1
|
Accioli CDAF, da Silva MS, Santos BAMC, Rodrigues CR. Aryl Hydrocarbon Receptor as a Therapeutical Target of Environmentally Induced Skin Conditions. Mol Pharmacol 2023; 103:255-265. [PMID: 36732021 DOI: 10.1124/molpharm.122.000627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, expressed in several tissues and involved in the response to environmental stressors. Studies have already associated exposure to environmental factors, such as organic air pollutants, products of the skin microbiota, and solar radiation, with the development/worsening of skin conditions, mediated by AhR. On the other hand, recent studies have shown that synthetic and natural compounds are able to modulate the activation of some AhR signaling pathways, minimizing the harmful response of these environmental stressors in the skin. Thus, AhR constitutes a new therapeutic target for the prevention or treatment of skin conditions induced by the skin exposome. Herein, an overview of potential AhR ligands and their biologic effects in environmentally induced skin conditions are presented. The literature survey pointed out divergences in the mechanism of action from a therapeutic perspective. Although most studies point to the benefits of ligand downregulation of AhR signaling, counteracting the toxic effects of environmental factors on the skin, some studies suggest the AhR ligand activation as a therapeutical mechanism for some skin conditions. Furthermore, both agonist and antagonist profiles were identified in the AhR modulation by the synthetic and natural compounds raised. Despite that, this target is still little explored, and further studies are needed to elucidate the molecular mechanisms involved and identify new AhR ligands with therapeutic potential. SIGNIFICANCE STATEMENT: The aryl hydrocarbon receptor (AhR) is involved in different skin physiological and pathological processes, including toxic mechanisms of environmental factors. Synthetic and natural AhR ligands have demonstrated therapeutic potential for skin conditions induced by these agents. Thus, a comprehensive understanding of the skin toxicity mechanisms involving the AhR, as well as the use of AhR modulators from a therapeutic perspective, provides an alternative approach to the development of new treatments for skin disorders induced by the exposome.
Collapse
Affiliation(s)
- Caroline de Almeida Freitas Accioli
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC) (C.d.A.F.A., B.A.M.C.S.) and Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Departamento de Fármacos e Medicamentos (DEFARMED) (C.R.R.), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and MEDCINVITRO, São Paulo, Brazil (M.S.d.S.)
| | - Michelle Sabrina da Silva
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC) (C.d.A.F.A., B.A.M.C.S.) and Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Departamento de Fármacos e Medicamentos (DEFARMED) (C.R.R.), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and MEDCINVITRO, São Paulo, Brazil (M.S.d.S.)
| | - Bianca Aloise Maneira Corrêa Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC) (C.d.A.F.A., B.A.M.C.S.) and Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Departamento de Fármacos e Medicamentos (DEFARMED) (C.R.R.), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and MEDCINVITRO, São Paulo, Brazil (M.S.d.S.)
| | - Carlos Rangel Rodrigues
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC) (C.d.A.F.A., B.A.M.C.S.) and Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Departamento de Fármacos e Medicamentos (DEFARMED) (C.R.R.), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and MEDCINVITRO, São Paulo, Brazil (M.S.d.S.)
| |
Collapse
|
2
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Roman ÁC, Carvajal-Gonzalez JM, Merino JM, Mulero-Navarro S, Fernández-Salguero PM. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther 2017; 185:50-63. [PMID: 29258844 DOI: 10.1016/j.pharmthera.2017.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is well-known for its major contributions to the cellular responses against environmental toxins and carcinogens. Notably, AhR has also emerged as a key transcription factor controlling many physiological processes including cell proliferation and apoptosis, differentiation, adhesion and migration, pluripotency and stemness. These novel functions have broadened our understanding of the signalling pathways and molecular intermediates interacting with AhR under both homeostatic and pathological conditions. Recent discoveries link AhR with the function of essential organs such as liver, skin and gonads, and with complex organismal structures including the immune and cardiovascular systems. The identification of potential endogenous ligands able to regulate AhR activity, opens the possibility of designing ad hoc molecules with pharmacological and/or therapeutic value to treat human diseases in which AhR may have a causal role. Integration of experimental data from in vitro and in vivo studies with "omic" analyses of human patients affected with cancer, immune diseases, inflammation or neurological disorders will likely contribute to validate the clinical relevance of AhR and the possible benefits of modulating its activity by pharmacologically-driven strategies. In this review, we will highlight signalling pathways involved in human diseases that could be targetable by AhR modulators and discuss the feasibility of using such molecules in therapy. The pros and cons of AhR-aimed approaches will be also mentioned.
Collapse
Affiliation(s)
- Ángel C Roman
- Champalimaud Neuroscience Programme, Champalimoud Center for the Unknown, Lisbon, Portugal
| | - José M Carvajal-Gonzalez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
4
|
Kostyuk V, Potapovich A, Stancato A, De Luca C, Lulli D, Pastore S, Korkina L. Photo-oxidation products of skin surface squalene mediate metabolic and inflammatory responses to solar UV in human keratinocytes. PLoS One 2012; 7:e44472. [PMID: 22952984 PMCID: PMC3431355 DOI: 10.1371/journal.pone.0044472] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/08/2012] [Indexed: 12/31/2022] Open
Abstract
The study aimed to identify endogenous lipid mediators of metabolic and inflammatory responses of human keratinocytes to solar UV irradiation. Physiologically relevant doses of solar simulated UVA+UVB were applied to human skin surface lipids (SSL) or to primary cultures of normal human epidermal keratinocytes (NHEK). The decay of photo-sensitive lipid-soluble components, alpha-tocopherol, squalene (Sq), and cholesterol in SSL was analysed and products of squalene photo-oxidation (SqPx) were quantitatively isolated from irradiated SSL. When administered directly to NHEK, low-dose solar UVA+UVB induced time-dependent inflammatory and metabolic responses. To mimic UVA+UVB action, NHEK were exposed to intact or photo-oxidised SSL, Sq or SqPx, 4-hydroxy-2-nonenal (4-HNE), and the product of tryptophan photo-oxidation 6-formylindolo[3,2-b]carbazole (FICZ). FICZ activated exclusively metabolic responses characteristic for UV, i.e. the aryl hydrocarbon receptor (AhR) machinery and downstream CYP1A1/CYP1B1 gene expression, while 4-HNE slightly stimulated inflammatory UV markers IL-6, COX-2, and iNOS genes. On contrast, SqPx induced the majority of metabolic and inflammatory responses characteristic for UVA+UVB, acting via AhR, EGFR, and G-protein-coupled arachidonic acid receptor (G2A).
Collapse
Affiliation(s)
- Vladimir Kostyuk
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
- Biology Department, Belarus State University, Minsk, Belarus
| | - Alla Potapovich
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
- Biology Department, Belarus State University, Minsk, Belarus
| | - Andrea Stancato
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
| | - Chiara De Luca
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
| | - Daniela Lulli
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
| | - Saveria Pastore
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
| | - Liudmila Korkina
- Laboratory of Tissue Engineering & Skin Pathophysiology, Istituto Dermopatico dell'Immacolata (IDI IRCCS), Rome, Italy
- * E-mail:
| |
Collapse
|
5
|
Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2012; 109:4479-84. [PMID: 22392998 DOI: 10.1073/pnas.1118467109] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altered systemic levels of 6-formylindolo[3,2-b]carbazole (FICZ), an enigmatic endogenous ligand for the aryl hydrocarbon receptor (AHR), may explain adverse physiological responses evoked by small natural and anthropogenic molecules as well as by oxidative stress and light. We demonstrate here that several different chemical compounds can inhibit the metabolism of FICZ, thereby disrupting the autoregulatory feedback control of cytochrome P4501 systems and other proteins whose expression is regulated by AHR. FICZ is both the most tightly bound endogenous agonist for the AHR and an ideal substrate for cytochrome CYP1A1/1A2 and 1B1, thereby also participating in an autoregulatory loop that keeps its own steady-state concentration low. At very low concentrations FICZ influences circadian rhythms, responses to UV light, homeostasis associated with pro- and anti-inflammatory processes, and genomic stability. Here, we demonstrate that, if its metabolic clearance is compromised, femtomolar background levels of this compound in cell-culture medium are sufficient to up-regulate CYP1A1 mRNA and enzyme activity. The oxidants UVB irradiation and hydrogen peroxide and the model AHR antagonist 3'-methoxy-4'-nitroflavone all inhibited induction of CYP1A1 enzyme activity by FICZ or 2,3,7,8-tetrachlorodibenzo-p-dioxin, thereby subsequently elevating intracellular levels of FICZ and activating AHR. Taken together, these findings support an indirect mechanism of AHR activation, indicating that AHR activation by molecules with low affinity actually may reflect inhibition of FICZ metabolism and raising questions about the reported promiscuity of the AHR. Accordingly, we propose that prolonged induction of AHR activity through inhibition of CYP1 disturbs feedback regulation of FICZ levels, with potential detrimental consequences.
Collapse
|
6
|
Ma Q. Influence of light on aryl hydrocarbon receptor signaling and consequences in drug metabolism, physiology and disease. Expert Opin Drug Metab Toxicol 2011; 7:1267-93. [DOI: 10.1517/17425255.2011.614947] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|