1
|
Mahato S, Maddileti S, Agrawal T, Acharya S, Kannabiran C, Jalali S, Chakraborty D, Mariappan I. Generation and validation of a Leber Congenital Amaurosis, Type 12 patient-specific iPSC line (LVPEIi006-B) with a splice-site mutation in RD3 and an isogenic mutation-corrected iPSC line (LVPEIi006-B-1). Stem Cell Res 2025; 85:103703. [PMID: 40188639 DOI: 10.1016/j.scr.2025.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/26/2025] [Indexed: 04/08/2025] Open
Abstract
Leber congenital amaurosis, Type 12 is an early onset, autosomal recessive retinal disease caused by mutations in RD3. We report the generation of a patient-specific iPSC line (LVPEIi006-B), using Sendai viral vector-based reprogramming approach and an isogenic, mutation-corrected iPSC line (LVPEIi006-B-1), using an en31FnCas9-based adenine base editor (ABE) system. Both lines were clonally expanded and genotyped to confirm the presence of patient-specific mutation and desired base correction in the edited line. Both lines maintained their stemness, pluripotency, genomic integrity and could differentiate into retinal organoids. The mutation-corrected, heterozygous iPSC-derived retinal organoids displayed a partial restoration of normal RD3 mRNA splicing.
Collapse
Affiliation(s)
- Sudipta Mahato
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, Telangana, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Savitri Maddileti
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Trupti Agrawal
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, Telangana, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sundaram Acharya
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Centre for Vitreo Retinal Diseases, Anant Bajaj Retina Institute, L.V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Indumathi Mariappan
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Zhang P, Xu Z. The advancements in precision medicine for Leber congenital amaurosis: Breakthroughs from genetic diagnosis to therapy. Surv Ophthalmol 2025:S0039-6257(25)00070-0. [PMID: 40311816 DOI: 10.1016/j.survophthal.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Leber congenital amaurosis (LCA) is a hereditary retinal disease, typically manifesting as severe vision impairment in infancy. With the advancement of precision medicine, genetic diagnosis and targeted therapies offer new hope for LCA patients, significantly improving both diagnostic accuracy and therapeutic efficacy. We summarize the epidemiological characteristics, clinical manifestations, and molecular genetics underlying LCA. It also highlights recent developments in precision treatment strategies, including gene replacement therapy, CRISPR/Cas9-mediated gene editing, and antisense oligonucleotide therapies. In addition, we discuss the applications of induced pluripotent stem cells and retinal organoids in LCA treatment research. Furthermore, we explore preventive strategies and future treatment directions for LCA, including the development of novel gene therapy vectors, the optimization of combinatorial treatment strategies, and the formulation of personalized treatment approaches. These advancements hold significant potential to offer improved treatment options and enhance the quality of life for LCA patients.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Chen Y, Hausmann J, Zimmermann B, Helgers SOA, Dömer P, Woitzik J, Raap U, Gray N, Büttner A, Koch KW, Bräuer AU. Retinal degeneration protein 3 mutants are associated with cell-cycle arrest and apoptosis. Cell Death Discov 2025; 11:175. [PMID: 40234400 PMCID: PMC12000573 DOI: 10.1038/s41420-025-02475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/05/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Retinal degeneration protein 3 (RD3) plays a crucial role in controlling guanylate cyclase activity in photoreceptor rod and cone cells, and mediates trafficking processes within photoreceptor cells. Loss of RD3 function correlates with severe forms of retinal dystrophy and the development of aggressive neuroblastoma cancer. In the present study, we analyzed RD3 expression in glioblastoma in comparison to non-tumor tissue using public databases and qRT-PCR. We found that RD3 is downregulated in glioblastoma compared to non-tumor tissues. To better understand the cellular function of RD3 in the context of tumor development, we performed first functional cell culture studies to clarify a possible involvement of RD3 in cell survival and the cell cycle. Interestingly, RD3 overexpression significantly decreased cell viability, which subsequently led to cell-cycle arrest at the G2/M phase and induced cell apoptosis. Conversely, single-point mutations in RD3 at the exposed protein surface involved in RD3-target interaction diminished the impact of RD3. Therefore, a controlled RD3 expression level seems to be important for a balance of cell death and cell survival rate. These new functional mechanisms of RD3 expression could help in understanding tumor development and growth.
Collapse
Affiliation(s)
- Yaoyu Chen
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky University, Oldenburg, Germany
- Division of Anatomy, Department of Human Medicine, Carl von Ossietzky University, Oldenburg, Germany
- Cancer hospital and institute of guangzhou medical university, Guangzhou, China
| | - Jens Hausmann
- Division of Anatomy, Department of Human Medicine, Carl von Ossietzky University, Oldenburg, Germany
| | - Benjamin Zimmermann
- Department of Neurosurgery, Carl von Ossietzky University, Oldenburg, Germany
| | | | - Patrick Dömer
- Department of Neurosurgery, Carl von Ossietzky University, Oldenburg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| | - Ulrike Raap
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Natalie Gray
- Division of Anatomy, Department of Human Medicine, Carl von Ossietzky University, Oldenburg, Germany
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky University, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| | - Anja U Bräuer
- Division of Anatomy, Department of Human Medicine, Carl von Ossietzky University, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
4
|
Biasi A, Marino V, Dal Cortivo G, Dell'Orco D. Supramolecular complexes of GCAP1: implications for inherited retinal dystrophies. Int J Biol Macromol 2024; 279:135068. [PMID: 39187109 DOI: 10.1016/j.ijbiomac.2024.135068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Guanylate Cyclase Activating Protein 1 (GCAP1) is a calcium sensor that regulates the enzymatic activity of retinal Guanylate Cyclase 1 (GC1) in photoreceptors in a Ca2+/Mg2+ dependent manner. While point mutations in GCAP1 have been associated with inherited retinal dystrophies (IRDs), their impact on protein dimerization or on the possible interaction with the potent GC1 inhibitor RD3 (retinal degeneration protein 3) has never been investigated. Here, we integrate exhaustive in silico investigations with biochemical assays to evaluate the effects of the p.(E111V) substitution, associated with a severe form of IRD, on GCAP1 homo- and hetero-dimerization, and demonstrate that wild type (WT) GCAP1 directly interacts with RD3. Although inducing constitutive activation in GC1, the E111V substitution only slightly affects the dimerization of GCAP1. Both WT- and E111V-GCAP1 are predominantly monomeric in the absence of the GC1 target, however E111V-GCAP1 shows a stronger tendency to be monomeric in the Ca2+-bound form, corresponding to GC1 inhibiting state. Reconstitution experiments performed in the co-presence of WT-GCAP1, E111V-GCAP1 and RD3 restored nearly physiological regulation of the GC1 enzymatic activity in terms of cGMP synthesis and Ca2+-sensitivity, suggesting new scenarios for biologics-mediated treatment of GCAP1-associated IRDs.
Collapse
Affiliation(s)
- Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
5
|
Maggi J, Koller S, Feil S, Bachmann-Gagescu R, Gerth-Kahlert C, Berger W. Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort. Int J Mol Sci 2024; 25:6540. [PMID: 38928247 PMCID: PMC11203445 DOI: 10.3390/ijms25126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this study was to assess the added diagnostic value of whole genome sequencing (WGS) for patients with inherited retinal diseases (IRDs) who remained undiagnosed after whole exome sequencing (WES). WGS was performed for index patients in 66 families. The datasets were analyzed according to GATK's guidelines. Additionally, DeepVariant was complemented by GATK's workflow, and a novel structural variant pipeline was developed. Overall, a molecular diagnosis was established in 19/66 (28.8%) index patients. Pathogenic deletions and one deep-intronic variant contributed to the diagnostic yield in 4/19 and 1/19 index patients, respectively. The remaining diagnoses (14/19) were attributed to exonic variants that were missed during WES analysis due to bioinformatic limitations, newly described loci, or unclear pathogenicity. The added diagnostic value of WGS equals 5/66 (9.6%) for our cohort, which is comparable to previous studies. This figure would decrease further to 1/66 (1.5%) with a standardized and reliable copy number variant workflow during WES analysis. Given the higher costs and limited added value, the implementation of WGS as a first-tier assay for inherited eye disorders in a diagnostic laboratory remains untimely. Instead, progress in bioinformatic tools and communication between diagnostic and clinical teams have the potential to ameliorate diagnostic yields.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | | | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland;
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
6
|
Mahato S, Maddileti S, Naik M, Kannabiran C, Jalali S, Mariappan I. Generation of Leber congenital amaurosis, type 12 patient-specific induced pluripotent stem cell line (LVPEIi006-A), harboring a homozygous mutation in RD3. Stem Cell Res 2024; 77:103380. [PMID: 38479331 DOI: 10.1016/j.scr.2024.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/24/2024] Open
Abstract
Leber congenital amaurosis (LCA) is a congenital, early onset, autosomal recessive inherited retinal disease (IRD). This report describes an LCA12 patient-specific iPSC line (LVPEIi006-A), generated by the reprogramming of dermal fibroblasts using integration-free episomal plasmids.This disease-specific iPSC model carries a homozygous point mutation in RD3, within the donor splice site at the end of exon 2 (c.296 + 1G > A). The stable line at passage 15 has displayed a normal colony morphology, expressed multiple stemness and pluripotency markers, lost all transgenes, differentiated into cell types of all three germ layers, and maintained a normal karyotype.
Collapse
Affiliation(s)
- Sudipta Mahato
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, Telangana, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Savitri Maddileti
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Milind Naik
- Department of Ophthalmic Plastic Surgery & Facial Aesthetics, Hyderabad Eye Institute, L.V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Centre for Vitreo Retinal Diseases, Anant Bajaj Retina Institute, L.V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Indumathi Mariappan
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Noguchi Y, Onodera Y, Miyamoto T, Maruoka M, Kosako H, Suzuki J. In vivo CRISPR screening directly targeting testicular cells. CELL GENOMICS 2024; 4:100510. [PMID: 38447574 PMCID: PMC10943590 DOI: 10.1016/j.xgen.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
CRISPR-Cas9 short guide RNA (sgRNA) library screening is a powerful approach to understand the molecular mechanisms of biological phenomena. However, its in vivo application is currently limited. Here, we developed our previously established in vitro revival screening method into an in vivo one to identify factors involved in spermatogenesis integrity by utilizing sperm capacitation as an indicator. By introducing an sgRNA library into testicular cells, we successfully pinpointed the retinal degeneration 3 (Rd3) gene as a significant factor in spermatogenesis. Single-cell RNA sequencing (scRNA-seq) analysis highlighted the high expression of Rd3 in round spermatids, and proteomics analysis indicated that Rd3 interacts with mitochondria. To search for cell-type-specific signaling pathways based on scRNA-seq and proteomics analyses, we developed a computational tool, Hub-Explorer. Through this, we discovered that Rd3 modulates oxidative stress by regulating mitochondrial distribution upon ciliogenesis induction. Collectively, our screening system provides a valuable in vivo approach to decipher molecular mechanisms in biological processes.
Collapse
Affiliation(s)
- Yuki Noguchi
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun Suzuki
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
8
|
Li S, Ma H, Yang F, Ding X. cGMP Signaling in Photoreceptor Degeneration. Int J Mol Sci 2023; 24:11200. [PMID: 37446378 PMCID: PMC10342299 DOI: 10.3390/ijms241311200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Photoreceptors in the retina are highly specialized neurons with photosensitive molecules in the outer segment that transform light into chemical and electrical signals, and these signals are ultimately relayed to the visual cortex in the brain to form vision. Photoreceptors are composed of rods and cones. Rods are responsible for dim light vision, whereas cones are responsible for bright light, color vision, and visual acuity. Photoreceptors undergo progressive degeneration over time in many hereditary and age-related retinal diseases. Despite the remarkable heterogeneity of disease-causing genes, environmental factors, and pathogenesis, the progressive death of rod and cone photoreceptors ultimately leads to loss of vision/blindness. There are currently no treatments available for retinal degeneration. Cyclic guanosine 3', 5'-monophosphate (cGMP) plays a pivotal role in phototransduction. cGMP governs the cyclic nucleotide-gated (CNG) channels on the plasma membrane of the photoreceptor outer segments, thereby regulating membrane potential and signal transmission. By gating the CNG channels, cGMP regulates cellular Ca2+ homeostasis and signal transduction. As a second messenger, cGMP activates the cGMP-dependent protein kinase G (PKG), which regulates numerous targets/cellular events. The dysregulation of cGMP signaling is observed in varieties of photoreceptor/retinal degenerative diseases. Abnormally elevated cGMP signaling interferes with various cellular events, which ultimately leads to photoreceptor degeneration. In line with this, strategies to reduce cellular cGMP signaling result in photoreceptor protection in mouse models of retinal degeneration. The potential mechanisms underlying cGMP signaling-induced photoreceptor degeneration involve the activation of PKG and impaired Ca2+ homeostasis/Ca2+ overload, resulting from overactivation of the CNG channels, as well as the subsequent activation of the downstream cellular stress/death pathways. Thus, targeting the cellular cGMP/PKG signaling and the Ca2+-regulating pathways represents a significant strategy for photoreceptor protection in retinal degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Xiqin Ding
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.); (F.Y.)
| |
Collapse
|
9
|
Gulati S, Palczewski K. Structural view of G protein-coupled receptor signaling in the retinal rod outer segment. Trends Biochem Sci 2023; 48:172-186. [PMID: 36163145 PMCID: PMC9868064 DOI: 10.1016/j.tibs.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina.
Collapse
Affiliation(s)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, Department of Physiology and Biophysics, Department of Chemistry, Molecular Biology, and Biochemistry, University of California Irvine, 850 Health Sciences Road, Irvine, CA 92697-4375, USA.
| |
Collapse
|
10
|
Kim HJ, O'Hara-Wright M, Kim D, Loi TH, Lim BY, Jamieson RV, Gonzalez-Cordero A, Yang P. Comprehensive characterization of fetal and mature retinal cell identity to assess the fidelity of retinal organoids. Stem Cell Reports 2023; 18:175-189. [PMID: 36630901 PMCID: PMC9860116 DOI: 10.1016/j.stemcr.2022.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Characterizing cell identity in complex tissues such as the human retina is essential for studying its development and disease. While retinal organoids derived from pluripotent stem cells have been widely used to model development and disease of the human retina, there is a lack of studies that have systematically evaluated the molecular and cellular fidelity of the organoids derived from various culture protocols in recapitulating their in vivo counterpart. To this end, we performed an extensive meta-atlas characterization of cellular identities of the human eye, covering a wide range of developmental stages. The resulting map uncovered previously unknown biomarkers of major retinal cell types and those associated with cell-type-specific maturation. Using our retinal-cell-identity map from the fetal and adult tissues, we systematically assessed the fidelity of the retinal organoids in mimicking the human eye, enabling us to comprehensively benchmark the current protocols for retinal organoid generation.
Collapse
Affiliation(s)
- Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michelle O'Hara-Wright
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Daniel Kim
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - To Ha Loi
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Eye Genetics Research Unit, Children's Medical Research Institute, Sydney Children's Hospitals Network, Save Sight Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Benjamin Y Lim
- Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Robyn V Jamieson
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Eye Genetics Research Unit, Children's Medical Research Institute, Sydney Children's Hospitals Network, Save Sight Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Anai Gonzalez-Cordero
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
11
|
Chen Y, Bräuer AU, Koch KW. Retinal degeneration protein 3 controls membrane guanylate cyclase activities in brain tissue. Front Mol Neurosci 2022; 15:1076430. [PMID: 36618828 PMCID: PMC9812585 DOI: 10.3389/fnmol.2022.1076430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degeneration protein RD3 is involved in regulatory processes of photoreceptor cells. Among its main functions is the inhibition of photoreceptor specific membrane guanylate cyclases during trafficking from the inner segment to their final destination in the outer segment. However, any physiological role of RD3 in non-retinal tissue is unsolved at present and specific protein targets outside of retinal tissue have not been identified so far. The family of membrane bound guanylate cyclases share a high homology of their amino acid sequences in their cytoplasmic domains. Therefore, we reasoned that membrane guanylate cyclases that are activated by natriuretic peptides are also regulated by RD3. We analyzed transcript levels of the rd3 gene and natriuretic peptide receptor genes Npr1 and Npr2 in the mouse retina, cerebellum, hippocampus, neocortex, and the olfactory bulb during development from the embryonic to the postnatal stage at P60. The rd3 gene showed a lower expression level than Npr1 and Npr2 (encoding for GC-A and GC-B, respectively) in all tested brain tissues, but was at least one order of magnitude higher in the retina. RD3 and natriuretic peptide receptor GCs co-express in the retina and brain tissue leading to functional tests. We expressed GC-A and GC-B in HEK293T cells and measured the inhibition of GCs by RD3 after activation by natriuretic peptides yielding inhibitory constants around 25 nM. Furthermore, endogenous GCs in astrocytes were inhibited by RD3 to a similar extent. We here show for the first time that RD3 can inhibit two hormone-stimulated GCs, namely GC-A and GC-B indicating a new regulatory feature of these hormone receptors.
Collapse
Affiliation(s)
- Yaoyu Chen
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky University, Oldenburg, Germany,Division of Anatomy, Department of Human Medicine, Carl von Ossietzky University, Oldenburg, Germany
| | - Anja U. Bräuer
- Division of Anatomy, Department of Human Medicine, Carl von Ossietzky University, Oldenburg, Germany,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky University, Oldenburg, Germany,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany,*Correspondence: Karl-Wilhelm Koch,
| |
Collapse
|
12
|
Ames JB. Structural basis of retinal membrane guanylate cyclase regulation by GCAP1 and RD3. Front Mol Neurosci 2022; 15:988142. [PMID: 36157073 PMCID: PMC9493048 DOI: 10.3389/fnmol.2022.988142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal membrane guanylate cyclases (RetGC1 and RetGC2) are expressed in photoreceptor rod and cone cells, where they promote the onset of visual recovery during phototransduction. The catalytic activity of RetGCs is regulated by their binding to regulatory proteins, guanylate cyclase activating proteins (GCAP1-5) and the retinal degeneration 3 protein (RD3). RetGC1 is activated by its binding to Ca2+-free/Mg2+-bound GCAP1 at low cytosolic Ca2+ levels in light-activated photoreceptors. By contrast, RetGC1 is inactivated by its binding to Ca2+-bound GCAP1 and/or RD3 at elevated Ca2+ levels in dark-adapted photoreceptors. The Ca2+ sensitive cyclase activation helps to replenish the cytosolic cGMP levels in photoreceptors during visual recovery. Mutations in RetGC1, GCAP1 or RD3 that disable the Ca2+-dependent regulation of cyclase activity are genetically linked to rod/cone dystrophies and other inherited forms of blindness. Here I review the structural interaction of RetGC1 with GCAP1 and RD3. I propose a two-state concerted model in which the dimeric RetGC1 allosterically switches between active and inactive conformational states with distinct quaternary structures that are oppositely stabilized by the binding of GCAP1 and RD3. The binding of Ca2+-free/Mg2+-bound GCAP1 is proposed to activate the cyclase by stabilizing RetGC1 in an active conformation (R-state), whereas Ca2+-bound GCAP1 and/or RD3 inhibit the cyclase by locking RetGC1 in an inactive conformation (T-state). Exposed hydrophobic residues in GCAP1 (residues H19, Y22, M26, F73, V77, W94) are essential for cyclase activation and could be targeted by rational drug design for the possible treatment of rod/cone dystrophies.
Collapse
|
13
|
Shahu MK, Schuhmann F, Scholten A, Solov’yov IA, Koch KW. The Transition of Photoreceptor Guanylate Cyclase Type 1 to the Active State. Int J Mol Sci 2022; 23:ijms23074030. [PMID: 35409388 PMCID: PMC8999790 DOI: 10.3390/ijms23074030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Membrane-bound guanylate cyclases (GCs), which synthesize the second messenger guanosine-3', 5'-cyclic monophosphate, differ in their activation modes to reach the active state. Hormone peptides bind to the extracellular domain in hormone-receptor-type GCs and trigger a conformational change in the intracellular, cytoplasmic part of the enzyme. Sensory GCs that are present in rod and cone photoreceptor cells have intracellular binding sites for regulatory Ca2+-sensor proteins, named guanylate-cyclase-activating proteins. A rotation model of activation involving an α-helix rotation was described as a common activation motif among hormone-receptor GCs. We tested whether the photoreceptor GC-E underwent an α-helix rotation when reaching the active state. We experimentally simulated such a transitory switch by integrating alanine residues close to the transmembrane region, and compared the effects of alanine integration with the point mutation V902L in GC-E. The V902L mutation is found in patients suffering from retinal cone-rod dystrophies, and leads to a constitutively active state of GC-E. We analyzed the enzymatic catalytic parameters of wild-type and mutant GC-E. Our data showed no involvement of an α-helix rotation when reaching the active state, indicating a difference in hormone receptor GCs. To characterize the protein conformations that represent the transition to the active state, we investigated the protein dynamics by using a computational approach based on all-atom molecular dynamics simulations. We detected a swinging movement of the dimerization domain in the V902L mutant as the critical conformational switch in the cyclase going from the low to high activity state.
Collapse
Affiliation(s)
- Manisha Kumari Shahu
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (M.K.S.); (A.S.)
| | - Fabian Schuhmann
- Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany; (F.S.); (I.A.S.)
| | - Alexander Scholten
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (M.K.S.); (A.S.)
| | - Ilia A. Solov’yov
- Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany; (F.S.); (I.A.S.)
- Research Centre for Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (M.K.S.); (A.S.)
- Research Centre for Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany
- Correspondence:
| |
Collapse
|
14
|
Amato A, Arrigo A, Aragona E, Manitto MP, Saladino A, Bandello F, Battaglia Parodi M. Gene Therapy in Inherited Retinal Diseases: An Update on Current State of the Art. Front Med (Lausanne) 2021; 8:750586. [PMID: 34722588 PMCID: PMC8553993 DOI: 10.3389/fmed.2021.750586] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Gene therapy cannot be yet considered a far perspective, but a tangible therapeutic option in the field of retinal diseases. Although still confined in experimental settings, the preliminary results are promising and provide an overall scenario suggesting that we are not so far from the application of gene therapy in clinical settings. The main aim of this review is to provide a complete and updated overview of the current state of the art and of the future perspectives of gene therapy applied on retinal diseases. Methods: We carefully revised the entire literature to report all the relevant findings related to the experimental procedures and the future scenarios of gene therapy applied in retinal diseases. A clinical background and a detailed description of the genetic features of each retinal disease included are also reported. Results: The current literature strongly support the hope of gene therapy options developed for retinal diseases. Although being considered in advanced stages of investigation for some retinal diseases, such as choroideremia (CHM), retinitis pigmentosa (RP), and Leber's congenital amaurosis (LCA), gene therapy is still quite far from a tangible application in clinical practice for other retinal diseases. Conclusions: Gene therapy is an extremely promising therapeutic tool for retinal diseases. The experimental data reported in this review offer a strong hope that gene therapy will be effectively available in clinical practice in the next years.
Collapse
Affiliation(s)
- Alessia Amato
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Maria Pia Manitto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
15
|
Retinal degeneration-3 protein attenuates photoreceptor degeneration in transgenic mice expressing dominant mutation of human retinal guanylyl cyclase. J Biol Chem 2021; 297:101201. [PMID: 34537244 PMCID: PMC8517212 DOI: 10.1016/j.jbc.2021.101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
Different forms of photoreceptor degeneration cause blindness. Retinal degeneration-3 protein (RD3) deficiency in photoreceptors leads to recessive congenital blindness. We proposed that aberrant activation of the retinal membrane guanylyl cyclase (RetGC) by its calcium-sensor proteins (guanylyl cyclase-activating protein [GCAP]) causes this retinal degeneration and that RD3 protects photoreceptors by preventing such activation. We here present in vivo evidence that RD3 protects photoreceptors by suppressing activation of both RetGC1 and RetGC2 isozymes. We further suggested that insufficient inhibition of RetGC by RD3 could contribute to some dominant forms of retinal degeneration. The R838S substitution in RetGC1 that causes autosomal-dominant cone-rod dystrophy 6, not only impedes deceleration of RetGC1 activity by Ca2+GCAPs but also elevates this isozyme's resistance to inhibition by RD3. We found that RD3 prolongs the survival of photoreceptors in transgenic mice harboring human R838S RetGC1 (R838S+). Overexpression of GFP-tagged human RD3 did not improve the calcium sensitivity of cGMP production in R838S+ retinas but slowed the progression of retinal blindness and photoreceptor degeneration. Fluorescence of the GFP-tagged RD3 in the retina only partially overlapped with immunofluorescence of RetGC1 or GCAP1, indicating that RD3 separates from the enzyme before the RetGC1:GCAP1 complex is formed in the photoreceptor outer segment. Most importantly, our in vivo results indicate that, in addition to the abnormal Ca2+ sensitivity of R838S RetGC1 in the outer segment, the mutated RetGC1 becomes resistant to inhibition by RD3 in a different cellular compartment(s) and suggest that RD3 overexpression could be utilized to reduce the severity of cone-rod dystrophy 6 pathology.
Collapse
|
16
|
Berger CS, Laroche J, Maaroufi H, Martin H, Moon KM, Landry CR, Foster LJ, Aubin-Horth N. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasit Vectors 2021; 14:436. [PMID: 34454597 PMCID: PMC8400842 DOI: 10.1186/s13071-021-04933-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Manipulative parasites are thought to liberate molecules in their external environment, acting as manipulation factors with biological functions implicated in their host's physiological and behavioural alterations. These manipulation factors are part of a complex mixture called the secretome. While the secretomes of various parasites have been described, there is very little data for a putative manipulative parasite. It is necessary to study the molecular interaction between a manipulative parasite and its host to better understand how such alterations evolve. METHODS Here, we used proteomics to characterize the secretome of a model cestode with a complex life cycle based on trophic transmission. We studied Schistocephalus solidus during the life stage in which behavioural changes take place in its obligatory intermediate fish host, the threespine stickleback (Gasterosteus aculeatus). We produced a novel genome sequence and assembly of S. solidus to improve protein coding gene prediction and annotation for this parasite. We then described the whole worm's proteome and its secretome during fish host infection using LC-MS/MS. RESULTS A total of 2290 proteins were detected in the proteome of S. solidus, and 30 additional proteins were detected specifically in the secretome. We found that the secretome contains proteases, proteins with neural and immune functions, as well as proteins involved in cell communication. We detected receptor-type tyrosine-protein phosphatases, which were reported in other parasitic systems to be manipulation factors. We also detected 12 S. solidus-specific proteins in the secretome that may play important roles in host-parasite interactions. CONCLUSIONS Our results suggest that S. solidus liberates molecules with putative host manipulation functions in the host and that many of them are species-specific.
Collapse
Affiliation(s)
- Chloé Suzanne Berger
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Hélène Martin
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Christian R. Landry
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
- PROTEO, Le Réseau Québécois de Recherche Sur La Fonction, la structure et l’ingénierie des protéines, Université Laval, Quebec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Quebec, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Nadia Aubin-Horth
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| |
Collapse
|
17
|
Huang CH, Yang CM, Yang CH, Hou YC, Chen TC. Leber's Congenital Amaurosis: Current Concepts of Genotype-Phenotype Correlations. Genes (Basel) 2021; 12:genes12081261. [PMID: 34440435 PMCID: PMC8392113 DOI: 10.3390/genes12081261] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Leber’s congenital amaurosis (LCA), one of the most severe inherited retinal dystrophies, is typically associated with extremely early onset of visual loss, nystagmus, and amaurotic pupils, and is responsible for 20% of childhood blindness. With advances in molecular diagnostic technology, the knowledge about the genetic background of LCA has expanded widely, while disease-causing variants have been identified in 38 genes. Different pathogenetic mechanisms have been found among these varieties of genetic mutations, all of which result in the dysfunction or absence of their encoded proteins participating in the visual cycle. Hence, the clinical phenotypes also exhibit extensive heterogenicity, including the course of visual impairment, involvement of the macular area, alteration in retinal structure, and residual function of the diseased photoreceptor. By reviewing the clinical course, fundoscopic images, optical coherent tomography examination, and electroretinogram, genotype-phenotype correlations could be established for common genetic mutations in LCA, which would benefit the timing of the diagnosis and thus promote early intervention. Gene therapy is promising in the management of LCA, while several clinical trials are ongoing and preliminary success has been announced, focusing on RPE65 and other common disease-causing genes. This review provides an update on the genetics, clinical examination findings, and genotype-phenotype correlations in the most well-established causative genetic mutations of LCA.
Collapse
Affiliation(s)
- Chu-Hsuan Huang
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Chih Hou
- Department of Ophthalmology, Cathay General Hospital, Taipei 106, Taiwan; (C.-H.H.); (Y.-C.H.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-M.Y.); (C.-H.Y.)
- Correspondence: ; Tel.: +886-2-23123456
| |
Collapse
|
18
|
Dizhoor AM, Olshevskaya EV, Peshenko IV. Retinal degeneration-3 protein promotes photoreceptor survival by suppressing activation of guanylyl cyclase rather than accelerating GMP recycling. J Biol Chem 2021; 296:100362. [PMID: 33539922 PMCID: PMC8047982 DOI: 10.1016/j.jbc.2021.100362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/19/2023] Open
Abstract
Retinal degeneration-3 protein (RD3) deficiency causes photoreceptor dysfunction and rapid degeneration in the rd3 mouse strain and in human Leber's congenital amaurosis, a congenital retinal dystrophy that results in early vision loss. However, the mechanisms responsible for photoreceptor death remain unclear. Here, we tested two hypothesized biochemical events that may underlie photoreceptor death: (i) the failure to prevent aberrant activation of retinal guanylyl cyclase (RetGC) by calcium-sensor proteins (GCAPs) versus (ii) the reduction of GMP phosphorylation rate, preventing its recycling to GDP/GTP. We found that GMP converts to GDP/GTP in the photoreceptor fraction of the retina ∼24-fold faster in WT mice and ∼400-fold faster in rd3 mice than GTP conversion to cGMP by RetGC. Adding purified RD3 to the retinal extracts inhibited RetGC 4-fold but did not affect GMP phosphorylation in wildtype or rd3 retinas. RD3-deficient photoreceptors rapidly degenerated in rd3 mice that were reared in constant darkness to prevent light-activated GTP consumption via RetGC and phosphodiesterase 6. In contrast, rd3 degeneration was alleviated by deletion of GCAPs. After 2.5 months, only ∼40% of photoreceptors remained in rd3/rd3 retinas. Deletion of GCAP1 or GCAP2 alone preserved 68% and 57% of photoreceptors, respectively, whereas deletion of GCAP1 and GCAP2 together preserved 86%. Taken together, our in vitro and in vivo results support the hypothesis that RD3 prevents photoreceptor death primarily by suppressing activation of RetGC by both GCAP1 and GCAP2 but do not support the hypothesis that RD3 plays a significant role in GMP recycling.
Collapse
Affiliation(s)
- Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA.
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA.
| |
Collapse
|
19
|
Regulation of retinal membrane guanylyl cyclase (RetGC) by negative calcium feedback and RD3 protein. Pflugers Arch 2021; 473:1393-1410. [PMID: 33537894 PMCID: PMC8329130 DOI: 10.1007/s00424-021-02523-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
This article presents a brief overview of the main biochemical and cellular processes involved in regulation of cyclic GMP production in photoreceptors. The main focus is on how the fluctuations of free calcium concentrations in photoreceptors between light and dark regulate the activity of retinal membrane guanylyl cyclase (RetGC) via calcium sensor proteins. The emphasis of the review is on the structure of RetGC and guanylyl cyclase activating proteins (GCAPs) in relation to their functional role in photoreceptors and congenital diseases of photoreceptors. In addition to that, the structure and function of retinal degeneration-3 protein (RD3), which regulates RetGC in a calcium-independent manner, is discussed in detail in connections with its role in photoreceptor biology and inherited retinal blindness.
Collapse
|
20
|
Noel NCL, MacDonald IM, Allison WT. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021; 11:78. [PMID: 33435268 PMCID: PMC7828047 DOI: 10.3390/biom11010078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are an instrumental system for the generation of photoreceptor degeneration models, which can be utilized to determine underlying causes of photoreceptor dysfunction and death, and for the analysis of potential therapeutic compounds, as well as the characterization of regenerative responses. We review the wealth of information from existing zebrafish models of photoreceptor disease, specifically as they relate to currently accepted taxonomic classes of human rod and cone disease. We also highlight that rich, detailed information can be derived from studying photoreceptor development, structure, and function, including behavioural assessments and in vivo imaging of zebrafish. Zebrafish models are available for a diversity of photoreceptor diseases, including cone dystrophies, which are challenging to recapitulate in nocturnal mammalian systems. Newly discovered models of photoreceptor disease and drusenoid deposit formation may not only provide important insights into pathogenesis of disease, but also potential therapeutic approaches. Zebrafish have already shown their use in providing pre-clinical data prior to testing genetic therapies in clinical trials, such as antisense oligonucleotide therapy for Usher syndrome.
Collapse
Affiliation(s)
- Nicole C. L. Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
| | - Ian M. MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - W. Ted Allison
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
21
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness. J Biol Chem 2020; 295:18301-18315. [PMID: 33109612 PMCID: PMC7939455 DOI: 10.1074/jbc.ra120.015553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/23/2020] [Indexed: 11/07/2022] Open
Abstract
Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber's congenital amaurosis (LCA1), and dominant cone-rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer-6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB.
Collapse
Affiliation(s)
- Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA.
| |
Collapse
|
22
|
van der Burght SN, Rademakers S, Johnson JL, Li C, Kremers GJ, Houtsmuller AB, Leroux MR, Jansen G. Ciliary Tip Signaling Compartment Is Formed and Maintained by Intraflagellar Transport. Curr Biol 2020; 30:4299-4306.e5. [DOI: 10.1016/j.cub.2020.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
23
|
Peshenko IV, Dizhoor AM. Two clusters of surface-exposed amino acid residues enable high-affinity binding of retinal degeneration-3 (RD3) protein to retinal guanylyl cyclase. J Biol Chem 2020; 295:10781-10793. [PMID: 32493772 PMCID: PMC7397094 DOI: 10.1074/jbc.ra120.013789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Indexed: 11/06/2022] Open
Abstract
Retinal degeneration-3 (RD3) protein protects photoreceptors from degeneration by preventing retinal guanylyl cyclase (RetGC) activation via calcium-sensing guanylyl cyclase-activating proteins (GCAP), and RD3 truncation causes severe congenital blindness in humans and other animals. The three-dimensional structure of RD3 has recently been established, but the molecular mechanisms of its inhibitory binding to RetGC remain unclear. Here, we report the results of probing 133 surface-exposed residues in RD3 by single substitutions and deletions to identify side chains that are critical for the inhibitory binding of RD3 to RetGC. We tested the effects of these substitutions and deletions in vitro by reconstituting purified RD3 variants with GCAP1-activated human RetGC1. Although the vast majority of the surface-exposed residues tolerated substitutions without loss of RD3's inhibitory activity, substitutions in two distinct narrow clusters located on the opposite sides of the molecule effectively suppressed RD3 binding to the cyclase. The first surface-exposed cluster included residues adjacent to Leu63 in the loop connecting helices 1 and 2. The second cluster surrounded Arg101 on a surface of helix 3. Single substitutions in those two clusters drastically, i.e. up to 245-fold, reduced the IC50 for the cyclase inhibition. Inactivation of the two binding sites completely disabled binding of RD3 to RetGC1 in living HEK293 cells. In contrast, deletion of 49 C-terminal residues did not affect the apparent affinity of RD3 for RetGC. Our findings identify the functional interface on RD3 required for its inhibitory binding to RetGC, a process essential for protecting photoreceptors from degeneration.
Collapse
Affiliation(s)
- Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | - Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| |
Collapse
|
24
|
Wang X, Shan X, Gregory-Evans K, Gregory-Evans CY. RNA-based therapies in animal models of Leber congenital amaurosis causing blindness. PRECISION CLINICAL MEDICINE 2020; 3:113-126. [PMID: 35692607 PMCID: PMC8985810 DOI: 10.1093/pcmedi/pbaa009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Leber congenital amaurosis (LCA) is a severe, genetically heterogeneous recessive eye disease in which ~ 35% of gene mutations are in-frame nonsense mutations coding for loss-of-function premature termination codons (PTCs) in mRNA. Nonsense suppression therapy allows read-through of PTCs leading to production of full-length protein. A limitation of nonsense suppression is that nonsense-mediated decay (NMD) degrades PTC-containing RNA transcripts. The purpose of this study was to determine whether inhibition of NMD could improve nonsense suppression efficacy in vivo. Using a high-throughput approach in the recessive cep290 zebrafish model of LCA (cep290;Q1223X), we first tested the NMD inhibitor Amlexanox in combination with the nonsense suppression drug Ataluren. We observed reduced retinal cell death and improved visual function. With these positive data, we next investigated whether this strategy was also applicable across species in two mammalian models: Rd12 (rpe65;R44X) and Rd3 (rd3;R107X) mouse models of LCA. In the Rd12 model, cell death was reduced, RPE65 protein was produced, and in vivo visual function testing was improved. We establish for the first time that the mechanism of action of Amlexanox in Rd12 retina was through reduced UPF1 phosphorylation. In the Rd3 model, however, no beneficial effect was observed with Ataluren alone or in combination with Amlexanox. This variation in response establishes that some forms of nonsense mutation LCA can be targeted by RNA therapies, but that this needs to be verified for each genotype. The implementation of precision medicine by identifying better responders to specific drugs is essential for development of validated retinal therapies.
Collapse
Affiliation(s)
- Xia Wang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| | - Xianghong Shan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver BC V5Z 3N9, Canada
| |
Collapse
|
25
|
Xu H, Enemchukwu N, Zhong X, Zhang O, Fu Y. Deletion of M-Opsin Prevents M Cone Degeneration in a Mouse Model of Leber Congenital Amaurosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1059-1067. [PMID: 32084365 PMCID: PMC7237827 DOI: 10.1016/j.ajpath.2020.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Mutations in retinoid isomerase (RPE65) or lecithin-retinol acyltransferase (LRAT) disrupt 11-cis-retinal synthesis and cause Leber congenital amaurosis (LCA). Despite the success of recent RPE65 gene therapy, follow-up studies show that patients continue to experience photoreceptor degeneration and lose vision benefit over time. In Lrat-/- mouse model, mislocalized medium (M)-wavelength opsin was degraded, whereas mislocalized short (S)-wavelength opsin accumulated before the onset of cone degeneration. The mechanism for the foveal M/long-wavelength cone photoreceptor degeneration in LCA is unknown. By crossing Lrat-/- mice with a proteasome reporter mouse strain, this study showed that M-opsin-enriched dorsal cones in Lrat-/- mice exhibit proteasome stress because of the degradation of large amounts of M-opsin. Deletion of M-opsin relieves the proteasome stress and completely prevents M cone degeneration in Lrat-/-Opn1sw-/- mice (a pure M cone LCA model, Opn1sw encoding S-opsin) for at least 12 months. These results suggest that M-opsin degradation-associated proteasome stress plays a major role in M cone degeneration in Lrat-/- model. This finding may represent a general mechanism for M cone degeneration in multiple forms of cone degeneration because of M-opsin mislocalization and degradation. These results have important implications for the current gene therapy strategy for LCA that emphasizes the need for combinatorial therapies to both improve vision and slow photoreceptor degeneration.
Collapse
Affiliation(s)
- Hui Xu
- Interdepartmental Program in Neuroscience, Department of Ophthalmology, University of Utah, Salt Lake City, Utah; Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas; Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Nduka Enemchukwu
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas; Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Xiaoyue Zhong
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas; Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas; Rice University, Houston, Texas
| | - Olivia Zhang
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas; Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas; Rice University, Houston, Texas
| | - Yingbin Fu
- Interdepartmental Program in Neuroscience, Department of Ophthalmology, University of Utah, Salt Lake City, Utah; Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas; Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
26
|
GCAP neuronal calcium sensor proteins mediate photoreceptor cell death in the rd3 mouse model of LCA12 congenital blindness by involving endoplasmic reticulum stress. Cell Death Dis 2020; 11:62. [PMID: 31980596 PMCID: PMC6981271 DOI: 10.1038/s41419-020-2255-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
Loss-of-function mutations in the retinal degeneration 3 (RD3) gene cause inherited retinopathy with impaired rod and cone function and fast retinal degeneration in patients and in the natural strain of rd3 mice. The underlying physiopathology mechanisms are not well understood. We previously proposed that guanylate cyclase-activating proteins (GCAPs) might be key Ca2+-sensors mediating the physiopathology of this disorder, based on the demonstrated toxicity of GCAP2 when blocked in its Ca2+-free form at photoreceptor inner segments. We here show that the retinal degeneration in rd3 mice is substantially delayed by GCAPs ablation. While the number of retinal photoreceptor cells is halved in 6 weeks in rd3 mice, it takes 8 months to halve in rd3/rd3 GCAPs-/- mice. Although this substantial morphological rescue does not correlate with recovery of visual function due to very diminished guanylate cyclase activity in rd3 mice, it is very informative of the mechanisms underlying photoreceptor cell death. By showing that GCAP2 is mostly in its Ca2+-free-phosphorylated state in rd3 mice, we infer that the [Ca2+]i at rod inner segments is permanently low. GCAPs are therefore retained at the inner segment in their Ca2+-free, guanylate cyclase activator state. We show that in this conformational state GCAPs induce endoplasmic reticulum (ER) stress, mitochondrial swelling, and cell death. ER stress and mitochondrial swelling are early hallmarks of rd3 retinas preceding photoreceptor cell death, that are substantially rescued by GCAPs ablation. By revealing the involvement of GCAPs-induced ER stress in the physiopathology of Leber's congenital amaurosis 12 (LCA12), this work will aid to guide novel therapies to preserve retinal integrity in LCA12 patients to expand the window for gene therapy intervention to restore vision.
Collapse
|
27
|
Salehi Chaleshtori AR, Garshasbi M, Salehi A. A novel deletion mutation in GUCY2D gene may be responsible for Leber congenital amaurosis-1 disease: A case report. J Curr Ophthalmol 2019; 31:458-462. [PMID: 31844802 PMCID: PMC6896468 DOI: 10.1016/j.joco.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose To investigate genetic mutation(s) underlying retinal degeneration in a male patient. Methods A seven-year-old male patient was referred to receive genetic counseling and molecular testing. Clinical examination was performed by slit-lamp examination and electroretinography (ERG). Molecular testing was undertaken through arrayed-primer extension (APEX) and Sanger sequencing. Results Slit-lamp examination and flat ERG were in favor of Leber congenital amaurosis (LCA) disease as well as fundus findings. The genetic screening revealed two novel homozygote deletion and duplication variants in intron 15 and exon 16 of the GUCY2D gene. Segregation analysis in the family supports the probable contribution of these two novel mutations in clinical representations of the patient. Conclusions This report provides more information about LCA disease and its relevant mutations in Iran. Considering the overlapping phenotypes observed in retinal degenerative disorders, comprehensive molecular testing is needed for precise diagnosis.
Collapse
Affiliation(s)
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Corresponding author. Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran.
| | - Ali Salehi
- Ophthalmology Center, Feiz Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Lamb TD. Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Prog Retin Eye Res 2019; 76:100823. [PMID: 31790748 DOI: 10.1016/j.preteyeres.2019.100823] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
This paper reviews current knowledge of the evolution of the multiple genes encoding proteins that mediate the process of phototransduction in rod and cone photoreceptors of vertebrates. The approach primarily involves molecular phylogenetic analysis of phototransduction protein sequences, combined with analysis of the syntenic arrangement of the genes. At least 35 of these phototransduction genes appear to reside on no more than five paralogons - paralogous regions that each arose from a common ancestral region. Furthermore, it appears that such paralogs arose through quadruplication during the two rounds of genome duplication (2R WGD) that occurred in a chordate ancestor prior to the vertebrate radiation, probably around 600 millions years ago. For several components of the phototransduction cascade, it is shown that distinct isoforms already existed prior to WGD, with the likely implication that separate classes of scotopic and photopic photoreceptor cells had already evolved by that stage. The subsequent quadruplication of the entire genome then permitted the refinement of multiple distinct protein isoforms in rods and cones. A unified picture of the likely pattern and approximate timing of all the important gene duplications is synthesised, and the implications for our understanding of the evolution of rod and cone phototransduction are presented.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
29
|
Identification of Copy Number Variation in Domestic Chicken Using Whole-Genome Sequencing Reveals Evidence of Selection in the Genome. Animals (Basel) 2019; 9:ani9100809. [PMID: 31618984 PMCID: PMC6826909 DOI: 10.3390/ani9100809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chickens have been bred for meat and egg production as a source of animal protein. With the increase of productivity as the main purpose of domestication, factors such as metabolism and immunity were boosted, which are detectable signs of selection on the genome. This study focused on copy number variation (CNV) to find evidence of domestication on the genome. CNV was detected from whole-genome sequencing of 65 chickens including Red Jungle Fowl, broilers, and layers. After that, CNV region, the overlapping region of CNV between individuals, was made to identify which genomic regions showed copy number differentiation. The 663 domesticated-specific CNV regions were associated with various functions such as metabolism and organ development. Also, by performing population differentiation analyses such as clustering analysis and ANOVA test, we found that there are a lot of genomic regions with different copy number patterns between broilers and layers. This result indicates that different genetic variations can be found, depending on the purpose of artificial selection and provides considerations for future animal breeding. Abstract Copy number variation (CNV) has great significance both functionally and evolutionally. Various CNV studies are in progress to find the cause of human disease and to understand the population structure of livestock. Recent advances in next-generation sequencing (NGS) technology have made CNV detection more reliable and accurate at whole-genome level. However, there is a lack of CNV studies on chickens using NGS. Therefore, we obtained whole-genome sequencing data of 65 chickens including Red Jungle Fowl, Cornish (broiler), Rhode Island Red (hybrid), and White Leghorn (layer) from the public databases for CNV region (CNVR) detection. Using CNVnator, a read-depth based software, a total of 663 domesticated-specific CNVRs were identified across autosomes. Gene ontology analysis of genes annotated in CNVRs showed that mainly enriched terms involved in organ development, metabolism, and immune regulation. Population analysis revealed that CN and RIR are closer to each other than WL, and many genes (LOC772271, OR52R1, RD3, ADH6, TLR2B, PRSS2, TPK1, POPDC3, etc.) with different copy numbers between breeds found. In conclusion, this study has helped to understand the genetic characteristics of domestic chickens at CNV level, which may provide useful information for the development of breeding systems in chickens.
Collapse
|
30
|
Somasundaram DB, Subramanian K, Aravindan S, Yu Z, Natarajan M, Herman T, Aravindan N. De novo regulation of RD3 synthesis in residual neuroblastoma cells after intensive multi-modal clinical therapy harmonizes disease evolution. Sci Rep 2019; 9:11766. [PMID: 31409909 PMCID: PMC6692366 DOI: 10.1038/s41598-019-48034-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Most high-risk neuroblastomas that initially respond to therapy will ultimately relapse. Currently, no curative treatment is available. Acquired genetic/molecular rearrangement in therapy-resistant cells contributes to tumor relapse. Recently, we identified significant RD3 loss in progressive disease (PD) and defined its association with advanced disease-stage and poor clinical outcomes. Here, we investigated whether RD3 loss is an acquired process in cells that survive intensive multi-modal clinical therapy (IMCT) and its significance in disease evolution. RD3 status (mRNA, protein) during diagnosis (Dx) and PD after IMCT was investigated in NB patient cohort (n = 106), stage-4 NB cell lines (n = 15) with known treatment status and validated with independent data from another set of 15 cell-lines. Loss of RD3 in metastatic disease was examined using a mouse model of PD and metastatic-site-derived aggressive cells (MSDACs) ex vivo. RD3 silencing/expression assessed changes in metastatic state. Influence of RD3 loss in therapy resistance was examined through independent in vitro and in vivo studies. A significant loss of RD3 mRNA and protein was observed in resistant cells derived from patients with PD after IMCT. This is true to the effect within and between patients. Results from the mouse model identified significant transcriptional/translational loss of RD3 in metastatic tumors and MSDACs. RD3 re-expression in MSDACs and silencing RD3 in parental cells defined the functional relevance of RD3-loss in PD pathogenesis. Analysis of independent studies with salvage therapeutic agents affirmed RD3 loss in surviving resistant cells and residual tumors. The profound reductions in RD3 transcription indicate the de novo regulation of RD3 synthesis in resistant cells after IMCT. Defining RD3 loss in PD and the benefit of targeted reinforcement could improve salvage therapy for progressive neuroblastoma.
Collapse
Affiliation(s)
- Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Karthikeyan Subramanian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mohan Natarajan
- Department of Pathology, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Terence Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
31
|
Dizhoor AM, Olshevskaya EV, Peshenko IV. Retinal guanylyl cyclase activation by calcium sensor proteins mediates photoreceptor degeneration in an rd3 mouse model of congenital human blindness. J Biol Chem 2019; 294:13729-13739. [PMID: 31346032 DOI: 10.1074/jbc.ra119.009948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Indexed: 01/19/2023] Open
Abstract
Deficiency of RD3 (retinal degeneration 3) protein causes recessive blindness and photoreceptor degeneration in humans and in the rd3 mouse strain, but the disease mechanism is unclear. Here, we present evidence that RD3 protects photoreceptors from degeneration by competing with guanylyl cyclase-activating proteins (GCAPs), which are calcium sensor proteins for retinal membrane guanylyl cyclase (RetGC). RetGC activity in rd3/rd3 retinas was drastically reduced but stimulated by the endogenous GCAPs at low Ca2+ concentrations. RetGC activity completely failed to accelerate in rd3/rd3GCAPs -/- hybrid photoreceptors, whose photoresponses remained drastically suppressed compared with the WT. However, ∼70% of the hybrid rd3/rd3GCAPs -/- photoreceptors survived past 6 months, in stark contrast to <5% in the nonhybrid rd3/rd3 retinas. GFP-tagged human RD3 inhibited GCAP-dependent activation of RetGC in vitro similarly to the untagged RD3. When transgenically expressed in rd3/rd3 mouse retinas under control of the rhodopsin promoter, the RD3GFP construct increased RetGC levels to near normal levels, restored dark-adapted photoresponses, and rescued rods from degeneration. The fluorescence of RD3GFP in rd3/rd3RD3GFP + retinas was mostly restricted to the rod photoreceptor inner segments, whereas GCAP1 immunofluorescence was concentrated predominantly in the outer segment. However, RD3GFP became distributed to the outer segments when bred into a GCAPs -/- genetic background. These results support the hypothesis that an essential biological function of RD3 is competition with GCAPs that inhibits premature cyclase activation in the inner segment. Our findings also indicate that the fast rate of degeneration in RD3-deficient photoreceptors results from the lack of this inhibition.
Collapse
Affiliation(s)
- Alexander M Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Elena V Olshevskaya
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Igor V Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| |
Collapse
|
32
|
Abstract
Rods and cones are retinal photoreceptor neurons required for our visual sensation. Because of their highly polarized structures and well-characterized processes of G protein-coupled receptor-mediated phototransduction signaling, these photoreceptors have been excellent models for studying the compartmentalization and sorting of proteins. Rods and cones have a modified ciliary compartment called the outer segment (OS) as well as non-OS compartments. The distinct membrane protein compositions between OS and non-OS compartments suggest that the OS is separated from the rest of the cellular compartments by multiple barriers or gates that are selectively permissive to specific cargoes. This review discusses the mechanisms of protein sorting and compartmentalization in photoreceptor neurons. Proper sorting and compartmentalization of membrane proteins are required for signal transduction and transmission. This review also discusses the roles of compartmentalized signaling, which is compromised in various retinal ciliopathies.
Collapse
Affiliation(s)
- Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
33
|
Peshenko IV, Yu Q, Lim S, Cudia D, Dizhoor AM, Ames JB. Retinal degeneration 3 (RD3) protein, a retinal guanylyl cyclase regulator, forms a monomeric and elongated four-helix bundle. J Biol Chem 2019; 294:2318-2328. [PMID: 30559291 PMCID: PMC6378972 DOI: 10.1074/jbc.ra118.006106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Retinal degeneration 3 (RD3) protein promotes accumulation of retinal membrane guanylyl cyclase (RetGC) in the photoreceptor outer segment and suppresses RetGC activation by guanylyl cyclase-activating proteins (GCAPs). Mutations truncating RD3 cause severe congenital blindness by preventing the inhibitory binding of RD3 to the cyclase. The high propensity of RD3 to aggregate in solution has prevented structural analysis. Here, we produced a highly soluble variant of human RD3 (residues 18-160) that is monomeric and can still bind and negatively regulate RetGC. The NMR solution structure of RD3 revealed an elongated backbone structure (70 Å long and 30 Å wide) consisting of a four-helix bundle with a long unstructured loop between helices 1 and 2. The structure reveals that RD3 residues previously implicated in the RetGC binding map to a localized and contiguous area on the structure, involving a loop between helices 2 and 3 and adjacent parts of helices 3 and 4. The NMR structure of RD3 was validated by mutagenesis. Introducing Trp85 or Phe29 to replace Cys or Leu, respectively, disrupts packing in the hydrophobic core and lowers RD3's apparent affinity for RetGC1. Introducing a positive charge at the interface (Glu32 to Lys) also lowered the affinity. Conversely, introducing Val in place of Cys93 stabilized the hydrophobic core and increased the RD3 affinity for the cyclase. The NMR structure of RD3 presented here provides a structural basis for elucidating RD3-RetGC interactions relevant for normal vision or blindness.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027 and
| | - Qinhong Yu
- the Department of Chemistry, University of California, Davis, California 95616
| | - Sunghyuk Lim
- the Department of Chemistry, University of California, Davis, California 95616
| | - Diana Cudia
- the Department of Chemistry, University of California, Davis, California 95616
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027 and
| | - James B Ames
- the Department of Chemistry, University of California, Davis, California 95616
| |
Collapse
|
34
|
Peshenko IV, Cideciyan AV, Sumaroka A, Olshevskaya EV, Scholten A, Abbas S, Koch KW, Jacobson SG, Dizhoor AM. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration. J Biol Chem 2019; 294:3476-3488. [PMID: 30622141 DOI: 10.1074/jbc.ra118.006180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.
Collapse
Affiliation(s)
- Igor V Peshenko
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Artur V Cideciyan
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander Sumaroka
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Elena V Olshevskaya
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027
| | - Alexander Scholten
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Seher Abbas
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Karl-Wilhelm Koch
- the Department of Neuroscience, University of Oldenburg, Oldenburg D-26129, Germany
| | - Samuel G Jacobson
- the Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Alexander M Dizhoor
- From the Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania 19027,
| |
Collapse
|
35
|
Zaneveld SA, Eblimit A, Liang Q, Bertrand R, Wu N, Liu H, Nguyen Q, Zaneveld J, Wang K, Li Y, Chen R. Gene Therapy Rescues Retinal Degeneration in Receptor Expression-Enhancing Protein 6 Mutant Mice. Hum Gene Ther 2018; 30:302-315. [PMID: 30101608 PMCID: PMC6437630 DOI: 10.1089/hum.2018.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hereditary retinal dystrophy is clinically defined as a broad group of chronic and progressive disorders that affect visual function by causing photoreceptor degeneration. Previously, we identified mutations in the gene encoding receptor expression-enhancing protein 6 (REEP6), in individuals with autosomal recessive retinitis pigmentosa (RP), the most common form of inherited retinal dystrophy. One individual was molecularly diagnosed with biallelic REEP6 mutations, a missense mutation over a frameshift mutation. In this study, we generated Reep6 compound heterozygous mice, Reep6L135P/-, which mimic the patient genotype and recapitulate the early-onset retinal degeneration phenotypes observed in the individual with RP. To determine the feasibility of rescuing the Reep6 mutant phenotype via gene replacement therapy, we delivered Reep6.1, the mouse retina-specific isoform of REEP6, to photoreceptors of Reep6 mutant mice on postnatal day 20. Evaluation of the therapeutic effects 2 months posttreatment showed improvements in the photoresponse as well as preservation of photoreceptor cells. Importantly, guanylyl cyclase 1 (GC1) expression was also restored to the outer segment after treatment. Furthermore, rAAV8-Reep6.1 single treatment in Reep6 mutant mice 1 year postinjection showed significant improvements in retinal function and morphology, suggesting that the treatment is effective even after a prolonged period. Findings from this study show that gene replacement therapy in the retina with rAAV overexpressing Reep6 is effective, preserving photoreceptor function in Reep6 mutant mice. These findings provide evidence that rAAV8-based gene therapy can prolong survival of photoreceptors in vivo and can be potentially used as a therapeutic modality for treatment of patients with RP.
Collapse
Affiliation(s)
- Smriti Agrawal Zaneveld
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Aiden Eblimit
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Qingnan Liang
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Renae Bertrand
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Nathaniel Wu
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Hehe Liu
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Quynh Nguyen
- 3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Jacques Zaneveld
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Keqing Wang
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
36
|
Lamb TD, Hunt DM. Evolution of the calcium feedback steps of vertebrate phototransduction. Open Biol 2018; 8:180119. [PMID: 30257895 PMCID: PMC6170504 DOI: 10.1098/rsob.180119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/29/2018] [Indexed: 01/11/2023] Open
Abstract
We examined the genes encoding the proteins that mediate the Ca-feedback regulatory system in vertebrate rod and cone phototransduction. These proteins comprise four families: recoverin/visinin, the guanylyl cyclase activating proteins (GCAPs), the guanylyl cyclases (GCs) and the sodium/calcium-potassium exchangers (NCKXs). We identified a paralogon containing at least 36 phototransduction genes from at least fourteen families, including all four of the families involved in the Ca-feedback loop (recoverin/visinin, GCAPs, GCs and NCKXs). By combining analyses of gene synteny with analyses of the molecular phylogeny for each of these four families of genes for Ca-feedback regulation, we have established the likely pattern of gene duplications and losses underlying the expansion of isoforms, both before and during the two rounds of whole-genome duplication (2R WGD) that occurred in early vertebrate evolution. Furthermore, by combining our results with earlier evidence on the timing of duplication of the visual G-protein receptor kinase genes, we propose that specialization of proto-vertebrate photoreceptor cells for operation at high and low light intensities preceded the emergence of rhodopsin, which occurred during 2R WGD.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Australian Capital Territory 2600, Australia
| | - David M Hunt
- Centre for Ophthalmology and Visual Science, The Lions Eye Institute, The University of Western Australia, Western Australia 6009, Australia
- School of Biological Sciences, The University of Western Australia, Western Australia 6009, Australia
| |
Collapse
|
37
|
Wimberg H, Lev D, Yosovich K, Namburi P, Banin E, Sharon D, Koch KW. Photoreceptor Guanylate Cyclase ( GUCY2D) Mutations Cause Retinal Dystrophies by Severe Malfunction of Ca 2+-Dependent Cyclic GMP Synthesis. Front Mol Neurosci 2018; 11:348. [PMID: 30319355 PMCID: PMC6167591 DOI: 10.3389/fnmol.2018.00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Over 100 mutations in GUCY2D that encodes the photoreceptor guanylate cyclase GC-E are known to cause two major diseases: autosomal recessive Leber congenital amaurosis (arLCA) or autosomal dominant cone-rod dystrophy (adCRD) with a poorly understood mechanism at the molecular level in most cases. Only few mutations were further characterized for their enzymatic and molecular properties. GC-E activity is under control of neuronal Ca2+-sensor proteins, which is often a possible route to dysfunction. We investigated five recently-identified GC-E mutants that have been reported in patients suffering from arLCA (one large family) and adCRD/maculopathy (four families). Microsatellite analysis revealed that one of the mutations, c.2538G > C (p.K846N), occurred de novo. To better understand the mechanism by which mutations that are located in different GC-E domains develop different phenotypes, we investigated the molecular consequences of these mutations by expressing wildtype and mutant GC-E variants in HEK293 cells. Analyzing their general enzymatic behavior, their regulation by Ca2+ sensor proteins and retinal degeneration protein 3 (RD3) dimerization domain mutants (p.E841K and p.K846N) showed a shift in Ca2+-sensitive regulation by guanylate cyclase-activating proteins (GCAPs). Mutations in the cyclase catalytic domain led to a loss of enzyme function in the mutant p.P873R, but not in p.V902L. Instead, the p.V902L mutation increased the guanylate cyclase activity more than 20-fold showing a high GCAP independent activity and leading to a constitutively active mutant. This is the first mutation to be described affecting the GC-E catalytic core in a complete opposite way.
Collapse
Affiliation(s)
- Hanna Wimberg
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Dorit Lev
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Yosovich
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Prasanthi Namburi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
38
|
Vinberg F, Chen J, Kefalov VJ. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 2018; 67:87-101. [PMID: 29883715 DOI: 10.1016/j.preteyeres.2018.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
39
|
Lim S, Cudia D, Yu Q, Peshenko I, Dizhoor AM, Ames JB. Chemical shift assignments of retinal degeneration 3 protein (RD3). BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:167-170. [PMID: 29327102 PMCID: PMC5871562 DOI: 10.1007/s12104-018-9802-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Retinal degeneration 3 protein (RD3) binds to retinal membrane guanylyl cyclase (RetGC) and suppresses the basal activity of RetGC in photoreceptor cells that opposes the allosteric activation of the cyclase by GCAP proteins. Mutations in RD3 that disrupt its inhibition of RetGC are implicated in human retinal degenerative disorders. Here we report both backbone and sidechain NMR assignments for the RD3 protein (BMRB accession no. 27305).
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Diana Cudia
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Igor Peshenko
- Department of Research, Pennsylvania College of Optometry, Salus University, Elkins Park, PA, 19027, USA
| | - Alexander M Dizhoor
- Department of Research, Pennsylvania College of Optometry, Salus University, Elkins Park, PA, 19027, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
40
|
Sharon D, Wimberg H, Kinarty Y, Koch KW. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Prog Retin Eye Res 2018; 63:69-91. [DOI: 10.1016/j.preteyeres.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
|
41
|
Wimberg H, Janssen-Bienhold U, Koch KW. Control of the Nucleotide Cycle in Photoreceptor Cell Extracts by Retinal Degeneration Protein 3. Front Mol Neurosci 2018. [PMID: 29515371 PMCID: PMC5826319 DOI: 10.3389/fnmol.2018.00052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal degeneration protein 3 (RD3) is crucial for photoreceptor cell survival and linked to Leber Congenital Amaurosis type 12 (LCA12), a hereditary retinal disease in humans. RD3 inhibits photoreceptor guanylate cyclases GC-E and GC-F and is involved in transport of GCs from the inner to the outer segments. Otherwise, its role in photoreceptor physiology is poorly understood. Here, we describe a new function of RD3. Purified RD3 evoked an increase in guanylate kinase activity, an enzyme that is involved in the nucleotide cycle in photoreceptors. We demonstrate a direct interaction between guanylate kinase and RD3 using back-scattering interferometry and show by immunohistochemistry of mouse retina sections that RD3 and guanylate kinase co-localize in photoreceptor inner segments and to a lesser extent in the outer plexiform layer. Our findings point toward a more complex function of RD3 in photoreceptors. The RD3 – guanylate kinase interaction may also play a role in other cellular systems, while the GC – RD3 interaction is exclusive to photoreceptors.
Collapse
Affiliation(s)
- Hanna Wimberg
- Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Department of Neuroscience, Visual Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Biochemistry, Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
42
|
López-Begines S, Plana-Bonamaisó A, Méndez A. Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina. Sci Rep 2018; 8:2903. [PMID: 29440717 PMCID: PMC5811540 DOI: 10.1038/s41598-018-20893-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/26/2018] [Indexed: 11/10/2022] Open
Abstract
Retinal guanylate cyclase (RetGC) and guanylate cyclase activating proteins (GCAPs) play an important role during the light response in photoreceptor cells. Mutations in these proteins are linked to distinct forms of blindness. RetGC and GCAPs exert their role at the ciliary outer segment where phototransduction takes place. We investigated the mechanisms governing GCAP1 and GCAP2 distribution to rod outer segments by expressing selected GCAP1 and GCAP2 mutants as transient transgenes in the rods of GCAP1/2 double knockout mice. We show that precluding GCAP1 direct binding to RetGC (K23D/GCAP1) prevented its distribution to rod outer segments, while preventing GCAP1 activation of RetGC post-binding (W94A/GCAP1) did not. We infer that GCAP1 translocation to the outer segment strongly depends on GCAP1 binding affinity for RetGC, which points to GCAP1 requirement to bind to RetGC to be transported. We gain further insight into the distinctive regulatory steps of GCAP2 distribution, by showing that a phosphomimic at position 201 is sufficient to retain GCAP2 at proximal compartments; and that the bovine equivalent to blindness-causative mutation G157R/GCAP2 results in enhanced phosphorylation in vitro and significant retention at the inner segment in vivo, as likely contributing factors to the pathophysiology.
Collapse
Affiliation(s)
- Santiago López-Begines
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Department of Physiology, University of Barcelona School of Medicine-Bellvitge Health Science Campus, Barcelona, Spain
| | - Anna Plana-Bonamaisó
- Department of Physiology, University of Barcelona School of Medicine-Bellvitge Health Science Campus, Barcelona, Spain
| | - Ana Méndez
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. .,Department of Physiology, University of Barcelona School of Medicine-Bellvitge Health Science Campus, Barcelona, Spain.
| |
Collapse
|
43
|
Antagonistic regulation of trafficking to Caenorhabditis elegans sensory cilia by a Retinal Degeneration 3 homolog and retromer. Proc Natl Acad Sci U S A 2017; 115:E438-E447. [PMID: 29282322 DOI: 10.1073/pnas.1712302115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sensory neurons often possess cilia with elaborate membrane structures that are adapted to the sensory modality of the host cell. Mechanisms that target sensory transduction proteins to these specialized membrane domains remain poorly understood. Here, we show that a homolog of the human retinal dystrophy gene Retinal Degeneration 3 (RD3) is a Golgi-associated protein required for efficient trafficking of a sensory receptor, the receptor-type guanylate cyclase GCY-9, to cilia in chemosensory neurons of the nematode Caenorhabditis elegans The trafficking defect caused by mutation of the nematode RD3 homolog is suppressed in vivo by mutation of key components of the retromer complex, which mediates recycling of cargo from endosomes to the Golgi. Our data show that there exists a critical balance in sensory neurons between the rates of anterograde and retrograde trafficking of cargo destined for the sensory cilium and this balance requires molecular specialization at an early stage of the secretory pathway.
Collapse
|
44
|
Retinal Degeneration Protein 3 (RD3) in normal human tissues: Novel insights. Sci Rep 2017; 7:13154. [PMID: 29030614 PMCID: PMC5640666 DOI: 10.1038/s41598-017-13337-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/21/2017] [Indexed: 12/28/2022] Open
Abstract
The 195-amino-acid-long human Retinal Degeneration Protein 3 (RD3) is critical in the regulation of guanylate cyclase (GC) signaling and photoreceptor cell survival. Recently, we identified significant loss of RD3 in high-risk neuroblastoma and the influential role of RD3 in tumor progression. However, the functional characterization of RD3 in tumor systems has been hampered by the dearth of information on its localization in normal tissue and by the lack of antibodies suitable for staining FFPE tissue, primarily due to the inaccessibility of the epitopes. In this study, we validated a custom-synthesized RD3 antibody and investigated the expression/localization of RD3 in assorted human tissues. We observed stratified expression of RD3 in different cell types and subcellular location of retina. We demonstrated extensive positive RD3 immunoreactivity in various normal tissues and particularly strong dot-like perinuclear staining in the lining epithelial cells, suggesting that RD3 may play an important role in the normal functioning of epithelial cells. RD3 expression is limited in the CNS. While neuroblastoma is often RD3-positive, the adrenal medulla, where many neuroblastomas originate, is RD3-negative. Meta-analysis of RD3 transcriptional expression across normal tissues confirmed tissue-specific RD3 mRNA levels. Our results revealed the tissue-specific expression/localization profile of RD3 for the first time.
Collapse
|
45
|
Iribarne M, Masai I. Neurotoxicity of cGMP in the vertebrate retina: from the initial research on rd mutant mice to zebrafish genetic approaches. J Neurogenet 2017; 31:88-101. [PMID: 28812418 DOI: 10.1080/01677063.2017.1358268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zebrafish are an excellent animal model for research on vertebrate development and human diseases. Sophisticated genetic tools including large-scale mutagenesis methodology make zebrafish useful for studying neuronal degenerative diseases. Here, we review zebrafish models of inherited ophthalmic diseases, focusing on cGMP metabolism in photoreceptors. cGMP is the second messenger of phototransduction, and abnormal cGMP levels are associated with photoreceptor death. cGMP concentration represents a balance between cGMP phosphodiesterase 6 (PDE6) and guanylate cyclase (GC) activities in photoreceptors. Various zebrafish cGMP metabolism mutants were used to clarify molecular mechanisms by which dysfunctions in this pathway trigger photoreceptor degeneration. Here, we review the history of research on the retinal degeneration (rd) mutant mouse, which carries a genetic mutation of PDE6b, and we also highlight recent research in photoreceptor degeneration using zebrafish models. Several recent discoveries that provide insight into cGMP toxicity in photoreceptors are discussed.
Collapse
Affiliation(s)
- Maria Iribarne
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| | - Ichiro Masai
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| |
Collapse
|
46
|
Agrawal SA, Burgoyne T, Eblimit A, Bellingham J, Parfitt DA, Lane A, Nichols R, Asomugha C, Hayes MJ, Munro PM, Xu M, Wang K, Futter CE, Li Y, Chen R, Cheetham ME. REEP6 deficiency leads to retinal degeneration through disruption of ER homeostasis and protein trafficking. Hum Mol Genet 2017; 26:2667-2677. [PMID: 28475715 PMCID: PMC5808736 DOI: 10.1093/hmg/ddx149] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/09/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy. We recently identified mutations in REEP6, which encodes the receptor expression enhancing protein 6, in several families with autosomal recessive RP. REEP6 is related to the REEP and Yop1p family of ER shaping proteins and potential receptor accessory proteins, but the role of REEP6 in the retina is unknown. Here we characterize the disease mechanisms associated with loss of REEP6 function using a Reep6 knockout mouse generated by CRISPR/Cas9 gene editing. In control mice REEP6 was localized to the inner segment and outer plexiform layer of rod photoreceptors. The Reep6-/- mice exhibited progressive photoreceptor degeneration from P20 onwards. Ultrastructural analyses at P20 by transmission electron microscopy and 3View serial block face scanning EM revealed an expansion of the distal ER in the Reep6-/- rods and an increase in their number of mitochondria. Electroretinograms revealed photoreceptor dysfunction preceded degeneration, suggesting potential defects in phototransduction. There was no effect on the traffic of rhodopsin, Rom1 or peripherin/rds; however, the retinal guanylate cyclases GC1 and GC2 were severely affected in the Reep6 knockout animals, with almost undetectable expression. These changes correlated with an increase in C/EBP homologous protein (CHOP) expression and the activation of caspase 12, suggesting that ER stress contributes to cell death. Collectively, these data suggest that REEP6 plays an essential role in maintaining cGMP homeostasis though facilitating the stability and/or trafficking of guanylate cyclases and maintaining ER and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Smriti A. Agrawal
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Aiden Eblimit
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - David A. Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Matthew J. Hayes
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mingchu Xu
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Keqing Wang
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Yumei Li
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Rui Chen
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | |
Collapse
|
47
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
48
|
Iribarne M, Nishiwaki Y, Nakamura S, Araragi M, Oguri E, Masai I. Aipl1 is required for cone photoreceptor function and survival through the stability of Pde6c and Gc3 in zebrafish. Sci Rep 2017; 7:45962. [PMID: 28378769 PMCID: PMC5381001 DOI: 10.1038/srep45962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Genetic mutations in aryl hydrocarbon receptor interacting protein-like 1 (AIPL1) cause photoreceptor degeneration associated with Leber congenital amaurosis 4 (LCA4) in human patients. Here we report retinal phenotypes of a zebrafish aipl1 mutant, gold rush (gosh). In zebrafish, there are two aipl1 genes, aipl1a and aipl1b, which are expressed mainly in rods and cones, respectively. The gosh mutant gene encodes cone-specific aipl1, aipl1b. Cone photoreceptors undergo progressive degeneration in the gosh mutant, indicating that aipl1b is required for cone survival. Furthermore, the cone-specific subunit of cGMP phosphodiesterase 6 (Pde6c) is markedly decreased in the gosh mutant, and the gosh mutation genetically interacts with zebrafish pde6c mutation eclipse (els). These data suggest that Aipl1 is required for Pde6c stability and function. In addition to Pde6c, we found that zebrafish cone-specific guanylate cyclase, zGc3, is also decreased in the gosh and els mutants. Furthermore, zGc3 knockdown embryos showed a marked reduction in Pde6c. These observations illustrate the interdependence of cGMP metabolism regulators between Aipl1, Pde6c, and Gc3 in photoreceptors.
Collapse
Affiliation(s)
- Maria Iribarne
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Yuko Nishiwaki
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Shohei Nakamura
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Masato Araragi
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Eri Oguri
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Ichiro Masai
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
49
|
Fukagawa T, Takafuji K, Tachibanaki S, Kawamura S. Purification of cone outer segment for proteomic analysis on its membrane proteins in carp retina. PLoS One 2017; 12:e0173908. [PMID: 28291804 PMCID: PMC5349680 DOI: 10.1371/journal.pone.0173908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 11/18/2022] Open
Abstract
Rods and cones are both photoreceptors in the retina, but they are different in many aspects including the light response characteristics and, for example, cell morphology and metabolism. These differences would be caused by differences in proteins expressed in rods and cones. To understand the molecular bases of these differences between rods and cones, one of the ways is to compare proteins expressed in rods and cones, and to find those expressed specifically or dominantly. In the present study, we are interested in proteins in the outer segment (OS), the site responsible for generation of rod- or cone-characteristic light responses and also the site showing different morphology between rods and cones. For this, we established a method to purify the OS and the inner segment (IS) of rods and also of cones from purified carp rods and cones, respectively, using sucrose density gradient. In particular, we were interested in proteins tightly bound to the membranes of cone OS. To identify these proteins, we analyzed proteins in some selected regions of an SDS-gel of washed membranes of the OS and the IS obtained from both rods and cones, with Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) using a protein database constructed from carp retina. By comparing the lists of the proteins found in the OS and the IS of both rods and cones, we found some proteins present in cone OS membranes specifically or dominantly, in addition to the proteins already known to be present specifically in cone OS.
Collapse
Affiliation(s)
- Takashi Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Kazuaki Takafuji
- Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
- * E-mail: (ST); (SK)
| | - Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, Japan
- * E-mail: (ST); (SK)
| |
Collapse
|
50
|
Khan FH, Pandian V, Ramraj SK, Aravindan S, Natarajan M, Azadi S, Herman TS, Aravindan N. RD3 loss dictates high-risk aggressive neuroblastoma and poor clinical outcomes. Oncotarget 2017; 6:36522-34. [PMID: 26375249 PMCID: PMC4742193 DOI: 10.18632/oncotarget.5204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 12/03/2022] Open
Abstract
Clinical outcomes for high-risk neuroblastoma patients remains poor, with only 40–50% 5-Year overall survival (OS) and <10% long-term survival. The ongoing acquisition of genetic/molecular rearrangements in undifferentiated neural crest cells may endorse neuroblastoma progression. This study recognized the loss of Retinal Degeneration protein 3, RD3 in aggressive neuroblastoma, and identified its influence in better clinical outcomes and defined its novel metastasis suppressor function. The results showed ubiquitous expression of RD3 in healthy tissues, complete-loss and significant TNM-stage association of RD3 in clinical samples. RD3-loss was intrinsically associated with reduced OS, abridged relapse-free survival, aggressive stage etc., in neuroblastoma patient cohorts. RD3 was transcriptionally and translationally regulated in metastatic site-derived aggressive (MSDAC) cells (regardless of CSC status) ex vivo and in tumor manifolds from metastatic sites in reproducible aggressive disease models in vivo. Re-expressing RD3 in MSDACs reverted their metastatic potential both in vitro and in vivo. Conversely muting RD3 in neuroblastoma cells not only heightened invasion/migration but also dictated aggressive disease with metastasis. These results demonstrate the loss of RD3 in high-risk neuroblastoma, its novel, thus-far unrecognized metastasis suppressor function and further imply that RD3-loss may directly relate to tumor aggressiveness and poor clinical outcomes.
Collapse
Affiliation(s)
- Faizan H Khan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vijayabaskar Pandian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Satish Kumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Mohan Natarajan
- Department of Pathology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Seifollah Azadi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Terence S Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|