1
|
Xie B, Sanford EJ, Hung SH, Wagner M, Heyer WD, Smolka MB. Multi-step control of homologous recombination via Mec1/ATR suppresses chromosomal rearrangements. EMBO J 2024; 43:3027-3043. [PMID: 38839993 PMCID: PMC11251156 DOI: 10.1038/s44318-024-00139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Chen J, Wu M, Yang Y, Ruan C, Luo Y, Song L, Wu T, Huang J, Yang B, Liu T. TFIP11 promotes replication fork reversal to preserve genome stability. Nat Commun 2024; 15:1262. [PMID: 38341452 PMCID: PMC10858868 DOI: 10.1038/s41467-024-45684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.
Collapse
Affiliation(s)
- Junliang Chen
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, China
| | - Mingjie Wu
- The Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Chunyan Ruan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yi Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Lizhi Song
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Liu
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Department of Cell Biology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
3
|
Xie B, Sanford EJ, Hung SH, Wagner MM, Heyer WD, Smolka MB. Multi-Step Control of Homologous Recombination by Mec1/ATR Ensures Robust Suppression of Gross Chromosomal Rearrangements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568146. [PMID: 38045423 PMCID: PMC10690203 DOI: 10.1101/2023.11.21.568146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Maciej Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
5
|
Alonso-Ramos P, Álvarez-Melo D, Strouhalova K, Pascual-Silva C, Garside GB, Arter M, Bermejo T, Grigaitis R, Wettstein R, Fernández-Díaz M, Matos J, Geymonat M, San-Segundo PA, Carballo JA. The Cdc14 Phosphatase Controls Resolution of Recombination Intermediates and Crossover Formation during Meiosis. Int J Mol Sci 2021; 22:ijms22189811. [PMID: 34575966 PMCID: PMC8470964 DOI: 10.3390/ijms22189811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Meiotic defects derived from incorrect DNA repair during gametogenesis can lead to mutations, aneuploidies and infertility. The coordinated resolution of meiotic recombination intermediates is required for crossover formation, ultimately necessary for the accurate completion of both rounds of chromosome segregation. Numerous master kinases orchestrate the correct assembly and activity of the repair machinery. Although much less is known, the reversal of phosphorylation events in meiosis must also be key to coordinate the timing and functionality of repair enzymes. Cdc14 is a crucial phosphatase required for the dephosphorylation of multiple CDK1 targets in many eukaryotes. Mutations that inactivate this phosphatase lead to meiotic failure, but until now it was unknown if Cdc14 plays a direct role in meiotic recombination. Here, we show that the elimination of Cdc14 leads to severe defects in the processing and resolution of recombination intermediates, causing a drastic depletion in crossovers when other repair pathways are compromised. We also show that Cdc14 is required for the correct activity and localization of the Holliday Junction resolvase Yen1/GEN1. We reveal that Cdc14 regulates Yen1 activity from meiosis I onwards, and this function is essential for crossover resolution in the absence of other repair pathways. We also demonstrate that Cdc14 and Yen1 are required to safeguard sister chromatid segregation during the second meiotic division, a late action that is independent of the earlier role in crossover formation. Thus, this work uncovers previously undescribed functions of the evolutionary conserved Cdc14 phosphatase in the regulation of meiotic recombination.
Collapse
Affiliation(s)
- Paula Alonso-Ramos
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - David Álvarez-Melo
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - Katerina Strouhalova
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic
| | - Carolina Pascual-Silva
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - George B. Garside
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 4DY, UK;
- Leibniz Institute for Age Research/Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | - Meret Arter
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; (M.A.); (R.G.); (R.W.); (J.M.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Teresa Bermejo
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - Rokas Grigaitis
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; (M.A.); (R.G.); (R.W.); (J.M.)
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Rahel Wettstein
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; (M.A.); (R.G.); (R.W.); (J.M.)
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marta Fernández-Díaz
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; (M.A.); (R.G.); (R.W.); (J.M.)
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marco Geymonat
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK;
| | - Pedro A. San-Segundo
- Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC) and University of Salamanca, 37007 Salamanca, Spain;
| | - Jesús A. Carballo
- Center for Biological Research Margarita Salas, Department of Cellular and Molecular Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (P.A.-R.); (D.Á.-M.); (K.S.); (C.P.-S.); (T.B.); (M.F.-D.)
- Correspondence:
| |
Collapse
|
6
|
Agashe S, Joseph CR, Reyes TAC, Menolfi D, Giannattasio M, Waizenegger A, Szakal B, Branzei D. Smc5/6 functions with Sgs1-Top3-Rmi1 to complete chromosome replication at natural pause sites. Nat Commun 2021; 12:2111. [PMID: 33833229 PMCID: PMC8032827 DOI: 10.1038/s41467-021-22217-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Smc5/6 is essential for genome structural integrity by yet unknown mechanisms. Here we find that Smc5/6 co-localizes with the DNA crossed-strand processing complex Sgs1-Top3-Rmi1 (STR) at genomic regions known as natural pausing sites (NPSs) where it facilitates Top3 retention. Individual depletions of STR subunits and Smc5/6 cause similar accumulation of joint molecules (JMs) composed of reversed forks, double Holliday Junctions and hemicatenanes, indicative of Smc5/6 regulating Sgs1 and Top3 DNA processing activities. We isolate an intra-allelic suppressor of smc6-56 proficient in Top3 retention but affected in pathways that act complementarily with Sgs1 and Top3 to resolve JMs arising at replication termination. Upon replication stress, the smc6-56 suppressor requires STR and Mus81-Mms4 functions for recovery, but not Srs2 and Mph1 helicases that prevent maturation of recombination intermediates. Thus, Smc5/6 functions jointly with Top3 and STR to mediate replication completion and influences the function of other DNA crossed-strand processing enzymes at NPSs.
Collapse
Affiliation(s)
- Sumedha Agashe
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | - Demis Menolfi
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Michele Giannattasio
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | | | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy. .,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy.
| |
Collapse
|
7
|
Sanford EJ, Comstock WJ, Faça VM, Vega SC, Gnügge R, Symington LS, Smolka MB. Phosphoproteomics reveals a distinctive Mec1/ATR signaling response upon DNA end hyper-resection. EMBO J 2021; 40:e104566. [PMID: 33764556 DOI: 10.15252/embj.2020104566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
The Mec1/ATR kinase is crucial for genome maintenance in response to a range of genotoxic insults, but it remains unclear how it promotes context-dependent signaling and DNA repair. Using phosphoproteomic analyses, we uncovered a distinctive Mec1/ATR signaling response triggered by extensive nucleolytic processing (resection) of DNA ends. Budding yeast cells lacking Rad9, a checkpoint adaptor and an inhibitor of resection, exhibit a selective increase in Mec1-dependent phosphorylation of proteins associated with single-strand DNA (ssDNA) transactions, including the ssDNA-binding protein Rfa2, the translocase/ubiquitin ligase Uls1, and the Sgs1-Top3-Rmi1 (STR) complex that regulates homologous recombination (HR). Extensive Mec1-dependent phosphorylation of the STR complex, mostly on the Sgs1 helicase subunit, promotes an interaction between STR and the DNA repair scaffolding protein Dpb11. Fusion of Sgs1 to phosphopeptide-binding domains of Dpb11 strongly impairs HR-mediated repair, supporting a model whereby Mec1 signaling regulates STR upon hyper-resection to influence recombination outcomes. Overall, the identification of a distinct Mec1 signaling response triggered by hyper-resection highlights the multi-faceted action of this kinase in the coordination of checkpoint signaling and HR-mediated DNA repair.
Collapse
Affiliation(s)
- Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - William J Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Vitor M Faça
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Immunology and Cell-Based Therapy Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Stephanie C Vega
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Robert Gnügge
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Mus81-Mms4 endonuclease is an Esc2-STUbL-Cullin8 mitotic substrate impacting on genome integrity. Nat Commun 2020; 11:5746. [PMID: 33184279 PMCID: PMC7665200 DOI: 10.1038/s41467-020-19503-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
The Mus81-Mms4 nuclease is activated in G2/M via Mms4 phosphorylation to allow resolution of persistent recombination structures. However, the fate of the activated phosphorylated Mms4 remains unknown. Here we find that Mms4 is engaged by (poly)SUMOylation and ubiquitylation and targeted for proteasome degradation, a process linked to the previously described Mms4 phosphorylation cycle. Mms4 is a mitotic substrate for the SUMO-Targeted Ubiquitin ligase Slx5/8, the SUMO-like domain-containing protein Esc2, and the Mms1-Cul8 ubiquitin ligase. In the absence of these activities, phosphorylated Mms4 accumulates on chromatin in an active state in the next G1, subsequently causing abnormal processing of replication-associated recombination intermediates and delaying the activation of the DNA damage checkpoint. Mus81-Mms4 mutants that stabilize phosphorylated Mms4 have similar detrimental effects on genome integrity. Overall, our findings highlight a replication protection function for Esc2-STUbL-Cul8 and emphasize the importance for genome stability of resetting phosphorylated Mms4 from one cycle to another. Mus81-Mms4 endonuclease is critical for processing various DNA recombination structures. Here the authors uncover a regulatory mechanism of the endonuclease via posttranslational modifications involving SUMOylation and ubiquitylation that impact on genome integrity.
Collapse
|
9
|
Zardoni L, Nardini E, Liberi G. 2D Gel Electrophoresis to Detect DNA Replication and Recombination Intermediates in Budding Yeast. Methods Mol Biol 2020; 2119:43-59. [PMID: 31989513 DOI: 10.1007/978-1-0716-0323-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The two-dimensional agarose gel electrophoresis (2D gel) is a powerful method used to detect and analyze rare DNA replication and recombination intermediates within a genomic DNA preparation. The 2D gel method has been extensively applied to the budding yeast Saccharomyces cerevisiae due to its small and well-characterized genome to analyze replication fork dynamics at single DNA loci under both physiological and pathological conditions. Here we describe procedures to extract genomic DNA from in vivo UV-psoralen cross-linked yeast cells, to separate branched DNA replication and recombination intermediates by neutral-neutral 2D gel method and to visualize 2D gel structures by Southern Blot.
Collapse
Affiliation(s)
- Luca Zardoni
- Istituto di Genetica Molecolare, CNR, Pavia, Italy
- Scuola Universitaria Superiore, IUSS, Pavia, Italy
| | | | - Giordano Liberi
- Istituto di Genetica Molecolare, CNR, Pavia, Italy.
- IFOM Foundation, Milan, Italy.
| |
Collapse
|
10
|
Kaur H, Gn K, Lichten M. Unresolved Recombination Intermediates Cause a RAD9-Dependent Cell Cycle Arrest in Saccharomyces cerevisiae. Genetics 2019; 213:805-818. [PMID: 31562181 PMCID: PMC6827386 DOI: 10.1534/genetics.119.302632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are crossover precursors. In vitro studies have suggested that this may be due to dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation. To ask whether dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth (RTG), a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during RTG delayed joint molecule resolution, but, ultimately, most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9 ∆ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in Rmi1-depleted rad9 ∆ cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Krishnaprasad Gn
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Glineburg MR, Johns E, Johnson FB. Deletion of ULS1 confers damage tolerance in sgs1 mutants through a Top3-dependent D-loop mediated fork restart pathway. DNA Repair (Amst) 2019; 78:102-113. [PMID: 31005681 DOI: 10.1016/j.dnarep.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR)-based repair during DNA replication can apparently utilize several partially overlapping repair pathways in response to any given lesion. A key player in HR repair is the Sgs1-Top3-Rmi1 (STR) complex, which is critical for resolving X-shaped recombination intermediates formed following bypass of methyl methanesulfonate (MMS)-induced damage. STR mutants are also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU), but unlike MMS treatment, HU treatment is not accompanied by X-structure accumulation, and it is thus unclear how STR functions in this context. Here we provide evidence that HU-induced fork stalling enlists Top3 prior to recombination intermediate formation. The resistance of sgs1Δ mutants to HU is enhanced by the absence of the putative SUMO (Small Ubiquitin MOdifier)-targeted ubiquitin ligase, Uls1, and we demonstrate that Top3 is required for this enhanced resistance and for coordinated breaks and subsequent d-loop formation at forks stalled at the ribosomal DNA (rDNA) replication fork block (RFB). We also find that HU resistance depends on the catalytic activity of the E3 SUMO ligase, Mms21, and includes a rapid Rad51-dependent restart mechanism that is different from the slow Rad51-independent HR fork restart mechanism operative in sgs1Δ ULS1+ mutants. These data support a model in which repair of HU-induced damage in sgs1Δ mutants involves an error-prone break-induced replication pathway but, in the absence of Uls1, shifts to one that is higher-fidelity and involves the formation of Rad51-dependent d-loops.
Collapse
Affiliation(s)
- M Rebecca Glineburg
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States; Cell and Molecular Biology Group, Biomedical Graduate Studies, Philadelphia, Pennsylvania, 19104, United States
| | - Eleanor Johns
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States; Cell and Molecular Biology Group, Biomedical Graduate Studies, Philadelphia, Pennsylvania, 19104, United States; The Institute of Aging, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, United States.
| |
Collapse
|
12
|
Prado F. Homologous Recombination: To Fork and Beyond. Genes (Basel) 2018; 9:genes9120603. [PMID: 30518053 PMCID: PMC6316604 DOI: 10.3390/genes9120603] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Accurate completion of genome duplication is threatened by multiple factors that hamper the advance and stability of the replication forks. Cells need to tolerate many of these blocking lesions to timely complete DNA replication, postponing their repair for later. This process of lesion bypass during DNA damage tolerance can lead to the accumulation of single-strand DNA (ssDNA) fragments behind the fork, which have to be filled in before chromosome segregation. Homologous recombination plays essential roles both at and behind the fork, through fork protection/lesion bypass and post-replicative ssDNA filling processes, respectively. I review here our current knowledge about the recombination mechanisms that operate at and behind the fork in eukaryotes, and how these mechanisms are controlled to prevent unscheduled and toxic recombination intermediates. A unifying model to integrate these mechanisms in a dynamic, replication fork-associated process is proposed from yeast results.
Collapse
Affiliation(s)
- Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, 41092 Seville, Spain.
| |
Collapse
|
13
|
Fanconi Anaemia-Like Mph1 Helicase Backs up Rad54 and Rad5 to Circumvent Replication Stress-Driven Chromosome Bridges. Genes (Basel) 2018; 9:genes9110558. [PMID: 30453647 PMCID: PMC6266064 DOI: 10.3390/genes9110558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination (HR) is a preferred mechanism to deal with DNA replication impairments. However, HR synapsis gives rise to joint molecules (JMs) between the nascent sister chromatids, challenging chromosome segregation in anaphase. Joint molecules are resolved by the actions of several structure-selective endonucleases (SSEs), helicases and topoisomerases. Previously, we showed that yeast double mutants for the Mus81-Mms4 and Yen1 SSEs lead to anaphase bridges (ABs) after replication stress. Here, we have studied the role of the Mph1 helicase in preventing these anaphase aberrations. Mph1, the yeast ortholog of Fanconi anaemia protein M (FANCM), is involved in the removal of the D-loop, the first JM to arise in canonical HR. Surprisingly, the absence of Mph1 alone did not increase ABs; rather, it blocked cells in G2. Interestingly, in the search for genetic interactions with functionally related helicases and translocases, we found additive effects on the G2 block and post-G2 aberrations between mph1Δ and knockout mutants for Srs2, Rad54 and Rad5. Based on these interactions, we suggest that Mph1 acts coordinately with these helicases in the non-canonical HR-driven fork regression mechanism to bypass stalled replication forks.
Collapse
|
14
|
Bermúdez-López M, Villoria MT, Esteras M, Jarmuz A, Torres-Rosell J, Clemente-Blanco A, Aragon L. Sgs1's roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev 2017; 30:1339-56. [PMID: 27298337 PMCID: PMC4911932 DOI: 10.1101/gad.278275.116] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 01/10/2023]
Abstract
In this study, Bermudez-Lopez et al. investigated the molecular regulation of the RecQ helicase (Bloom/Sgs1), which plays critical roles during DNA repair by homologous recombination. The authors provide new insights into the regulation of recruitment and activation of Sgs1 at damaged sites by showing that the Sgs1 is recruited and activated at sites of DNA damage by the Smc5/6 complex through SUMOylation. The RecQ helicase Sgs1 plays critical roles during DNA repair by homologous recombination, from end resection to Holliday junction (HJ) dissolution. Sgs1 has both pro- and anti-recombinogenic roles, and therefore its activity must be tightly regulated. However, the controls involved in recruitment and activation of Sgs1 at damaged sites are unknown. Here we show a two-step role for Smc5/6 in recruiting and activating Sgs1 through SUMOylation. First, auto-SUMOylation of Smc5/6 subunits leads to recruitment of Sgs1 as part of the STR (Sgs1–Top3–Rmi1) complex, mediated by two SUMO-interacting motifs (SIMs) on Sgs1 that specifically recognize SUMOylated Smc5/6. Second, Smc5/6-dependent SUMOylation of Sgs1 and Top3 is required for the efficient function of STR. Sgs1 mutants impaired in recognition of SUMOylated Smc5/6 (sgs1-SIMΔ) or SUMO-dead alleles (sgs1-KR) exhibit unprocessed HJs at damaged replication forks, increased crossover frequencies during double-strand break repair, and severe impairment in DNA end resection. Smc5/6 is a key regulator of Sgs1's recombination functions.
Collapse
Affiliation(s)
- Marcelino Bermúdez-López
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, United Kingdom; Deptartment of Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - María Teresa Villoria
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Esteras
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, United Kingdom
| | - Adam Jarmuz
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, United Kingdom
| | - Jordi Torres-Rosell
- Deptartment of Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Andres Clemente-Blanco
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Luis Aragon
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, United Kingdom
| |
Collapse
|
15
|
Wang G, Zhao J, Vasquez KM. Detection of cis- and trans-acting Factors in DNA Structure-Induced Genetic Instability Using In silico and Cellular Approaches. Front Genet 2016; 7:135. [PMID: 27532010 PMCID: PMC4969553 DOI: 10.3389/fgene.2016.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
Sequences that can adopt alternative DNA structures (i.e., non-B DNA) are very abundant in mammalian genomes, and recent studies have revealed many important biological functions of non-B DNA structures in chromatin remodeling, DNA replication, transcription, and genetic instability. Here, we provide results from an in silico web-based search engine coupled with cell-based experiments to characterize the roles of non-B DNA conformations in genetic instability in eukaryotes. The purpose of this article is to illustrate strategies that can be used to identify and interrogate the biological roles of non-B DNA structures, particularly on genetic instability. We have included unpublished data using a short H-DNA-forming sequence from the human c-MYC promoter region as an example, and identified two different mechanisms of H-DNA-induced genetic instability in yeast and mammalian cells: a DNA replication-related model of mutagenesis; and a replication-independent cleavage model. Further, we identified candidate proteins involved in H-DNA-induced genetic instability by using a yeast genetic screen. A combination of in silico and cellular methods, as described here, should provide further insight into the contributions of non-B DNA structures in biological functions, genetic evolution, and disease development.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Junhua Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| |
Collapse
|
16
|
Wu Y, Qian Y, Zhou G, Lv J, Yan Q, Dong X. Effect of GEN1 interference on the chemosensitivity of the breast cancer MCF-7 and SKBR3 cell lines. Oncol Lett 2016; 11:3597-3604. [PMID: 27284361 PMCID: PMC4887781 DOI: 10.3892/ol.2016.4489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is a notable method for the treatment of breast cancer. Numerous genes associated with the sensitivity of cancer to chemotherapy have been found. In recent years, evidence has suggested that a particular structure termed Holliday junction (HJ) plays a crucial role in cancer chemosensitivity. Targeting HJ resolvases, such as structure-specific endonuclease subunit SLX4 (Slx4) and MUS81 structure-specific endonuclease subunit (Mus81), significantly increases the chemosensitivity of tumor cells. Flap endonuclease GEN homolog 1 (GEN1) is a HJ resolvase that belongs to the Rad2/xeroderma pigmentosum complementation group G nuclease family. Whether GEN1 affects the chemosensitivity of tumor cells in a similar manner to Slx4 and Mus81 remains unknown. The aim of the present study was to determine the effect of GEN1 interference on the chemosensitivity of breast cancer cell lines. The investigation of the function of GEN1 was performed using MCF-7 and SKBR3 cells. Short hairpin RNA was used to suppress the expression of GEN1, and western blot analysis and reverse transcription-quantitative polymerase chain reaction were used to detect gene expression. In addition, a cell counting kit-8 assay was performed to detect the viability of cells and flow cytometry was performed to test apoptosis levels. Suppression of GEN1 in SKBR3 cells effectively increased the sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU), while MCF-7 cells showed no significant change in sensitivity following GEN1 suppression. However, when GEN1 was targeted in addition to Mus81, the MCF-7 cells also demonstrated a significantly increased sensitivity to 5-FU. In addition, when the level of Mus81 was low, GEN1 expression was increased under a low concentration of 5-FU. The present results suggest that GEN1 may play different roles in different breast cancer cell lines. The function of GEN1 may be affected by the level of Mus81 in the cell line. In addition, GEN1 interference may improve the sensitivity to chemotherapy induced by targeting Mus81 alone.
Collapse
Affiliation(s)
- Yunlu Wu
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ying Qian
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Guozhong Zhou
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Juan Lv
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Qiuyue Yan
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xuejun Dong
- Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
17
|
Princz LN, Gritenaite D, Pfander B. The Slx4-Dpb11 scaffold complex: coordinating the response to replication fork stalling in S-phase and the subsequent mitosis. Cell Cycle 2015; 14:488-94. [PMID: 25496009 DOI: 10.4161/15384101.2014.989126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Replication fork stalling at DNA lesions is a common problem during the process of DNA replication. One way to allow the bypass of these lesions is via specific recombination-based mechanisms that involve switching of the replication template to the sister chromatid. Inherent to these mechanisms is the formation of DNA joint molecules (JMs) between sister chromatids. Such JMs need to be disentangled before chromatid separation in mitosis and the activity of JM resolution enzymes, which is under stringent cell cycle control, is therefore up-regulated in mitosis. An additional layer of control is facilitated by scaffold proteins. In budding yeast, specifically during mitosis, Slx4 and Dpb11 form a cell cycle kinase-dependent complex with the Mus81-Mms4 structure-selective endonuclease, which allows efficient JM resolution by Mus81. Furthermore, Slx4 and Dpb11 interact even prior to joining Mus81 and respond to replication fork stalling in S-phase. This S-phase complex is involved in the regulation of the DNA damage checkpoint as well as in early steps of template switch recombination. Similar interactions and regulatory principles are found in human cells suggesting that Slx4 and Dpb11 may have an evolutionary conserved role organizing the cellular response to replication fork stalling.
Collapse
Affiliation(s)
- Lissa N Princz
- a Max-Planck Institute of Biochemistry ; DNA Replication and Genome Integrity ; Martinsried , Germany
| | | | | |
Collapse
|
18
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
19
|
Larsen NB, Hickson ID, Mankouri HW. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes. Cell Cycle 2015; 13:2994-8. [PMID: 25486560 DOI: 10.4161/15384101.2014.958912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.
Collapse
Affiliation(s)
- Nicolai B Larsen
- a Center for Healthy Aging; Department of Cellular and Molecular Medicine ; University of Copenhagen ; Copenhagen , Denmark
| | | | | |
Collapse
|
20
|
Tang S, Wu MKY, Zhang R, Hunter N. Pervasive and essential roles of the Top3-Rmi1 decatenase orchestrate recombination and facilitate chromosome segregation in meiosis. Mol Cell 2015; 57:607-621. [PMID: 25699709 DOI: 10.1016/j.molcel.2015.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/03/2014] [Accepted: 01/12/2015] [Indexed: 11/30/2022]
Abstract
The Bloom's helicase ortholog, Sgs1, plays central roles to coordinate the formation and resolution of joint molecule intermediates (JMs) during meiotic recombination in budding yeast. Sgs1 can associate with type-I topoisomerase Top3 and its accessory factor Rmi1 to form a conserved complex best known for its unique ability to decatenate double-Holliday junctions. Contrary to expectations, we show that the strand-passage activity of Top3-Rmi1 is required for all known functions of Sgs1 in meiotic recombination, including channeling JMs into physiological crossover and noncrossover pathways, and suppression of non-allelic recombination. We infer that Sgs1 always functions in the context of the Sgs1-Top3-Rmi1 complex to regulate meiotic recombination. In addition, we reveal a distinct late role for Top3-Rmi1 in resolving recombination-dependent chromosome entanglements to allow segregation at anaphase. Surprisingly, Sgs1 does not share this essential role of Top3-Rmi1. These data reveal an essential and pervasive role for the Top3-Rmi1 decatenase during meiosis.
Collapse
Affiliation(s)
- Shangming Tang
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Michelle Ka Yan Wu
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Ruoxi Zhang
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Neil Hunter
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Lu S, Wang G, Bacolla A, Zhao J, Spitser S, Vasquez KM. Short Inverted Repeats Are Hotspots for Genetic Instability: Relevance to Cancer Genomes. Cell Rep 2015; 10:1674-1680. [PMID: 25772355 DOI: 10.1016/j.celrep.2015.02.039] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/26/2015] [Accepted: 02/16/2015] [Indexed: 12/25/2022] Open
Abstract
Analyses of chromosomal aberrations in human genetic disorders have revealed that inverted repeat sequences (IRs) often co-localize with endogenous chromosomal instability and breakage hotspots. Approximately 80% of all IRs in the human genome are short (<100 bp), yet the mutagenic potential of such short cruciform-forming sequences has not been characterized. Here, we find that short IRs are enriched at translocation breakpoints in human cancer and stimulate the formation of DNA double-strand breaks (DSBs) and deletions in mammalian and yeast cells. We provide evidence for replication-related mechanisms of IR-induced genetic instability and a novel XPF cleavage-based mechanism independent of DNA replication. These discoveries implicate short IRs as endogenous sources of DNA breakage involved in disease etiology and suggest that these repeats represent a feature of genome plasticity that may contribute to the evolution of the human genome by providing a means for diversity within the population.
Collapse
Affiliation(s)
- Steve Lu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Junhua Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Scott Spitser
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin - Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard R1800, Austin, TX 78723, USA.
| |
Collapse
|
22
|
Morrical SW. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol 2015; 7:a016444. [PMID: 25646379 DOI: 10.1101/cshperspect.a016444] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of heteroduplex DNA is a central step in the exchange of DNA sequences via homologous recombination, and in the accurate repair of broken chromosomes via homology-directed repair pathways. In cells, heteroduplex DNA largely arises through the activities of recombination proteins that promote DNA-pairing and annealing reactions. Classes of proteins involved in pairing and annealing include RecA-family DNA-pairing proteins, single-stranded DNA (ssDNA)-binding proteins, recombination mediator proteins, annealing proteins, and nucleases. This review explores the properties of these pairing and annealing proteins, and highlights their roles in complex recombination processes including the double Holliday junction (DhJ) formation, synthesis-dependent strand annealing, and single-strand annealing pathways--DNA transactions that are critical both for genome stability in individual organisms and for the evolution of species.
Collapse
Affiliation(s)
- Scott W Morrical
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
23
|
Prado F. Homologous recombination maintenance of genome integrity during DNA damage tolerance. Mol Cell Oncol 2014; 1:e957039. [PMID: 27308329 PMCID: PMC4905194 DOI: 10.4161/23723548.2014.957039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023]
Abstract
The DNA strand exchange protein Rad51 provides a safe mechanism for the repair of DNA breaks using the information of a homologous DNA template. Homologous recombination (HR) also plays a key role in the response to DNA damage that impairs the advance of the replication forks by providing mechanisms to circumvent the lesion and fill in the tracks of single-stranded DNA that are generated during the process of lesion bypass. These activities postpone repair of the blocking lesion to ensure that DNA replication is completed in a timely manner. Experimental evidence generated over the last few years indicates that HR participates in this DNA damage tolerance response together with additional error-free (template switch) and error-prone (translesion synthesis) mechanisms through intricate connections, which are presented here. The choice between repair and tolerance, and the mechanism of tolerance, is critical to avoid increased mutagenesis and/or genome rearrangements, which are both hallmarks of cancer.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Biología Molecular; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) ; Consejo Superior de Investigaciones Científicas (CSIC) ; Seville, Spain
| |
Collapse
|
24
|
Visualization of recombination-mediated damage bypass by template switching. Nat Struct Mol Biol 2014; 21:884-92. [PMID: 25195051 PMCID: PMC4189914 DOI: 10.1038/nsmb.2888] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 08/13/2014] [Indexed: 12/29/2022]
Abstract
Template switching (TS) mediates damage-bypass via a recombination-related mechanism involving PCNA polyubiquitylation and Polymerase δ-dependent DNA synthesis. Using two-dimensional gel electrophoresis and electron microscopy, here we characterize TS intermediates arising in Saccharomyces cerevisiae at a defined chromosome locus, identifying five major families of intermediates. Single-stranded DNA gaps in the range of 150-200 nucleotides, and not DNA ends, initiate TS by strand invasion. This causes re-annealing of the parental strands and exposure of the non-damaged newly synthesized chromatid as template for replication by the other blocked nascent strand. Structures resembling double Holliday Junctions, postulated to be central double-strand break repair intermediates, but so far only visualized in meiosis, mediate late stages of TS, before being processed to hemicatenanes. Our results reveal the DNA transitions accounting for recombination-mediated DNA damage tolerance in mitotic cells and for replication under conditions of genotoxic stress.
Collapse
|
25
|
Gritenaite D, Princz LN, Szakal B, Bantele SCS, Wendeler L, Schilbach S, Habermann BH, Matos J, Lisby M, Branzei D, Pfander B. A cell cycle-regulated Slx4-Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication. Genes Dev 2014; 28:1604-19. [PMID: 25030699 PMCID: PMC4102767 DOI: 10.1101/gad.240515.114] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A key function of the DNA damage response is to facilitate the bypass of replication fork-stalling DNA lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs) between sister chromatids. However, the regulation of JM resolution is poorly understood. Pfander and colleagues elucidate a mechanism in yeast that critically controls JM resolution by the Mus81–Mms4 endonuclease. The data show that the conserved complex comprising scaffold proteins Dbp11 and Slx4 integrates cellular inputs and regulates the activation of the JM-resolving nuclease Mus81. A key function of the cellular DNA damage response is to facilitate the bypass of replication fork-stalling DNA lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs) between sister chromatids. These JMs need to be resolved before cell division; however, the regulation of this process is only poorly understood. Here, we identify a regulatory mechanism in yeast that critically controls JM resolution by the Mus81–Mms4 endonuclease. Central to this regulation is a conserved complex comprising the scaffold proteins Dpb11 and Slx4 that is under stringent control. Cell cycle-dependent phosphorylation of Slx4 by Cdk1 promotes the Dpb11–Slx4 interaction, while in mitosis, phosphorylation of Mms4 by Polo-like kinase Cdc5 promotes the additional association of Mus81–Mms4 with the complex, thereby promoting JM resolution. Finally, the DNA damage checkpoint counteracts Mus81–Mms4 binding to the Dpb11–Slx4 complex. Thus, Dpb11–Slx4 integrates several cellular inputs and participates in the temporal program for activation of the JM-resolving nuclease Mus81.
Collapse
Affiliation(s)
- Dalia Gritenaite
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Lissa N Princz
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Barnabas Szakal
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Susanne C S Bantele
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Lina Wendeler
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sandra Schilbach
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca H Habermann
- Computational Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| | - Michael Lisby
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Boris Pfander
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
26
|
Abstract
Four-way DNA intermediates, called Holliday junctions (HJs), can form during meiotic and mitotic recombination, and their removal is crucial for chromosome segregation. A group of ubiquitous and highly specialized structure-selective endonucleases catalyze the cleavage of HJs into two disconnected DNA duplexes in a reaction called HJ resolution. These enzymes, called HJ resolvases, have been identified in bacteria and their bacteriophages, archaea, and eukaryotes. In this review, we discuss fundamental aspects of the HJ structure and their interaction with junction-resolving enzymes. This is followed by a brief discussion of the eubacterial RuvABC enzymes, which provide the paradigm for HJ resolvases in other organisms. Finally, we review the biochemical and structural properties of some well-characterized resolvases from archaea, bacteriophage, and eukaryotes.
Collapse
Affiliation(s)
- Haley D M Wyatt
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Stephen C West
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| |
Collapse
|
27
|
Abstract
Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions.
Collapse
Affiliation(s)
- Anna H Bizard
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
28
|
Larsen NB, Sass E, Suski C, Mankouri HW, Hickson ID. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast. Nat Commun 2014; 5:3574. [PMID: 24705096 DOI: 10.1038/ncomms4574] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/06/2014] [Indexed: 01/01/2023] Open
Abstract
Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus, to specific DNA sequences called Ter. Here, we demonstrate that Tus-Ter modules also induce polar RF pausing when engineered into the Saccharomyces cerevisiae genome. This heterologous RF barrier is distinct from a number of previously characterized, protein-mediated, RF pause sites in yeast, as it is neither Tof1-dependent nor counteracted by the Rrm3 helicase. Although the yeast replisome can overcome RF pausing at Tus-Ter modules, this event triggers site-specific homologous recombination that requires the RecQ helicase, Sgs1, for its timely resolution. We propose that Tus-Ter can be utilized as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications.
Collapse
Affiliation(s)
- Nicolai B Larsen
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute 18.1, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ehud Sass
- 1] Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute 18.1, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark [2] Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK [3]
| | - Catherine Suski
- 1] Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK [2]
| | - Hocine W Mankouri
- 1] Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute 18.1, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark [2] Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ian D Hickson
- 1] Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute 18.1, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark [2] Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
29
|
Overexpression of Twinkle-helicase protects cardiomyocytes from genotoxic stress caused by reactive oxygen species. Proc Natl Acad Sci U S A 2013; 110:19408-13. [PMID: 24218554 DOI: 10.1073/pnas.1303046110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) in adult human heart is characterized by complex molecular forms held together by junctional molecules of unknown biological significance. These junctions are not present in mouse hearts and emerge in humans during postnatal development, concomitant with increased demand for oxidative metabolism. To analyze the role of mtDNA organization during oxidative stress in cardiomyocytes, we used a mouse model, which recapitulates the complex mtDNA organization of human hearts by overexpression of the mitochondrial helicase, TWINKLE. Overexpression of TWINKLE rescued the oxidative damage induced replication stalling of mtDNA, reduced mtDNA point mutation load, and modified mtDNA rearrangements in heterozygous mitochondrial superoxide dismutase knockout hearts, as well as ameliorated cardiomyopathy in mice superoxide dismutase knockout in a p21-dependent manner. We conclude that mtDNA integrity influences cell survival and reason that tissue specific modes of mtDNA maintenance represent an adaptation to oxidative stress.
Collapse
|
30
|
Esta A, Ma E, Dupaigne P, Maloisel L, Guerois R, Le Cam E, Veaute X, Coïc E. Rad52 sumoylation prevents the toxicity of unproductive Rad51 filaments independently of the anti-recombinase Srs2. PLoS Genet 2013; 9:e1003833. [PMID: 24130504 PMCID: PMC3794917 DOI: 10.1371/journal.pgen.1003833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
The budding yeast Srs2 is the archetype of helicases that regulate several aspects of homologous recombination (HR) to maintain genomic stability. Srs2 inhibits HR at replication forks and prevents high frequencies of crossing-over. Additionally, sensitivity to DNA damage and synthetic lethality with replication and recombination mutants are phenotypes that can only be attributed to another role of Srs2: the elimination of lethal intermediates formed by recombination proteins. To shed light on these intermediates, we searched for mutations that bypass the requirement of Srs2 in DNA repair without affecting HR. Remarkably, we isolated rad52-L264P, a novel allele of RAD52, a gene that encodes one of the most central recombination proteins in yeast. This mutation suppresses a broad spectrum of srs2Δ phenotypes in haploid cells, such as UV and γ-ray sensitivities as well as synthetic lethality with replication and recombination mutants, while it does not significantly affect Rad52 functions in HR and DNA repair. Extensive analysis of the genetic interactions between rad52-L264P and srs2Δ shows that rad52-L264P bypasses the requirement for Srs2 specifically for the prevention of toxic Rad51 filaments. Conversely, this Rad52 mutant cannot restore viability of srs2Δ cells that accumulate intertwined recombination intermediates which are normally processed by Srs2 post-synaptic functions. The avoidance of toxic Rad51 filaments by Rad52-L264P can be explained by a modification of its Rad51 filament mediator activity, as indicated by Chromatin immunoprecipitation and biochemical analysis. Remarkably, sensitivity to DNA damage of srs2Δ cells can also be overcome by stimulating Rad52 sumoylation through overexpression of the sumo-ligase SIZ2, or by replacing Rad52 by a Rad52-SUMO fusion protein. We propose that, like the rad52-L264P mutation, sumoylation modifies Rad52 activity thereby changing the properties of Rad51 filaments. This conclusion is strengthened by the finding that Rad52 is often associated with complete Rad51 filaments in vitro. Homologous recombination (HR) is essential for double-strand break repair and participates in post-replication restart of stalled and collapsed replication forks. However, HR can lead to genome rearrangements and has to be strictly controlled. The budding yeast Srs2 is involved in the prevention of high crossing-over frequencies and in the inhibition of HR at replication forks. Nevertheless, important phenotypes of srs2Δ mutants, like sensitivity to DNA damage and synthetic lethality with replication and recombination mutants, can only be attributed to another role of Srs2: the elimination of lethal intermediates formed by recombination proteins. The nature of these intermediates remains to be defined. In a screen designed to uncover mutations able to suppress srs2Δ phenotypes, we isolated a novel allele of Rad52 (rad52-L264P), the gene that codes for the major Rad51 nucleoprotein filament mediator. Interestingly, we observed that rad52-L264P bypasses the requirement for Srs2 without affecting DNA repair by HR. We also found that Rad52-L264P specifically prevents the formation of unproductive Rad51 filaments before strand invasion, allowing us to define Srs2 substrates. Further analysis showed that Rad52-L264P mimics the properties of the Rad52-SUMO conjugate, revealing that Rad52 assembles Rad51 filaments differently according to its sumoylation status.
Collapse
Affiliation(s)
- Aline Esta
- CEA, DSV, iRCM, SIGRR, LRGM, Fontenay-aux-Roses, France
| | - Emilie Ma
- CEA, DSV, iRCM, SIGRR, LRGM, Fontenay-aux-Roses, France
| | - Pauline Dupaigne
- Laboratoire de Microscopie Moléculaire et Cellulaire, UMR 8126, Interactions Moléculaires et Cancer, CNRS–Université Paris Sud–Institut de Cancérologie Gustave Roussy, Villejuif, France
| | | | | | - Eric Le Cam
- Laboratoire de Microscopie Moléculaire et Cellulaire, UMR 8126, Interactions Moléculaires et Cancer, CNRS–Université Paris Sud–Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Xavier Veaute
- CEA, DSV, iRCM, SIGRR, LRGM, Fontenay-aux-Roses, France
| | - Eric Coïc
- CEA, DSV, iRCM, SIGRR, LRGM, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
31
|
Glineburg MR, Chavez A, Agrawal V, Brill SJ, Johnson FB. Resolution by unassisted Top3 points to template switch recombination intermediates during DNA replication. J Biol Chem 2013; 288:33193-204. [PMID: 24100144 DOI: 10.1074/jbc.m113.496133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Sgs1/Top3/Rmi1 (STR) complex plays vital roles in DNA replication and repair. One crucial activity of the complex is dissolution of toxic X-shaped recombination intermediates that accumulate during replication of damaged DNA. However, despite several years of study the nature of these X-shaped molecules remains debated. Here we use genetic approaches and two-dimensional gel electrophoresis of genomic DNA to show that Top3, unassisted by Sgs1 and Rmi1, has modest capacities to provide resistance to MMS and to resolve recombination-dependent X-shaped molecules. The X-shaped molecules have structural properties consistent with hemicatenane-related template switch recombination intermediates (Rec-Xs) but not Holliday junction (HJ) intermediates. Consistent with these findings, we demonstrate that purified Top3 can resolve a synthetic Rec-X but not a synthetic double HJ in vitro. We also find that unassisted Top3 does not affect crossing over during double strand break repair, which is known to involve double HJ intermediates, confirming that unassisted Top3 activities are restricted to substrates that are distinct from HJs. These data help illuminate the nature of the X-shaped molecules that accumulate during replication of damaged DNA templates, and also clarify the roles played by Top3 and the STR complex as a whole during the resolution of replication-associated recombination intermediates.
Collapse
|
32
|
Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes. PLoS Genet 2013; 9:e1003340. [PMID: 23516370 PMCID: PMC3597516 DOI: 10.1371/journal.pgen.1003340] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/09/2013] [Indexed: 11/19/2022] Open
Abstract
The contributions of the Sgs1, Mph1, and Srs2 DNA helicases during mitotic double-strand break (DSB) repair in yeast were investigated using a gap-repair assay. A diverged chromosomal substrate was used as a repair template for the gapped plasmid, allowing mismatch-containing heteroduplex DNA (hDNA) formed during recombination to be monitored. Overall DSB repair efficiencies and the proportions of crossovers (COs) versus noncrossovers (NCOs) were determined in wild-type and helicase-defective strains, allowing the efficiency of CO and NCO production in each background to be calculated. In addition, the products of individual NCO events were sequenced to determine the location of hDNA. Because hDNA position is expected to differ depending on whether a NCO is produced by synthesis-dependent-strand-annealing (SDSA) or through a Holliday junction (HJ)-containing intermediate, its position allows the underlying molecular mechanism to be inferred. Results demonstrate that each helicase reduces the proportion of CO recombinants, but that each does so in a fundamentally different way. Mph1 does not affect the overall efficiency of gap repair, and its loss alters the CO-NCO by promoting SDSA at the expense of HJ-containing intermediates. By contrast, Sgs1 and Srs2 are each required for efficient gap repair, strongly promoting NCO formation and having little effect on CO efficiency. hDNA analyses suggest that all three helicases promote SDSA, and that Sgs1 and Srs2 additionally dismantle HJ-containing intermediates. The hDNA data are consistent with the proposed role of Sgs1 in the dissolution of double HJs, and we propose that Srs2 dismantles nicked HJs.
Collapse
|
33
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
34
|
Larsen NB, Hickson ID. RecQ Helicases: Conserved Guardians of Genomic Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:161-84. [PMID: 23161011 DOI: 10.1007/978-1-4614-5037-5_8] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The RecQ family of DNA helicases is highly conserved throughout -evolution, and is important for the maintenance of genome stability. In humans, five RecQ family members have been identified: BLM, WRN, RECQ4, RECQ1 and RECQ5. Defects in three of these give rise to Bloom's syndrome (BLM), Werner's syndrome (WRN) and Rothmund-Thomson/RAPADILINO/Baller-Gerold (RECQ4) syndromes. These syndromes are characterised by cancer predisposition and/or premature ageing. In this review, we focus on the roles of BLM and its S. cerevisiae homologue, Sgs1, in genome maintenance. BLM/Sgs1 has been shown to play a critical role in homologous recombination at multiple steps, including end-resection, displacement loop formation, branch migration and double Holliday junction dissolution. In addition, recent evidence has revealed a role for BLM/Sgs1 in the stabilisation and repair of replication forks damaged during a perturbed S-phase. Finally BLM also plays a role in the suppression and/or resolution of ultra-fine anaphase DNA bridges that form between sister-chromatids during mitosis.
Collapse
Affiliation(s)
- Nicolai Balle Larsen
- Nordea Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N, Copenhagen, Denmark
| | | |
Collapse
|
35
|
Costes A, Lambert SAE. Homologous recombination as a replication fork escort: fork-protection and recovery. Biomolecules 2012; 3:39-71. [PMID: 24970156 PMCID: PMC4030885 DOI: 10.3390/biom3010039] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 01/03/2023] Open
Abstract
Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.
Collapse
Affiliation(s)
- Audrey Costes
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| | - Sarah A E Lambert
- Institut Curie, Centre de Recherche, CNRS, UMR3348, Centre Universitaire, Bat110, 91405, Orsay, France.
| |
Collapse
|
36
|
Wang Y, Cheng Z, Huang J, Shi Q, Hong Y, Copenhaver GP, Gong Z, Ma H. The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in Arabidopsis thaliana. PLoS Genet 2012; 8:e1003039. [PMID: 23144629 PMCID: PMC3493451 DOI: 10.1371/journal.pgen.1003039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
During meiotic recombination, induced double-strand breaks (DSBs) are processed into crossovers (COs) and non-COs (NCO); the former are required for proper chromosome segregation and fertility. DNA synthesis is essential in current models of meiotic recombination pathways and includes only leading strand DNA synthesis, but few genes crucial for DNA synthesis have been tested genetically for their functions in meiosis. Furthermore, lagging strand synthesis has been assumed to be unnecessary. Here we show that the Arabidopsis thaliana DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis is necessary for fertility, meiotic bivalent formation, and homolog segregation. Loss of meiotic RFC1 function caused abnormal meiotic chromosome association and other cytological defects; genetic analyses with other meiotic mutations indicate that RFC1 acts in the MSH4-dependent interference-sensitive pathway for CO formation. In a rfc1 mutant, residual pollen viability is MUS81-dependent and COs exhibit essentially no interference, indicating that these COs form via the MUS81-dependent interference-insensitive pathway. We hypothesize that lagging strand DNA synthesis is important for the formation of double Holliday junctions, but not alternative recombination intermediates. That RFC1 is found in divergent eukaryotes suggests a previously unrecognized and highly conserved role for DNA synthesis in discriminating between recombination pathways. Meiotic recombination is important for pairing and sustained association of homologous chromosomes (homologs), thereby ensuring proper homolog segregation and normal fertility. DNA synthesis is thought to be required for meiotic recombination, but few genes coding for DNA synthesis factors have been studied for possible meiotic functions because their essential roles in the mitotic cell cycle make it difficult to study their meiotic functions due to the lethality of corresponding null mutations. Current models for meiotic recombination only include leading strand DNA synthesis. We found that the Arabidopsis gene encoding the DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis promotes meiotic recombination via a specific pathway for crossovers (COs) that involves the formation of double Holliday Junction (dHJ) intermediates. Therefore, lagging strand DNA synthesis is likely important for meiotic recombination. Because DNA synthesis is a highly conserved process and meiotic recombination is highly similar among budding yeast, mammals, and flowering plants, the proposed function of lagging strand synthesis for meiotic recombination might be a general feature of meiosis.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qian Shi
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Hong
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
37
|
Cejka P, Plank JL, Dombrowski CC, Kowalczykowski SC. Decatenation of DNA by the S. cerevisiae Sgs1-Top3-Rmi1 and RPA complex: a mechanism for disentangling chromosomes. Mol Cell 2012; 47:886-96. [PMID: 22885009 DOI: 10.1016/j.molcel.2012.06.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/11/2012] [Accepted: 06/30/2012] [Indexed: 01/27/2023]
Abstract
Genetic evidence indicates that Saccharomyces cerevisiae Sgs1, Top3, and Rmi1 resolve topologically linked intermediates arising from DNA replication and recombination. Using purified proteins, we show that Sgs1, Top3, Rmi1, and replication protein A (RPA) coordinate catenation and decatenation of dsDNA through sequential passage of single strands of DNA, establishing a unique pathway for dsDNA decatenation in eukaryotic cells. Sgs1 is required for dsDNA unwinding and, unexpectedly, also has a structural role in DNA strand passage. RPA promotes DNA unwinding by Sgs1 by trapping ssDNA, and it stimulates DNA strand passage by Top3. Paradoxically, Rmi1 has a unique regulatory capacity that slows DNA relaxation by Top3 but stimulates DNA decatenation. We establish that Rmi1 stabilizes the "open" Top3-DNA covalent complex formed as a transient intermediate of strand passage. This concerted activity of the Sgs1-Top3-Rmi1-RPA represents an important mechanism for disentangling structures resulting from the topological features of duplex DNA.
Collapse
Affiliation(s)
- Petr Cejka
- Departments of Microbiology and Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA
| | | | | | | |
Collapse
|
38
|
Wehrkamp-Richter S, Hyppa RW, Prudden J, Smith GR, Boddy MN. Meiotic DNA joint molecule resolution depends on Nse5-Nse6 of the Smc5-Smc6 holocomplex. Nucleic Acids Res 2012; 40:9633-46. [PMID: 22855558 PMCID: PMC3479181 DOI: 10.1093/nar/gks713] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Faithful chromosome segregation in meiosis is crucial to form viable, healthy offspring and in most species, it requires programmed recombination between homologous chromosomes. In fission yeast, meiotic recombination is initiated by Rec12 (Spo11 homolog) and generates single Holliday junction (HJ) intermediates, which are resolved by the Mus81–Eme1 endonuclease to generate crossovers and thereby allow proper chromosome segregation. Although Mus81 contains the active site for HJ resolution, the regulation of Mus81–Eme1 is unclear. In cells lacking Nse5–Nse6 of the Smc5–Smc6 genome stability complex, we observe persistent meiotic recombination intermediates (DNA joint molecules) resembling HJs that accumulate in mus81Δ cells. Elimination of Rec12 nearly completely rescues the meiotic defects of nse6Δ and mus81Δ single mutants and partially rescues nse6Δ mus81Δ double mutants, indicating that these factors act after DNA double-strand break formation. Likewise, expression of the bacterial HJ resolvase RusA partially rescues the defects of nse6Δ, mus81Δ and nse6Δ mus81Δ mitotic cells, as well as the meiotic defects of nse6Δ and mus81Δ cells. Partial rescue likely reflects the accumulation of structures other than HJs, such as hemicatenanes, and an additional role for Nse5–Nse6 most prominent during mitotic growth. Our results indicate a regulatory role for the Smc5–Smc6 complex in HJ resolution via Mus81–Eme1.
Collapse
|
39
|
An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks. EMBO J 2012; 31:3768-83. [PMID: 22820947 DOI: 10.1038/emboj.2012.195] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/28/2012] [Indexed: 11/08/2022] Open
Abstract
DNA replication fork stalling poses a major threat to genome stability. This is counteracted in part by the intra-S phase checkpoint, which stabilizes arrested replication machinery, prevents cell-cycle progression and promotes DNA repair. The checkpoint kinase Mec1/ATR and RecQ helicase Sgs1/BLM contribute synergistically to fork maintenance on hydroxyurea (HU). Both enzymes interact with replication protein A (RPA). We identified and deleted the major interaction sites on Sgs1 for Rpa70, generating a mutant called sgs1-r1. In contrast to a helicase-dead mutant of Sgs1, sgs1-r1 did not significantly reduce recovery of DNA polymerase α at HU-arrested replication forks. However, the Sgs1 R1 domain is a target of Mec1 kinase, deletion of which compromises Rad53 activation on HU. Full activation of Rad53 is achieved through phosphorylation of the Sgs1 R1 domain by Mec1, which promotes Sgs1 binding to the FHA1 domain of Rad53 with high affinity. We propose that the recruitment of Rad53 by phosphorylated Sgs1 promotes the replication checkpoint response on HU. Loss of the R1 domain increases lethality selectively in cells lacking Mus81, Slx4, Slx5 or Slx8.
Collapse
|
40
|
George CM, Alani E. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit Rev Biochem Mol Biol 2012; 47:297-313. [PMID: 22494239 PMCID: PMC3337352 DOI: 10.3109/10409238.2012.675644] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.
Collapse
Affiliation(s)
- Carolyn M George
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | |
Collapse
|
41
|
Kojic M, Holloman WK. Brh2 domain function distinguished by differential cellular responses to DNA damage and replication stress. Mol Microbiol 2011; 83:351-61. [PMID: 22171788 DOI: 10.1111/j.1365-2958.2011.07935.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutants of the fungus Ustilago maydis defective in the RecQ helicase Blm are highly sensitive to killing by the DNA replication stressor hydroxyurea. This sensitivity or toxicity is dependent on the homologous recombination (HR) system and apparently results from formation of dead-end HR DNA intermediates. HU toxicity can be suppressed by deletion of the gene encoding Brh2, the BRCA2 orthologue that serves to regulate HR by mediating Rad51 filament formation on single-stranded DNA. Brh2 harbours two different DNA-binding domains that contribute to HR function. DNA-binding activity from a single domain is sufficient to provide Brh2 functional activity in HR, but to enable HU-induced killing two functional DNA-binding domains must be present. Despite this stringent requirement for dual functioning domains, the source of DNA-binding domains is less critical in that heterologous domains can substitute for the native endogenous ones. The results suggest a model in which the nature of the DNA lesion is an important determinant in the functional response of Brh2 action.
Collapse
Affiliation(s)
- Milorad Kojic
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
42
|
Histone H3 lysine 56 acetylation and the response to DNA replication fork damage. Mol Cell Biol 2011; 32:154-72. [PMID: 22025679 DOI: 10.1128/mcb.05415-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes are not due to defects in base excision repair, defects in DNA damage tolerance, or a lack of Rad51 loading at sites of DNA damage. Our results argue that the acute sensitivity of H3K56ac-deficient cells to MMS and camptothecin stems from a failure to complete the repair of specific types of DNA lesions by recombination and/or from defects in the completion of DNA replication.
Collapse
|
43
|
Kasparek TR, Humphrey TC. DNA double-strand break repair pathways, chromosomal rearrangements and cancer. Semin Cell Dev Biol 2011; 22:886-97. [PMID: 22027614 DOI: 10.1016/j.semcdb.2011.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 01/12/2023]
Abstract
Chromosomal rearrangements, which can lead to oncogene activation and tumour suppressor loss, are a hallmark of cancer cells. Such outcomes can result from both the repair and misrepair of DNA ends, which arise from a variety of lesions including DNA double strand breaks (DSBs), collapsed replication forks and dysfunctional telomeres. Here we review the mechanisms by which non-homologous end joining (NHEJ) and homologous recombination (HR) repair pathways can both promote chromosomal rearrangements and also suppress them in response to such lesions, in accordance with their increasingly recognised tumour suppressor function. Further, we consider how chromosomal rearrangements, together with a modular approach towards understanding their etiology, may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Torben R Kasparek
- CRUK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
44
|
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215. [PMID: 21977309 PMCID: PMC3185257 DOI: 10.4061/2011/724215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/25/2011] [Indexed: 01/14/2023] Open
Abstract
In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve) these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Suite 3424A, Washington, DC 20059, USA
| |
Collapse
|
45
|
Cal-Bakowska M, Litwin I, Bocer T, Wysocki R, Dziadkowiec D. The Swi2-Snf2-like protein Uls1 is involved in replication stress response. Nucleic Acids Res 2011; 39:8765-77. [PMID: 21764775 PMCID: PMC3203583 DOI: 10.1093/nar/gkr587] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Saccharomyces cerevisiae Uls1 belongs to the Swi2–Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here, we examine a physiological role of Uls1 and report for the first time its involvement in response to replication stress. We found that deletion of ULS1 in cells lacking RAD52 caused a synthetic growth defect accompanied by prolonged S phase and aberrant cell morphology. uls1Δ also progressed slower through S phase upon MMS treatment and took longer to resolve replication intermediates during recovery. This suggests an important function for Uls1 during replication stress. Consistently, cells lacking Uls1 and endonuclease Mus81 were more sensitive to HU, MMS and CPT than single mus81Δ. Interestingly, deletion of ULS1 attenuated replication stress-related defects in sgs1Δ, such as sensitivity to HU and MMS while increasing the level of PCNA ubiquitination and Rad53 phosphorylation. Importantly, Uls1 interactions with Mus81 and Sgs1 were dependent on its helicase domain. We propose that Uls1 directs a subset of DNA structures arising during replication into the Sgs1-dependent pathway facilitating S phase progression. Thus, in the absence of Uls1 other modes of replication fork processing and repair are employed.
Collapse
Affiliation(s)
- Magdalena Cal-Bakowska
- Institute of Plant Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | | | | | | | | |
Collapse
|
46
|
Branzei D. Ubiquitin family modifications and template switching. FEBS Lett 2011; 585:2810-7. [PMID: 21539841 DOI: 10.1016/j.febslet.2011.04.053] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/21/2011] [Accepted: 04/21/2011] [Indexed: 12/21/2022]
Abstract
Homologous recombination plays an important role in the maintenance of genome integrity. Arrested forks and DNA lesions trigger strand annealing events, called template switching, which can provide for accurate damage bypass, but can also lead to chromosome rearrangements. Advances have been made in understanding the underlying mechanisms for these events and in elucidating the factors involved. Ubiquitin- and SUMO-mediated modification pathways have emerged as key players in regulating damage-induced template switching. Here I review the biological significance of template switching at the nexus of DNA replication and recombination, and the role of ubiquitin-like modifications in mediating and controlling this process.
Collapse
Affiliation(s)
- Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|