1
|
A conjugated polymer‐liposome complex: A contiguous water‐stable, electronic, and optical interface. VIEW 2020. [DOI: 10.1002/viw.20200081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
2
|
Hassoun S, Karam P. Fluorescent-Based Thermal Sensing in Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1221-1226. [PMID: 31941281 DOI: 10.1021/acs.langmuir.9b03128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermal mapping in biological membranes could unlock and help us understand many chemical and physical processes that do not only pertain to localized membrane phenomena but also extend to many other intra- and extracellular pathways. In this manuscript, we report the development of a ratiometric thermal fluorescent probe based on the Förster resonance energy transfer between a lipid-embedded conjugated polyelectrolyte and a lyophilic acceptor dye. We showed that the Förster resonance energy transfer (FRET) pair is sensitive within the relevant physiological temperature window (20.0-50.0 °C). The signal was also shielded from an external pH and stable when cycled multiple times. The probe was also sensitive to the membrane composition and could, therefore, be further developed to probe the membrane composition and viscosity.
Collapse
Affiliation(s)
- Sarriah Hassoun
- Chemistry Department , American University of Beirut , P.O. Box 11-0236, Riad El-Solh , 1107 2020 Beirut , Lebanon
| | - Pierre Karam
- Chemistry Department , American University of Beirut , P.O. Box 11-0236, Riad El-Solh , 1107 2020 Beirut , Lebanon
| |
Collapse
|
3
|
Yassine SR, Hassoun SA, Karam P. Fluorescent thermal sensing using conjugated polyelectrolytes in thin polymer films. Anal Chim Acta 2019; 1077:249-254. [PMID: 31307716 DOI: 10.1016/j.aca.2019.05.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/20/2019] [Accepted: 05/20/2019] [Indexed: 01/23/2023]
Abstract
Thermal sensing in thin films polymers has been a significant limitation towards optimizing the heat dissipation in micro- and nano-electronic devices as well as many other thin film-based technologies. In this work, we report on poly (phenylene ethynylene) fluorescent-based conjugated polyelectrolyte capable of detecting thermal fluctuations in polymer films prepared from polyvinylpyrrolidone-co-vinyl acetate. The sensor was first optimized in solution by testing two polyvinylpyrrolidone (PVP) copolymers (co-vinyl acetate (VA) and co-polystyrene (PS)) before it was spun cast onto quartz slides and imaged using a DSLR camera at different temperatures. The images were analyzed and showed a change in color with the increase in temperature. When not illuminated, the polymer thin film is clear and transparent.
Collapse
Affiliation(s)
- Sarah R Yassine
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon
| | - Sarriah A Hassoun
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon
| | - Pierre Karam
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon.
| |
Collapse
|
4
|
Ma D, Xu C, Hou W, Zhao C, Ma J, Huang X, Jia Q, Ma L, Diao J, Liu C, Li M, Lu Y. Detecting Single‐Molecule Dynamics on Lipid Membranes with Quenchers‐in‐a‐Liposome FRET. Angew Chem Int Ed Engl 2019; 58:5577-5581. [DOI: 10.1002/anie.201813888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/11/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Dong‐Fei Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chun‐Hua Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen‐Qing Hou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chun‐Yu Zhao
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Bing Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing‐Yuan Huang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi Jia
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lu Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiajie Diao
- Department of Cancer BiologyUniversity of Cincinnati School of Medicine Cincinnati OH 45267 USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| |
Collapse
|
5
|
Ma D, Xu C, Hou W, Zhao C, Ma J, Huang X, Jia Q, Ma L, Diao J, Liu C, Li M, Lu Y. Detecting Single‐Molecule Dynamics on Lipid Membranes with Quenchers‐in‐a‐Liposome FRET. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dong‐Fei Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chun‐Hua Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen‐Qing Hou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chun‐Yu Zhao
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Bing Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing‐Yuan Huang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi Jia
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lu Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiajie Diao
- Department of Cancer BiologyUniversity of Cincinnati School of Medicine Cincinnati OH 45267 USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| |
Collapse
|
6
|
Platnich CM, Hariri AA, Rahbani JF, Gordon JB, Sleiman HF, Cosa G. Kinetics of Strand Displacement and Hybridization on Wireframe DNA Nanostructures: Dissecting the Roles of Size, Morphology, and Rigidity. ACS NANO 2018; 12:12836-12846. [PMID: 30485067 DOI: 10.1021/acsnano.8b08016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dynamic wireframe DNA structures have gained significant attention in recent years, with research aimed toward using these architectures for sensing and encapsulation applications. For these assemblies to reach their full potential, however, knowledge of the rates of strand displacement and hybridization on these constructs is required. Herein, we report the use of single-molecule fluorescence methodologies to observe the reversible switching between double- and single-stranded forms of triangular wireframe DNA nanotubes. Specifically, by using fluorescently labeled DNA strands, we were able to monitor changes in intensity over time as we introduced different sequences. This allowed us to extract detailed kinetic information on the strand displacement and hybridization processes. Due to the polymeric nanotube structure, the ability to individually address each of the three sides, and the inherent polydispersity of our samples as a result of the step polymerization by which they are formed, a library of compounds could be studied independently yet simultaneously. Kinetic models relying on mono-exponential decays, multi-exponential decays, or sigmoidal behavior were adjusted to the different constructs to retrieve erasing and refilling kinetics. Correlations were made between the kinetic behavior observed, the site accessibility, the nanotube length, and the structural robustness of wireframe DNA nanostructures, including fully single-stranded analogs. Overall, our results reveal how the length, morphology, and rigidity of the DNA framework modulate the kinetics of strand displacement and hybridization as well as the overall addressability and structural stability of the structures under study.
Collapse
Affiliation(s)
- Casey M Platnich
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Amani A Hariri
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Janane F Rahbani
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Jesse B Gordon
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Hanadi F Sleiman
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Gonzalo Cosa
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| |
Collapse
|
7
|
Ziessel R, Stachelek P, Harriman A, Hedley GJ, Roland T, Ruseckas A, Samuel IDW. Ultrafast Through-Space Electronic Energy Transfer in Molecular Dyads Built around Dynamic Spacer Units. J Phys Chem A 2018; 122:4437-4447. [DOI: 10.1021/acs.jpca.8b02415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raymond Ziessel
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Patrycja Stachelek
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Gordon J. Hedley
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, Physical Science Building, University of St. Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Thomas Roland
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, Physical Science Building, University of St. Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Arvydas Ruseckas
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, Physical Science Building, University of St. Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, Physical Science Building, University of St. Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| |
Collapse
|
8
|
Gudnason D, Madsen M, Krissanaprasit A, Gothelf KV, Birkedal V. Controlled aggregation of DNA functionalized poly(phenylene-vinylene). Chem Commun (Camb) 2018; 54:5534-5537. [DOI: 10.1039/c8cc00943k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We show that aggregation of DNA-functionalized poly(phenylene-vinylene) can be controlled in solution through ion and DNA interactions.
Collapse
Affiliation(s)
- Daniel Gudnason
- Center for DNA Nanotechnology
- Interdisciplinary Nanoscience Center
- iNANO
- Aarhus University
- Aarhus C
| | - Mikael Madsen
- Center for DNA Nanotechnology
- Interdisciplinary Nanoscience Center
- iNANO
- Aarhus University
- Aarhus C
| | | | - Kurt V. Gothelf
- Center for DNA Nanotechnology
- Interdisciplinary Nanoscience Center
- iNANO
- Aarhus University
- Aarhus C
| | - Victoria Birkedal
- Center for DNA Nanotechnology
- Interdisciplinary Nanoscience Center
- iNANO
- Aarhus University
- Aarhus C
| |
Collapse
|
9
|
Abou Matar T, Karam P. The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/09/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Tamara Abou Matar
- Department of Chemistry; American University of Beirut; P.O. Box 11-0236 Beirut Lebanon
| | - Pierre Karam
- Department of Chemistry; American University of Beirut; P.O. Box 11-0236 Beirut Lebanon
| |
Collapse
|
10
|
Hariri AA, Hamblin GD, Hardwick JS, Godin R, Desjardins JF, Wiseman PW, Sleiman HF, Cosa G. Stoichiometry and Dispersity of DNA Nanostructures Using Photobleaching Pair-Correlation Analysis. Bioconjug Chem 2017; 28:2340-2349. [DOI: 10.1021/acs.bioconjchem.7b00369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | - Jean-Francois Desjardins
- Department
of Physics, McGill University, 3600 University Street, Montreal, Quebec H3A 0B8, Canada
| | - Paul W. Wiseman
- Department
of Physics, McGill University, 3600 University Street, Montreal, Quebec H3A 0B8, Canada
| | | | | |
Collapse
|
11
|
Darwish GH, Fakih HH, Karam P. Temperature Mapping in Hydrogel Matrices Using Unmodified Digital Camera. J Phys Chem B 2017; 121:1033-1040. [DOI: 10.1021/acs.jpcb.6b11844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ghinwa H. Darwish
- Department of Chemistry, American University of Beirut, P.O.
Box 11-0236, Beirut 1107 2020, Lebanon
| | - Hassan H. Fakih
- Department of Chemistry, American University of Beirut, P.O.
Box 11-0236, Beirut 1107 2020, Lebanon
| | - Pierre Karam
- Department of Chemistry, American University of Beirut, P.O.
Box 11-0236, Beirut 1107 2020, Lebanon
| |
Collapse
|
12
|
Calver CF, Lago BA, Schanze KS, Cosa G. Enhancing the photostability of poly(phenylene ethynylene) for single particle studies. Photochem Photobiol Sci 2017; 16:1821-1831. [DOI: 10.1039/c7pp00276a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enhanced photostability of conjugated polyelectrolytes achieved by using anti-fading agents opens the way for advanced single molecule fluorescence imaging studies.
Collapse
Affiliation(s)
- C. F. Calver
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal
- Canada
| | - B. A. Lago
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal
- Canada
| | - K. S. Schanze
- Department of Chemistry
- University of Texas at San Antonio
- San Antonio
- USA
| | - G. Cosa
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal
- Canada
| |
Collapse
|
13
|
Calver CF, Schanze KS, Cosa G. Biomimetic Light-Harvesting Antenna Based on the Self-Assembly of Conjugated Polyelectrolytes Embedded within Lipid Membranes. ACS NANO 2016; 10:10598-10605. [PMID: 27934088 DOI: 10.1021/acsnano.6b07111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we report a biomimetic light-harvesting antenna based on negatively charged poly(phenylene ethynylene) conjugated polyelectrolytes assembled within a positively charged lipid membrane scaffold constructed by the lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Light harvested by the polymers was transferred via through-space mechanisms to a lipophilic energy acceptor (the cyanine dye DiI) whose effective molar absorption was enhanced by up to 18-fold due to the antenna effect. Absorption amplification of DiI was found to be due primarily to direct energy transfer from polymers. The efficiency of homoenergy transfer among polymers was next probed by the membrane embedding fullerene derivative phenyl-C61-butryic acid methyl ester (PCBM) acting as an electron acceptor. PCBM was able to quench the emission of up to five polymers, consistent with a modest amount of homotransfer. The ability of the membrane to accommodate a high density of polymer donors without self-quenching was crucial to the success of electronic energy harvesting achieved. This work highlights the potential of lipid membranes as a platform to organize light-harvesting molecules on the nanoscale toward achieving efficient energy transfer to a target chromophore/trap.
Collapse
Affiliation(s)
- Christina F Calver
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio , One UTSA Way, San Antonio, Texas 78023, United States
| | - Gonzalo Cosa
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
14
|
Darwish GH, Abouzeid J, Karam P. Tunable nanothermometer based on short poly(phenylene ethynylene). RSC Adv 2016. [DOI: 10.1039/c6ra14828j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a self-referencing ratiometric nanothermometer based on short conjugated polyelectrolytes (CPEs).
Collapse
Affiliation(s)
| | - Jihane Abouzeid
- Department of Chemistry
- American University of Beirut
- Beirut
- Lebanon
| | - Pierre Karam
- Department of Chemistry
- American University of Beirut
- Beirut
- Lebanon
| |
Collapse
|
15
|
Darwish GH, Koubeissi A, Shoker T, Abou Shaheen S, Karam P. Turning the heat on conjugated polyelectrolytes: an off–on ratiometric nanothermometer. Chem Commun (Camb) 2016; 52:823-6. [DOI: 10.1039/c5cc08541a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A ratiometric single component nanothermometer fluorescent probe.
Collapse
Affiliation(s)
| | - Ali Koubeissi
- The Department of Chemistry
- American University of Beirut
- Lebanon
| | | | | | - Pierre Karam
- The Department of Chemistry
- American University of Beirut
- Lebanon
| |
Collapse
|
16
|
Calver CF, Liu HW, Cosa G. Exploiting Conjugated Polyelectrolyte Photophysics toward Monitoring Real-Time Lipid Membrane-Surface Interaction Dynamics at the Single-Particle Level. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11842-11850. [PMID: 25955885 DOI: 10.1021/acs.langmuir.5b00979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein we report the real-time observation of the interaction dynamics between cationic liposomes flowing in solution and a surface-immobilized charged scaffolding formed by the deposition of conjugated polyanion poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene (MPS-PPV) onto 100-nm-diameter SiO2 nanoparticles (NPs). Contact of the freely floating liposomes with the polymer-coated surfaces led to the formation of supported lipid bilayers (SLBs). The interaction of the incoming liposomes with MPS-PPV adsorbed on individual SiO2 nanoparticles promoted the deaggregation of the polymer conformation and led to large emission intensity enhancements. Single-particle total internal reflection fluorescence microscopy studies exploited this phenomenon as a way to monitor the deformation dynamics of liposomes on surface-immobilized NPs. The MPS-PPV emission enhancement (up to 25-fold) reflected on the extent of membrane contact with the surface of the NP and was correlated with the size of the incoming liposome. The time required for the MPS-PPV emission to reach a maximum (ranging from 400 to 1000 ms) revealed the dynamics of membrane deformation and was also correlated with the liposome size. Cryo-TEM experiments complemented these results by yielding a structural view of the process. Immediately following the mixing of liposomes and NPs the majority of NPs had one or more adsorbed liposomes, yet the presence of a fully formed SLB was rare. Prolonged incubation of liposomes and NPs showed completely formed SLBs on all of the NPs, confirming that the liposomes eventually ruptured to form SLBs. We foresee that the single-particle studies we report herein may be readily extended to study membrane dynamics of other lipids including cellular membranes in live cell studies and to monitor the formation of polymer-cushioned SLBs.
Collapse
Affiliation(s)
- Christina F Calver
- Department of Chemistry and Centre for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Hsiao-Wei Liu
- Department of Chemistry and Centre for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Centre for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
17
|
Darwish GH, Karam P. Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles. NANOSCALE 2015; 7:15149-15158. [PMID: 26255590 DOI: 10.1039/c5nr03299g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (∼10(9), on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.
Collapse
Affiliation(s)
- Ghinwa H Darwish
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | | |
Collapse
|
18
|
Johansson PK, Jullesson D, Elfwing A, Liin SI, Musumeci C, Zeglio E, Elinder F, Solin N, Inganäs O. Electronic polymers in lipid membranes. Sci Rep 2015; 5:11242. [PMID: 26059023 PMCID: PMC4462020 DOI: 10.1038/srep11242] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/14/2015] [Indexed: 12/26/2022] Open
Abstract
Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.
Collapse
Affiliation(s)
- Patrik K. Johansson
- Biomolecular and Organic Electronics, Department of Physics Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
- Current address: National ESCA Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington, Seattle, WA, US-98195, United States
| | - David Jullesson
- Biomolecular and Organic Electronics, Department of Physics Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
- Current address: Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Anders Elfwing
- Biomolecular and Organic Electronics, Department of Physics Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Sara I. Liin
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185, Linköping, Sweden
| | - Chiara Musumeci
- Biomolecular and Organic Electronics, Department of Physics Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Erica Zeglio
- Biomolecular and Organic Electronics, Department of Physics Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Fredrik Elinder
- Department of Clinical and Experimental Medicine, Linköping University, SE-58185, Linköping, Sweden
| | - Niclas Solin
- Biomolecular and Organic Electronics, Department of Physics Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Olle Inganäs
- Biomolecular and Organic Electronics, Department of Physics Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| |
Collapse
|
19
|
Hariri AA, Hamblin GD, Gidi Y, Sleiman HF, Cosa G. Stepwise growth of surface-grafted DNA nanotubes visualized at the single-molecule level. Nat Chem 2015; 7:295-300. [DOI: 10.1038/nchem.2184] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/15/2015] [Indexed: 11/09/2022]
|
20
|
Glembockyte V, Lincoln R, Cosa G. Cy3 photoprotection mediated by Ni2+ for extended single-molecule imaging: old tricks for new techniques. J Am Chem Soc 2015; 137:1116-22. [PMID: 25594101 DOI: 10.1021/ja509923e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photostability of reporter fluorophores in single-molecule fluorescence imaging is of paramount importance, as it dictates the amount of relevant information that may be acquired before photobleaching occurs. Quenchers of triplet excited states are thus required to minimize blinking and sensitization of singlet oxygen. Through a combination of single-molecule studies and ensemble mechanistic studies including laser flash photolysis and time-resolved fluorescence, we demonstrate herein that Ni(2+) provides a much desired physical route (chemically inert) to quench the triplet excited state of Cy3, the most ubiquitous green emissive dye utilized in single-molecule studies.
Collapse
Affiliation(s)
- Viktorija Glembockyte
- Department of Chemistry and Center for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | | | | |
Collapse
|
21
|
Tapia MJ, Monteserín M, Burrows HD, Almeida JAS, Pais AACC, Pina J, Seixas de Melo JS, Jarmelo S, Estelrich J. From molecular modelling to photophysics of neutral oligo- and polyfluorenes incorporated into phospholipid bilayers. SOFT MATTER 2015; 11:303-317. [PMID: 25411076 DOI: 10.1039/c4sm02145b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The combination of various experimental techniques with theoretical simulations has allowed elucidation of the mode of incorporation of fluorene based derivatives into phospholipid bilayers. Molecular dynamics (MD) simulations on a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayer, with benzene (B), biphenyl (BP), fluorene (F) and tri-(9,9-di-n-octylfluorenyl-2,7-diyl), TF, have provided insights into the topography of these molecules when they are present in the phospholipid bilayer, and suggest marked differences between the behavior of the small molecules and the oligomer. Further information on the interaction of neutral fluorenes within the phospholipid bilayer was obtained by an infrared (IR) spectroscopic study of films of DMPC and of the phospholipid with PFO deuterated specifically on its alkyl chains (DMPC-PFO-d34). This was complemented by measurements of the effect of F, TF and two neutral polymers: polyfluorene poly(9,9-di-n-octylfluorenyl-2,7-diyl), PFO, and poly(9,9-di-n-dodecylfluorenyl-2,7-diyl), PFD, on the phospholipid phase transition temperature using differential scanning calorimetry (DSC). Changes in liposome size upon addition of F and PFO were followed by dynamic light scattering. In addition, the spectroscopic properties of F, TF, PFO and PFD solubilised in DMPC liposomes (absorption, steady-state and time-resolved fluorescence) were compared with those of the same probes in typical organic solvents (chloroform, cyclohexane and ethanol). Combining the insight from MD simulations with the results at the molecular level from the various experimental techniques suggests that while the small molecules have a tendency to be located in the phospholipid head group region, the polymers are incorporated within the lipid bilayers, with the backbone predominantly orthogonal to the phospholipid alkyl chains and with interdigitation of them and the PFO alkyl chains.
Collapse
Affiliation(s)
- M J Tapia
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen J, Poddar NK, Tauzin LJ, Cooper D, Kolomeisky AB, Landes CF. Single-molecule FRET studies of HIV TAR-DNA hairpin unfolding dynamics. J Phys Chem B 2014; 118:12130-9. [PMID: 25254491 PMCID: PMC4207534 DOI: 10.1021/jp507067p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We directly measure the dynamics of the HIV trans-activation response (TAR)-DNA hairpin with multiple loops using single-molecule Förster resonance energy transfer (smFRET) methods. Multiple FRET states are identified that correspond to intermediate melting states of the hairpin. The stability of each intermediate state is calculated from the smFRET data. The results indicate that hairpin unfolding obeys a "fraying and peeling" mechanism, and evidence for the collapse of the ends of the hairpin during folding is observed. These results suggest a possible biological function for hairpin loops serving as additional fraying centers to increase unfolding rates in otherwise stable systems. The experimental and analytical approaches developed in this article provide useful tools for studying the mechanism of multistate DNA hairpin dynamics and of other general systems with multiple parallel pathways of chemical reactions.
Collapse
Affiliation(s)
- Jixin Chen
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77251-1892, United States
| | | | | | | | | | | |
Collapse
|
23
|
Karam P, Hariri AA, Calver CF, Zhao X, Schanze KS, Cosa G. Interaction of anionic phenylene ethynylene polymers with lipids: from membrane embedding to liposome fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10704-10711. [PMID: 25115171 DOI: 10.1021/la502572u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we report spectroscopic studies on the interaction of negatively charged, amphiphilic polyphenylene ethynylene (PPE) polymers with liposomes prepared either from negative, positive or zwitterionic lipids. Emission spectra of PPEs of 7 and 49 average repeat units bearing carboxylate terminated side chains showed that the polymer embeds within positively charged lipids where it exists as free chains. No interaction was observed between PPEs and negatively charged lipids. Here the polymer remained aggregated giving rise to broad emission spectra characteristic of the aggregate species. In zwitterionic lipids, we observed that the majority of the polymer remained aggregated yet a small fraction readily embedded within the membrane. Titration experiments revealed that saturation of zwitterionic lipids with polymer typically occurred at a polymer repeat unit to lipid mole ratio close to 0.05. No further membrane embedding was observed above that point. For liposomes prepared from positively charged lipids, saturation was observed at a PPE repeat unit to lipid mole ratio of ∼0.1 and liposome precipitation was observed above this point. FRET studies showed that precipitation was preceded by lipid mixing and liposome fusion induced by the PPEs. This behavior was prominent for the longer polymer and negligible for the shorter polymer at a repeat unit to lipid mole ratio of 0.05. We postulate that fusion is the consequence of membrane destabilization whereby the longer polymer gives rise to more extensive membrane deformation than the shorter polymer.
Collapse
Affiliation(s)
- Pierre Karam
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA), McGill University , 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Dalgarno PA, Traina CA, Penedo JC, Bazan GC, Samuel IDW. Solution-Based Single Molecule Imaging of Surface-Immobilized Conjugated Polymers. J Am Chem Soc 2013; 135:7187-93. [DOI: 10.1021/ja311874f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Christopher A. Traina
- Department of Materials
and Chemistry
and Biochemistry, Centre for Polymers and Organic Solids, University of California, Santa Barbara, California
93106, United States
| | | | - Guillermo C. Bazan
- Department of Materials
and Chemistry
and Biochemistry, Centre for Polymers and Organic Solids, University of California, Santa Barbara, California
93106, United States
| | | |
Collapse
|
25
|
Hamblin GD, Hariri AA, Carneiro KMM, Lau KL, Cosa G, Sleiman HF. Simple design for DNA nanotubes from a minimal set of unmodified strands: rapid, room-temperature assembly and readily tunable structure. ACS NANO 2013; 7:3022-8. [PMID: 23452006 DOI: 10.1021/nn4006329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA nanotubes have great potential as nanoscale scaffolds for the organization of materials and the templation of nanowires and as drug delivery vehicles. Current methods for making DNA nanotubes either rely on a tile-based step-growth polymerization mechanism or use a large number of component strands and long annealing times. Step-growth polymerization gives little control over length, is sensitive to stoichiometry, and is slow to generate long products. Here, we present a design strategy for DNA nanotubes that uses an alternative, more controlled growth mechanism, while using just five unmodified component strands and a long enzymatically produced backbone. These tubes form rapidly at room temperature and have numerous, orthogonal sites available for the programmable incorporation of arrays of cargo along their length. As a proof-of-concept, cyanine dyes were organized into two distinct patterns by inclusion into these DNA nanotubes.
Collapse
Affiliation(s)
- Graham D Hamblin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8 Canada
| | | | | | | | | | | |
Collapse
|
26
|
Marko RA, Liu HW, Ablenas CJ, Ehteshami M, Götte M, Cosa G. Binding kinetics and affinities of heterodimeric versus homodimeric HIV-1 reverse transcriptase on DNA-DNA substrates at the single-molecule level. J Phys Chem B 2013; 117:4560-7. [PMID: 23305243 DOI: 10.1021/jp308674g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During viral replication, HIV-1 reverse transcriptase (RT) plays a pivotal role in converting genomic RNA into proviral DNA. While the biologically relevant form of RT is the p66-p51 heterodimer, two recombinant homodimer forms of RT, p66-p66 and p51-p51, are also catalytically active. Here we investigate the binding of the three RT isoforms to a fluorescently labeled 19/50-nucleotide primer/template DNA duplex by exploiting single-molecule protein-induced fluorescence enhancement (SM-PIFE). PIFE, which does not require labeling of the protein, allows us to directly visualize the binding/unbinding of RT to a double-stranded DNA substrate. We provide values for the association and dissociation rate constants of the RT homodimers p66-p66 and p51-p51 with a double-stranded DNA substrate and compare those to the values recorded for the RT heterodimer p66-p51. We also report values for the equilibrium dissociation constant for the three isoforms. Our data reveal great similarities in the intrinsic binding affinities of p66-p51 and p66-p66, with characteristic Kd values in the nanomolar range, much smaller (50-100-fold) than that of p51-p51. Our data also show discrepancies in the association/dissociation dynamics among the three dimeric RT isoforms. Our results further show that the apparent binding affinity of p51-p51 for its DNA substrate is to a great extent time-dependent when compared to that of p66-p66 and p66-p51, and is more likely determined by the dimer dissociation into its constituent monomers rather than the intrinsic binding affinity of dimeric RT.
Collapse
Affiliation(s)
- Ryan A Marko
- Department of Chemistry and Center for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Ramaswamy S, Cooper D, Poddar N, MacLean DM, Rambhadran A, Taylor JN, Uhm H, Landes CF, Jayaraman V. Role of conformational dynamics in α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor partial agonism. J Biol Chem 2012; 287:43557-64. [PMID: 23115239 DOI: 10.1074/jbc.m112.371815] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the range of cleft closure conformational states that the agonist-binding domains of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors occupy when bound to a series of willardiine derivatives using single-molecule FRET. These studies show that the agonist-binding domain exhibits varying degrees of dynamics when bound to the different willardiines with differing efficacies. The chlorowillardiine- and nitrowillardiine-bound form of the agonist-binding domain probes a narrower range of cleft closure states relative to the iodowillardiine bound form of the protein, with the antagonist (αS)-α-amino-3-[(4-carboxyphenyl)methyl]-3,4-dihydro-2,4-dioxo-1(2H)-pyrimidinepropanoic acid (UBP-282)-bound form exhibiting the widest range of cleft closure states. Additionally, the average cleft closure follows the order UBP-282 > iodowillardiine > chlorowillardiine > nitrowillardiine-bound forms of agonist-binding domain. These single-molecule FRET data, along with our previously reported data for the glutamate-bound forms of wild type and T686S mutant proteins, show that the mean currents under nondesensitizing conditions can be directly correlated to the fraction of the agonist-binding domains in the "closed" cleft conformation. These results indicate that channel opening in the AMPA receptors is controlled by both the ability of the agonist to induce cleft closure and the dynamics of the agonist-binding domain when bound to the agonist.
Collapse
Affiliation(s)
- Swarna Ramaswamy
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ménard A, Huang Y, Karam P, Cosa G, Auclair K. Site-specific fluorescent labeling and oriented immobilization of a triple mutant of CYP3A4 via C64. Bioconjug Chem 2012; 23:826-36. [PMID: 22433037 DOI: 10.1021/bc200672s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of site-specific bioconjugates of proteins is highly desired for a number of biophysical and nanotechnological applications. To this end, many strategies have been developed that allow the specific modification of certain canonical amino acids and, more recently, noncanonical functional groups. P450 enzymes are heme-dependent monooxygenases involved in xenobiotic metabolism and in the biosynthesis of a variety of secondary metabolites. We became interested in the site-specific modification of these enzymes, CYP3A4 in particular, through our studies of their in vitro biocatalytic properties and our desire to exploit their remarkable ability to oxidize unactivated C-H bonds in a regio- and stereospecific manner. Obtained via a partial cysteine-depletion approach, a functional triple mutant of CYP3A4 (C98S/C239S/C468G) is reported here which is singly modified at C64 by maleimide-containing groups. While cysteine-labeling of the wild-type enzyme abolished >90% of its enzymatic activity, this mutant retained ≥75% of the activity of the unmodified wild-type enzyme with 9 of the 18 maleimides that were tested. These included both fluorescent and solid-supported maleimides. The loss of activity observed after labeling with some maleimides is attributed to direct enzyme inhibition rather than to steric effects. We also demonstrate the functional immobilization of this mutant on maleimide-functionalized agarose resin and silica microspheres.
Collapse
Affiliation(s)
- Amélie Ménard
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada, H3A 0B8
| | | | | | | | | |
Collapse
|
29
|
Kobayashi H, Onda S, Furumaki S, Habuchi S, Vacha M. A single-molecule approach to conformation and photophysics of conjugated polymers. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.11.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Liu HW, Ngo AT, Cosa G. Enhancing the Emissive Properties of Poly(p-phenylenevinylene)-Conjugated Polyelectrolyte-Coated SiO2 Nanoparticles. J Am Chem Soc 2012; 134:1648-52. [DOI: 10.1021/ja208437e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hsiao-Wei Liu
- Department
of Chemistry and Centre for Self-Assembled
Chemical Structures (CSACS/CRMAA), McGill University, 801 Sherbrooke
Street West, Montreal, Quebec H3A 2K6, Canada
| | - An Thien Ngo
- Department
of Chemistry and Centre for Self-Assembled
Chemical Structures (CSACS/CRMAA), McGill University, 801 Sherbrooke
Street West, Montreal, Quebec H3A 2K6, Canada
| | - Gonzalo Cosa
- Department
of Chemistry and Centre for Self-Assembled
Chemical Structures (CSACS/CRMAA), McGill University, 801 Sherbrooke
Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
31
|
Kobayashi H, Tsuchiya K, Ogino K, Vacha M. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes. Phys Chem Chem Phys 2012; 14:10114-8. [DOI: 10.1039/c2cp41509g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Hu Z, Gesquiere AJ. Charge Trapping and Storage by Composite P3HT/PC60BM Nanoparticles Investigated by Fluorescence-Voltage/Single Particle Spectroscopy. J Am Chem Soc 2011; 133:20850-6. [DOI: 10.1021/ja207244z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zhongjian Hu
- NanoScience Technology Center, Department of Chemistry and CREOL, The College of Optics and Photonics, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, United States
| | - Andre J. Gesquiere
- NanoScience Technology Center, Department of Chemistry and CREOL, The College of Optics and Photonics, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, United States
| |
Collapse
|
33
|
Ng BC, Chan ST, Lin J, Tolbert SH. Using polymer conformation to control architecture in semiconducting polymer/viral capsid assemblies. ACS NANO 2011; 5:7730-8. [PMID: 21942298 PMCID: PMC3215919 DOI: 10.1021/nn202493w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cowpea chlorotic mottle virus is a single-stranded RNA plant virus with a diameter of 28 nm. The proteins comprising the capsid of this virus can be purified and reassembled either by themselves to form hollow structures or with polyanions such as double-stranded DNA or single-stranded RNA. Depending on pH and ionic strength, a diverse range of structures and shapes can form. The work presented here focuses on using these proteins to encapsulate a fluorescent polyanionic semiconducting polymer, MPS-PPV (poly-2-methoxy-5-propyloxy sulfonate phenylene vinlyene), in order to obtain optically active virus-like particles. After encapsulation, fluorescence from MPS-PPV shows two distinct peaks, which suggests the polymer may be in two conformations. A combination of TEM, fluorescence anisotropy, and sucrose gradient separation indicate that the blue peak arises from polymer encapsulated into spherical particles, while the redder peak corresponds to polymers contained in rod-like cages. Ionic strength during assembly can be used to tune the propensity to form rods or spheres. The results illustrate the synergy of hybrid synthetic/biological systems: polymer conformation drives the structure of this composite material, which in turn modifies the polymer optical properties. This synergy could be useful for the future development of synthetic/biological hybrid materials with designated functionality.
Collapse
Affiliation(s)
- Benny C. Ng
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095-7227, USA
| | - Stephanie T. Chan
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | - Jason Lin
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | - Sarah H. Tolbert
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095-7227, USA
| |
Collapse
|