicate that the nonnative interactions of the myristoyl group in the folding transition state are nonspecific and robust, and so smooth the energy landscape for folding. In contrast, myristoyl interactions in the native state are highly specific and tuned for sensitive control of switching functionality. Simulations and amide hydrogen exchange measurements provide evidence for increases as well as decreases in stability localized on one side of the myristoyl binding pocket in the protein, implicating strain and altered dynamics in switching. The effects of folding and function arising from myristoylation are profoundly different from the effects of other post-translational modifications.
Collapse
|
11
|
β-Bulge triggers route-switching on the functional landscape of interleukin-1β. Proc Natl Acad Sci U S A 2012; 109:1490-3. [PMID: 22307602 DOI: 10.1073/pnas.1114430109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Proteins fold into three-dimensional structures in a funneled energy landscape. This landscape is also used for functional activity. Frustration in this landscape can arise from the competing evolutionary pressures of biological function and reliable folding. Thus, the ensemble of partially folded states can populate multiple routes on this journey to the native state. Although protein folding kinetics experiments have shown the presence of such routes for several proteins, there has been sparse information about the structural diversity of these routes. In addition, why a given protein populates a particular route more often than another protein of similar structure and sequence is not clear. Whereas multiple routes are observed in theoretical studies on the folding of interleukin-1β (IL-1β), experimental results indicate one dominant route where the central portion of the protein folds first, and is then followed by closure of the barrel in this β-trefoil fold. Here we show, using a combination of computation and experiment, that the presence of functionally important regions like the β-bulge in the signaling protein IL-1β strongly influences the choice of folding routes. By deleting the β-bulge, we directly observe the presence of route-switching. This route-switching provides a direct link between route selection and the folding and functional landscapes of a protein.
Collapse
|
12
|
Shental-Bechor D, Levy Y. Communication: Folding of glycosylated proteins under confinement. J Chem Phys 2011; 135:141104. [DOI: 10.1063/1.3650700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|