1
|
Evolution of the connectivity and indispensability of a transferable gene: the simplicity hypothesis. BMC Ecol Evol 2022; 22:140. [PMID: 36451084 PMCID: PMC9710062 DOI: 10.1186/s12862-022-02091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The number of interactions between a transferable gene or its protein product and genes or gene products native to its microbial host is referred to as connectivity. Such interactions impact the tendency of the gene to be retained by evolution following horizontal gene transfer (HGT) into a microbial population. The complexity hypothesis posits that the protein product of a transferable gene with lower connectivity is more likely to function in a way that is beneficial to a new microbial host compared to the protein product of a transferable gene with higher connectivity. A gene with lower connectivity is consequently more likely to be fixed in any microbial population it enters by HGT. The more recently proposed simplicity hypothesis posits that the connectivity of a transferable gene might increase over time within any single microbial population due to gene-host coevolution, but that differential rates of colonization of microbial populations by HGT in accordance with differences in connectivity might act to counter this and even reduce connectivity over time, comprising an evolutionary trade-off. RESULTS We present a theoretical model that can be used to predict the conditions under which gene-host coevolution might increase or decrease the connectivity of a transferable gene over time. We show that the opportunity to enter new microbial populations by HGT can cause the connectivity of a transferable gene to evolve toward lower values, particularly in an environment that is unstable with respect to the function of the gene's protein product. We also show that a lack of such opportunity in a stable environment can cause the connectivity of a transferable gene to evolve toward higher values. CONCLUSION Our theoretical model suggests that the connectivity of a transferable gene can change over time toward higher values corresponding to a more sessile state of lower transferability or lower values corresponding to a more itinerant state of higher transferability, depending on the ecological milieu in which the gene exists. We note, however, that a better understanding of gene-host coevolutionary dynamics in natural microbial systems is required before any further conclusions about the veracity of the simplicity hypothesis can be drawn.
Collapse
|
2
|
Booth A, Mariscal C, Doolittle WF. The Modern Synthesis in the Light of Microbial Genomics. Annu Rev Microbiol 2016; 70:279-97. [DOI: 10.1146/annurev-micro-102215-095456] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Austin Booth
- Department of Philosophy, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada;
| | - Carlos Mariscal
- Department of Philosophy, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada;
- Department of Philosophy, University of Nevada, Reno, Nevada 89557
| | - W. Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada;
| |
Collapse
|
3
|
Abstract
Evolutionary innovation must occur in the context of some genomic background, which limits available evolutionary paths. For example, protein evolution by sequence substitution is constrained by epistasis between residues. In prokaryotes, evolutionary innovation frequently happens by macrogenomic events such as horizontal gene transfer (HGT). Previous work has suggested that HGT can be influenced by ancestral genomic content, yet the extent of such gene-level constraints has not yet been systematically characterized. Here, we evaluated the evolutionary impact of such constraints in prokaryotes, using probabilistic ancestral reconstructions from 634 extant prokaryotic genomes and a novel framework for detecting evolutionary constraints on HGT events. We identified 8228 directional dependencies between genes and demonstrated that many such dependencies reflect known functional relationships, including for example, evolutionary dependencies of the photosynthetic enzyme RuBisCO. Modeling all dependencies as a network, we adapted an approach from graph theory to establish chronological precedence in the acquisition of different genomic functions. Specifically, we demonstrated that specific functions tend to be gained sequentially, suggesting that evolution in prokaryotes is governed by functional assembly patterns. Finally, we showed that these dependencies are universal rather than clade-specific and are often sufficient for predicting whether or not a given ancestral genome will acquire specific genes. Combined, our results indicate that evolutionary innovation via HGT is profoundly constrained by epistasis and historical contingency, similar to the evolution of proteins and phenotypic characters, and suggest that the emergence of specific metabolic and pathological phenotypes in prokaryotes can be predictable from current genomes.
Collapse
|
4
|
Nesme J, Simonet P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol 2014; 17:913-30. [DOI: 10.1111/1462-2920.12631] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Joseph Nesme
- Environmental Microbial Genomics, Bioengineering Departement, Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon; Université de Lyon; 36 Avenue Guy de Collongue Ecully 69134 France
| | - Pascal Simonet
- Environmental Microbial Genomics, Bioengineering Departement, Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon; Université de Lyon; 36 Avenue Guy de Collongue Ecully 69134 France
| |
Collapse
|
5
|
Pelchovich G, Nadejda S, Dana A, Tuller T, Bravo IG, Gophna U. Ribosomal mutations affecting the translation of genes that use non-optimal codons. FEBS J 2014; 281:3701-18. [PMID: 24966114 DOI: 10.1111/febs.12892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/10/2014] [Accepted: 06/23/2014] [Indexed: 01/26/2023]
Abstract
Genes that are laterally acquired by a new host species often contain codons that are non-optimal to the tRNA repertoire of the new host, which may lead to insufficient translational levels. Inefficient translation can be overcome by different mechanisms, such as incremental amelioration of the coding sequence, compensatory mutations in the regulatory sequences leading to increased transcription or increase in gene copy number. However, there is also a possibility that ribosomal mutations can improve the expression of such genes. To test this hypothesis, we examined the effects of point mutations in the endogenous ribosomal proteins S12 and S5 in Escherichia coli, which are known to be involved in the decoding of the mRNA, on the efficiency of translation of exogenous genes that use non-optimal codons, in vivo. We show that an S12 mutant in E. coli is able to express exogenous genes, with non-optimal codons, to higher levels than the wild-type, and explore the mechanisms underlying this phenomenon in this mutant. Our results suggest that the transient emergence of mutants that allow efficient expression of exogenous genes with non-optimal codons could also increase the chances of fixation of laterally transferred genes.
Collapse
Affiliation(s)
- Gidi Pelchovich
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
6
|
Deschamps P, Zivanovic Y, Moreira D, Rodriguez-Valera F, López-García P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota. Genome Biol Evol 2014; 6:1549-63. [PMID: 24923324 PMCID: PMC4122925 DOI: 10.1093/gbe/evu127] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Horizontal gene transfer (HGT) is an important force in evolution, which may lead, among other things, to the adaptation to new environments by the import of new metabolic functions. Recent studies based on phylogenetic analyses of a few genome fragments containing archaeal 16S rRNA genes and fosmid-end sequences from deep-sea metagenomic libraries have suggested that marine planktonic archaea could be affected by high HGT frequency. Likewise, a composite genome of an uncultured marine euryarchaeote showed high levels of gene sequence similarity to bacterial genes. In this work, we ask whether HGT is frequent and widespread in genomes of these marine archaea, and whether HGT is an ancient and/or recurrent phenomenon. To answer these questions, we sequenced 997 fosmid archaeal clones from metagenomic libraries of deep-Mediterranean waters (1,000 and 3,000 m depth) and built comprehensive pangenomes for planktonic Thaumarchaeota (Group I archaea) and Euryarchaeota belonging to the uncultured Groups II and III Euryarchaeota (GII/III-Euryarchaeota). Comparison with available reference genomes of Thaumarchaeota and a composite marine surface euryarchaeote genome allowed us to define sets of core, lineage-specific core, and shell gene ortholog clusters for the two archaeal lineages. Molecular phylogenetic analyses of all gene clusters showed that 23.9% of marine Thaumarchaeota genes and 29.7% of GII/III-Euryarchaeota genes had been horizontally acquired from bacteria. HGT is not only extensive and directional but also ongoing, with high HGT levels in lineage-specific core (ancient transfers) and shell (recent transfers) genes. Many of the acquired genes are related to metabolism and membrane biogenesis, suggesting an adaptive value for life in cold, oligotrophic oceans. We hypothesize that the acquisition of an important amount of foreign genes by the ancestors of these archaeal groups significantly contributed to their divergence and ecological success.
Collapse
Affiliation(s)
- Philippe Deschamps
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS) and Université Paris-Sud, Orsay, France
| | - Yvan Zivanovic
- Institut de Génétique et Microbiologie, Centre National de la Recherche Scientifique (CNRS) and Université Paris-Sud, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS) and Université Paris-Sud, Orsay, France
| | | | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS) and Université Paris-Sud, Orsay, France
| |
Collapse
|
7
|
O'Malley MA. When integration fails: Prokaryote phylogeny and the tree of life. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2013; 44:551-62. [PMID: 23137776 DOI: 10.1016/j.shpsc.2012.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Much is being written these days about integration, its desirability and even its necessity when complex research problems are to be addressed. Seldom, however, do we hear much about the failure of such efforts. Because integration is an ongoing activity rather than a final achievement, and because today's literature about integration consists mostly of manifesto statements rather than precise descriptions, an examination of unsuccessful integration could be illuminating to understand better how it works. This paper will examine the case of prokaryote phylogeny and its apparent failure to achieve integration within broader tree-of-life accounts of evolutionary history (often called 'universal phylogeny'). Despite the fact that integrated databases exist of molecules pertinent to the phylogenetic reconstruction of all lineages of life, and even though the same methods can be used to construct phylogenies wherever the organisms fall on the tree of life, prokaryote phylogeny remains at best only partly integrated within tree-of-life efforts. I will examine why integration does not occur, compare it with integrative practices in animal and other eukaryote phylogeny, and reflect on whether there might be different expectations of what integration should achieve. Finally, I will draw some general conclusions about integration and its function as a 'meta-heuristic' in the normative commitments guiding scientific practice.
Collapse
Affiliation(s)
- Maureen A O'Malley
- Department of Philosophy, University of Sydney, Quadrangle A14, NSW 2006, Australia.
| |
Collapse
|
8
|
Hamp T, Rost B. Alternative protein-protein interfaces are frequent exceptions. PLoS Comput Biol 2012; 8:e1002623. [PMID: 22876170 PMCID: PMC3410849 DOI: 10.1371/journal.pcbi.1002623] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
The intricate molecular details of protein-protein interactions (PPIs) are crucial for function. Therefore, measuring the same interacting protein pair again, we expect the same result. This work measured the similarity in the molecular details of interaction for the same and for homologous protein pairs between different experiments. All scores analyzed suggested that different experiments often find exceptions in the interfaces of similar PPIs: up to 22% of all comparisons revealed some differences even for sequence-identical pairs of proteins. The corresponding number for pairs of close homologs reached 68%. Conversely, the interfaces differed entirely for 12-29% of all comparisons. All these estimates were calculated after redundancy reduction. The magnitude of interface differences ranged from subtle to the extreme, as illustrated by a few examples. An extreme case was a change of the interacting domains between two observations of the same biological interaction. One reason for different interfaces was the number of copies of an interaction in the same complex: the probability of observing alternative binding modes increases with the number of copies. Even after removing the special cases with alternative hetero-interfaces to the same homomer, a substantial variability remained. Our results strongly support the surprising notion that there are many alternative solutions to make the intricate molecular details of PPIs crucial for function.
Collapse
Affiliation(s)
- Tobias Hamp
- TUM, Bioinformatik - I12, Informatik, Garching, Germany
| | - Burkhard Rost
- TUM, Bioinformatik - I12, Informatik, Garching, Germany
- Institute of Advanced Study (IAS), TUM, Garching, Germany
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Horizontal gene transfer (HGT), the movement of genetic material from one species to another, is a common phenomenon in prokaryotic evolution. Although the rate of HGT is known to vary among genes, our understanding of the cause of this variation, currently summarized by two rules, is far from complete. The first rule states that informational genes, which are involved in DNA replication, transcription, and translation, have lower transferabilities than operational genes. The second rule asserts that protein interactivity negatively impacts gene transferability. Here, we hypothesize that high expression hampers HGT, because the fitness cost of an HGT to the recipient, arising from the 1) energy expenditure in transcription and translation, 2) cytotoxic protein misfolding, 3) reduction in cellular translational efficiency, 4) detrimental protein misinteraction, and 5) disturbance of the optimal protein concentration or cell physiology, increases with the expression level of the transferred gene. To test this hypothesis, we examined laboratory and natural HGTs to Escherichia coli. We observed lower transferabilities of more highly expressed genes, even after controlling the confounding factors from the two established rules and the genic GC content. Furthermore, expression level predicts gene transferability better than all other factors examined. We also confirmed the significant negative impact of gene expression on the rate of HGTs to 127 of 133 genomes of eubacteria and archaebacteria. Together, these findings establish the gene expression level as a major determinant of horizontal gene transferability. They also suggest that most successful HGTs are initially slightly deleterious, fixed because of their negligibly low costs rather than high benefits to the recipient.
Collapse
Affiliation(s)
- Chungoo Park
- Department of Ecology and Evolutionary Biology, University of Michigan, MI, USA
| | | |
Collapse
|
10
|
Moran Y, Fredman D, Szczesny P, Grynberg M, Technau U. Recurrent horizontal transfer of bacterial toxin genes to eukaryotes. Mol Biol Evol 2012; 29:2223-30. [PMID: 22411854 PMCID: PMC3424411 DOI: 10.1093/molbev/mss089] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this work, we report likely recurrent horizontal (lateral) gene transfer events of genes encoding pore-forming toxins of the aerolysin family between species belonging to different kingdoms of life. Clustering based on pairwise similarity and phylogenetic analysis revealed several distinct aerolysin sequence groups, each containing proteins from multiple kingdoms of life. These results strongly support at least six independent transfer events between distantly related phyla in the evolutionary history of one protein family and discount selective retention of ancestral genes as a plausible explanation for this patchy phylogenetic distribution. We discuss the possible roles of these proteins and show evidence for a convergent new function in two extant species. We hypothesize that certain gene families are more likely to be maintained following horizontal gene transfer from commensal or pathogenic organism to its host if they 1) can function alone; and 2) are immediately beneficial for the ecology of the organism, as in the case of pore-forming toxins which can be utilized in multicellular organisms for defense and predation.
Collapse
Affiliation(s)
- Yehu Moran
- Department for Molecular Evolution and Development, Center for Organismal Systems Biology, University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
11
|
Building Synthetic Systems to Learn Nature’s Design Principles. EVOLUTIONARY SYSTEMS BIOLOGY 2012; 751:411-29. [DOI: 10.1007/978-1-4614-3567-9_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|