1
|
Azam S, Sahu A, Pandey NK, Neupane M, Van Tassell CP, Rosen BD, Gandham RK, Rath SN, Majumdar SS. Advancing the Indian cattle pangenome: characterizing non-reference sequences in Bos indicus. J Anim Sci Biotechnol 2025; 16:21. [PMID: 39915889 PMCID: PMC11804092 DOI: 10.1186/s40104-024-01133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND India harbors the world's largest cattle population, encompassing over 50 distinct Bos indicus breeds. This rich genetic diversity underscores the inadequacy of a single reference genome to fully capture the genomic landscape of Indian cattle. To comprehensively characterize the genomic variation within Bos indicus and, specifically, dairy breeds, we aim to identify non-reference sequences and construct a comprehensive pangenome. RESULTS Five representative genomes of prominent dairy breeds, including Gir, Kankrej, Tharparkar, Sahiwal, and Red Sindhi, were sequenced using 10X Genomics 'linked-read' technology. Assemblies generated from these linked-reads ranged from 2.70 Gb to 2.77 Gb, comparable to the Bos indicus Brahman reference genome. A pangenome of Bos indicus cattle was constructed by comparing the newly assembled genomes with the reference using alignment and graph-based methods, revealing 8 Mb and 17.7 Mb of novel sequence respectively. A confident set of 6,844 Non-reference Unique Insertions (NUIs) spanning 7.57 Mb was identified through both methods, representing the pangenome of Indian Bos indicus breeds. Comparative analysis with previously published pangenomes unveiled 2.8 Mb (37%) commonality with the Chinese indicine pangenome and only 1% commonality with the Bos taurus pangenome. Among these, 2,312 NUIs encompassing ~ 2 Mb, were commonly found in 98 samples of the 5 breeds and designated as Bos indicus Common Insertions (BICIs) in the population. Furthermore, 926 BICIs were identified within 682 protein-coding genes, 54 long non-coding RNAs (lncRNA), and 18 pseudogenes. These protein-coding genes were enriched for functions such as chemical synaptic transmission, cell junction organization, cell-cell adhesion, and cell morphogenesis. The protein-coding genes were found in various prominent quantitative trait locus (QTL) regions, suggesting potential roles of BICIs in traits related to milk production, reproduction, exterior, health, meat, and carcass. Notably, 63.21% of the bases within the BICIs call set contained interspersed repeats, predominantly Long Interspersed Nuclear Elements (LINEs). Additionally, 70.28% of BICIs are shared with other domesticated and wild species, highlighting their evolutionary significance. CONCLUSIONS This is the first report unveiling a robust set of NUIs defining the pangenome of Bos indicus breeds of India. The analyses contribute valuable insights into the genomic landscape of desi cattle breeds.
Collapse
Affiliation(s)
- Sarwar Azam
- National Institute of Animal Biotechnology, Hyderabad, India
- Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Abhisek Sahu
- National Institute of Animal Biotechnology, Hyderabad, India
| | | | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology, Hyderabad, India.
- Animal Biotechnology, ICAR-NBAGR, Karnal, Haryana, India.
| | | | | |
Collapse
|
2
|
Solovyeva AI, Afanasev RV, Popova MA, Enukashvily NI. Dysregulation of Transposon Transcription Profiles in Cancer Cells Resembles That of Embryonic Stem Cells. Curr Issues Mol Biol 2024; 46:8576-8599. [PMID: 39194722 DOI: 10.3390/cimb46080505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of the mammalian genome, with potential implications for both embryonic development and cancer. This study aimed to characterize the expression profiles of TEs in embryonic stem cells (ESCs), cancer cell lines, tumor tissues, and the tumor microenvironment (TME). We observed similarities in TE expression profiles between cancer cells and ESCs, suggesting potential parallels in regulatory mechanisms. Notably, four TE RNAs (HERVH, LTR7, HERV-Fc1, HERV-Fc2) exhibited significant downregulation across cancer cell lines and tumor tissues compared to ESCs, highlighting potential roles in pluripotency regulation. The strong up-regulation of the latter two TEs (HERV-Fc1, HERV-Fc2) in ESCs has not been previously demonstrated and may be a first indication of their role in the regulation of pluripotency. Conversely, tandemly repeated sequences (MSR1, CER, ALR) showed up-regulation in cancer contexts. Moreover, a difference in TE expression was observed between the TME and the tumor bulk transcriptome, with distinct dysregulated TE profiles. Some TME-specific TEs were absent in normal tissues, predominantly belonging to LTR and L1 retrotransposon families. These findings not only shed light on the regulatory roles of TEs in both embryonic development and cancer but also suggest novel targets for anti-cancer therapy. Understanding the interplay between cancer cells and the TME at the TE level may pave the way for further research into therapeutic interventions.
Collapse
Affiliation(s)
- Anna I Solovyeva
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Zoological Institute of Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Roman V Afanasev
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Marina A Popova
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 191002 St. Petersburg, Russia
| | - Natella I Enukashvily
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Department of Cytology and Histology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Morrissey A, Shi J, James DQ, Mahony S. Accurate allocation of multimapped reads enables regulatory element analysis at repeats. Genome Res 2024; 34:937-951. [PMID: 38986578 PMCID: PMC11293539 DOI: 10.1101/gr.278638.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Transposable elements (TEs) and other repetitive regions have been shown to contain gene regulatory elements, including transcription factor binding sites. However, regulatory elements harbored by repeats have proven difficult to characterize using short-read sequencing assays such as ChIP-seq or ATAC-seq. Most regulatory genomics analysis pipelines discard "multimapped" reads that align equally well to multiple genomic locations. Because multimapped reads arise predominantly from repeats, current analysis pipelines fail to detect a substantial portion of regulatory events that occur in repetitive regions. To address this shortcoming, we developed Allo, a new approach to allocate multimapped reads in an efficient, accurate, and user-friendly manner. Allo combines probabilistic mapping of multimapped reads with a convolutional neural network that recognizes the read distribution features of potential peaks, offering enhanced accuracy in multimapping read assignment. Allo also provides read-level output in the form of a corrected alignment file, making it compatible with existing regulatory genomics analysis pipelines and downstream peak-finders. In a demonstration application on CTCF ChIP-seq data, we show that Allo results in the discovery of thousands of new CTCF peaks. Many of these peaks contain the expected cognate motif and/or serve as TAD boundaries. We additionally apply Allo to a diverse collection of ENCODE ChIP-seq data sets, resulting in multiple previously unidentified interactions between transcription factors and repetitive element families. Finally, we show that Allo may be particularly beneficial in identifying ChIP-seq peaks at centromeres, near segmentally duplicated genes, and in younger TEs, enabling new regulatory analyses in these regions.
Collapse
Affiliation(s)
- Alexis Morrissey
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jeffrey Shi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniela Q James
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Abraham LN, Oggenfuss U, Croll D. Population-level transposable element expression dynamics influence trait evolution in a fungal crop pathogen. mBio 2024; 15:e0284023. [PMID: 38349152 PMCID: PMC10936205 DOI: 10.1128/mbio.02840-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid adaptive evolution of microbes is driven by strong selection pressure acting on genetic variation. How adaptive genetic variation is generated within species and how such variation influences phenotypic trait expression is often not well understood though. We focused on the recent activity of transposable elements (TEs) using deep population genomics and transcriptomics analyses of a fungal plant pathogen with a highly active content of TEs in the genome. Zymoseptoria tritici causes one of the most damaging diseases on wheat, with recent adaptation to the host and environment being facilitated by TE-associated mutations. We obtained genomic and RNA-sequencing data from 146 isolates collected from a single wheat field. We established a genome-wide map of TE insertion polymorphisms in the population by analyzing recent TE insertions among individuals. We quantified the locus-specific transcription of individual TE copies and found considerable population variation at individual TE loci in the population. About 20% of all TE copies show transcription in the genome suggesting that genomic defenses such as repressive epigenetic marks and repeat-induced polymorphisms are at least partially ineffective at preventing the proliferation of TEs in the genome. A quarter of recent TE insertions are associated with expression variation of neighboring genes providing broad potential to influence trait expression. We indeed found that TE insertions are likely responsible for variation in virulence on the host and potentially diverse components of secondary metabolite production. Our large-scale transcriptomics study emphasizes how TE-derived polymorphisms segregate even in individual microbial populations and can broadly underpin trait variation in pathogens.IMPORTANCEPathogens can rapidly adapt to new hosts, antimicrobials, or changes in the environment. Adaptation arises often from mutations in the genome; however, how such variation is generated remains poorly understood. We investigated the most dynamic regions of the genome of Zymoseptoria tritici, a major fungal pathogen of wheat. We focused on the transcription of transposable elements. A large proportion of the transposable elements not only show signatures of potential activity but are also variable within a single population of the pathogen. We find that this variation in activity is likely influencing many important traits of the pathogen. Hence, our work provides insights into how a microbial species can adapt over the shortest time periods based on the activity of transposable elements.
Collapse
Affiliation(s)
- Leen Nanchira Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
5
|
Fukuda K. The role of transposable elements in human evolution and methods for their functional analysis: current status and future perspectives. Genes Genet Syst 2024; 98:289-304. [PMID: 37866889 DOI: 10.1266/ggs.23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Transposable elements (TEs) are mobile DNA sequences that can insert themselves into various locations within the genome, causing mutations that may provide advantages or disadvantages to individuals and species. The insertion of TEs can result in genetic variation that may affect a wide range of human traits including genetic disorders. Understanding the role of TEs in human biology is crucial for both evolutionary and medical research. This review discusses the involvement of TEs in human traits and disease susceptibility, as well as methods for functional analysis of TEs.
Collapse
Affiliation(s)
- Kei Fukuda
- Integrative Genomics Unit, The University of Melbourne
| |
Collapse
|
6
|
Morrissey A, Shi J, James DQ, Mahony S. Allo: Accurate allocation of multi-mapped reads enables regulatory element analysis at repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556916. [PMID: 37745557 PMCID: PMC10515862 DOI: 10.1101/2023.09.12.556916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Transposable elements (TEs) and other repetitive regions have been shown to contain gene regulatory elements, including transcription factor binding sites. Unfortunately, regulatory elements harbored by repeats have proven difficult to characterize using short-read sequencing assays such as ChIP-seq or ATAC-seq. Most regulatory genomics analysis pipelines discard "multi-mapped" reads that align equally well to multiple genomic locations. Since multi-mapped reads arise predominantly from repeats, current analysis pipelines fail to detect a substantial portion of regulatory events that occur in repetitive regions. To address this shortcoming, we developed Allo, a new approach to allocate multi-mapped reads in an efficient, accurate, and user-friendly manner. Allo combines probabilistic mapping of multi-mapped reads with a convolutional neural network that recognizes the read distribution features of potential peaks, offering enhanced accuracy in multi-mapping read assignment. Allo also provides read-level output in the form of a corrected alignment file, making it compatible with existing regulatory genomics analysis pipelines and downstream peak-finders. In a demonstration application on CTCF ChIP-seq data, we show that Allo results in the discovery of thousands of new CTCF peaks. Many of these peaks contain the expected cognate motif and/or serve as TAD boundaries. We additionally apply Allo to a diverse collection of ENCODE ChIP-seq datasets, resulting in multiple previously unidentified interactions between transcription factors and repetitive element families. Finally, we show that Allo may be particularly effective in identifying ChIP-seq peaks in younger TEs, which hold evolutionary significance due to their emergence during human evolution from primates.
Collapse
Affiliation(s)
- Alexis Morrissey
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jeffrey Shi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Daniela Q. James
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Wang H, Makowski C, Zhang Y, Qi A, Kaufmann T, Smeland OB, Fiecas M, Yang J, Visscher PM, Chen CH. Chromosomal inversion polymorphisms shape human brain morphology. Cell Rep 2023; 42:112896. [PMID: 37505983 PMCID: PMC10508191 DOI: 10.1016/j.celrep.2023.112896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The impact of chromosomal inversions on human brain morphology remains underexplored. We studied 35 common inversions classified from genotypes of 33,018 adults with European ancestry. The inversions at 2p22.3, 16p11.2, and 17q21.31 reach genome-wide significance, followed by 8p23.1 and 6p21.33, in their association with cortical and subcortical morphology. The 17q21.31, 8p23.1, and 16p11.2 regions comprise the LRRC37, OR7E, and NPIP duplicated gene families. We find the 17q21.31 MAPT inversion region, known for harboring neurological risk, to be the most salient locus among common variants for shaping and patterning the cortex. Overall, we observe the inverted orientations decreasing brain size, with the exception that the 2p22.3 inversion is associated with increased subcortical volume and the 8p23.1 inversion is associated with increased motor cortex. These significant inversions are in the genomic hotspots of neuropsychiatric loci. Our findings are generalizable to 3,472 children and demonstrate inversions as essential genetic variation to understand human brain phenotypes.
Collapse
Affiliation(s)
- Hao Wang
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Anna Qi
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Tobias Kaufmann
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Jiang H, Zhang X, Leng L, Gong D, Zhang X, Liu J, Peng D, Wu Z, Yang Y. A chromosome-scale and haplotype-resolved genome assembly of carnation ( Dianthus caryophyllus) based on high-fidelity sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1230836. [PMID: 37600187 PMCID: PMC10437072 DOI: 10.3389/fpls.2023.1230836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
Dianthus caryophyllus is an economic species often considered excellent cut flowers and is suitable for bouquets and gardens. Here, we assembled the haplotype-resolved genome of D. caryophyllus 'Aili' at the chromosome level for the first time. The total lengths of the two assembled haplotypes of carnation were 584.88 Mb for haplotype genome 1 (hap1) and 578.78 Mb for haplotype genome 2 (hap2), respectively. We predicted a total of 44,098 and 42,425 protein-coding genes, respectively. The remarkable structure variation was identified between two haplotypes. Moreover, we identified 403.80 Mb of transposable elements (TEs) in hap1, which accounted for 69.34% of the genome. In contrast, hap2 had 402.70 Mb of TEs, representing 69.61% of the genome. Long terminal repeats were the predominant transposable elements. Phylogenetic analysis showed that the species differentiation time between carnation and gypsophila was estimated to be ~54.43 MYA. The unique gene families of carnation genomes were identified in 'Aili' and previously published 'Francesco' and 'Scarlet Queen'. The assembled and annotated haplotype-resolved D. caryophyllus genome not only promises to facilitate molecular biology studies but also contributes to genome-level evolutionary studies.
Collapse
Affiliation(s)
- Heling Jiang
- Center for Chinese Medicinal Omics and Floriculture, Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- The Plant Genomics Research Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoni Zhang
- Center for Chinese Medicinal Omics and Floriculture, Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Luhong Leng
- The Plant Genomics Research Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Desheng Gong
- The Plant Genomics Research Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaohui Zhang
- The Plant Genomics Research Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junyang Liu
- The Plant Genomics Research Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dan Peng
- Center for Chinese Medicinal Omics and Floriculture, Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| | - Zhiqiang Wu
- Center for Chinese Medicinal Omics and Floriculture, Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- The Plant Genomics Research Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yingxue Yang
- Center for Chinese Medicinal Omics and Floriculture, Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
- The Plant Genomics Research Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
9
|
Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Complex Plant Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:427-439. [PMID: 37100237 PMCID: PMC10787022 DOI: 10.1016/j.gpb.2023.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
10
|
Banerjee A, Bahar I. Structural Dynamics Predominantly Determine the Adaptability of Proteins to Amino Acid Deletions. Int J Mol Sci 2023; 24:8450. [PMID: 37176156 PMCID: PMC10179678 DOI: 10.3390/ijms24098450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
The insertion or deletion (indel) of amino acids has a variety of effects on protein function, ranging from disease-forming changes to gaining new functions. Despite their importance, indels have not been systematically characterized towards protein engineering or modification goals. In the present work, we focus on deletions composed of multiple contiguous amino acids (mAA-dels) and their effects on the protein (mutant) folding ability. Our analysis reveals that the mutant retains the native fold when the mAA-del obeys well-defined structural dynamics properties: localization in intrinsically flexible regions, showing low resistance to mechanical stress, and separation from allosteric signaling paths. Motivated by the possibility of distinguishing the features that underlie the adaptability of proteins to mAA-dels, and by the rapid evaluation of these features using elastic network models, we developed a positive-unlabeled learning-based classifier that can be adopted for protein design purposes. Trained on a consolidated set of features, including those reflecting the intrinsic dynamics of the regions where the mAA-dels occur, the new classifier yields a high recall of 84.3% for identifying mAA-dels that are stably tolerated by the protein. The comparative examination of the relative contribution of different features to the prediction reveals the dominant role of structural dynamics in enabling the adaptation of the mutant to mAA-del without disrupting the native fold.
Collapse
Affiliation(s)
- Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Cao J, Yu T, Xu B, Hu Z, Zhang XO, Theurkauf W, Weng Z. Epigenetic and chromosomal features drive transposon insertion in Drosophila melanogaster. Nucleic Acids Res 2023; 51:2066-2086. [PMID: 36762470 PMCID: PMC10018349 DOI: 10.1093/nar/gkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Transposons are mobile genetic elements prevalent in the genomes of most species. The distribution of transposons within a genome reflects the actions of two opposing processes: initial insertion site selection, and selective pressure from the host. By analyzing whole-genome sequencing data from transposon-activated Drosophila melanogaster, we identified 43 316 de novo and 237 germline insertions from four long-terminal-repeat (LTR) transposons, one LINE transposon (I-element), and one DNA transposon (P-element). We found that all transposon types favored insertion into promoters de novo, but otherwise displayed distinct insertion patterns. De novo and germline P-element insertions preferred replication origins, often landing in a narrow region around transcription start sites and in regions of high chromatin accessibility. De novo LTR transposon insertions preferred regions with high H3K36me3, promoters and exons of active genes; within genes, LTR insertion frequency correlated with gene expression. De novo I-element insertion density increased with distance from the centromere. Germline I-element and LTR transposon insertions were depleted in promoters and exons, suggesting strong selective pressure to remove transposons from functional elements. Transposon movement is associated with genome evolution and disease; therefore, our results can improve our understanding of genome and disease biology.
Collapse
Affiliation(s)
- Jichuan Cao
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bo Xu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongren Hu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-ou Zhang
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
12
|
von Heiseler TN. How Language and Human Altruism Evolved Hand in Hand - The Backchannel Hypothesis. Front Psychol 2022; 13:735375. [PMID: 35222174 PMCID: PMC8869241 DOI: 10.3389/fpsyg.2022.735375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
This paper contributes to two debates: the debate about language evolution and the debate about the foundations of human collaboration. While both cooperation and language may give the impression of being adaptations that evolved for the "good of the group," it is well established that the evolution of complex traits cannot be a direct result of group selection. In this paper I suggest how this tension can be solved: both language and cooperation evolved in a unique two-level evolutionary system which was triggered by a well-documented geological event-the drying out of the climate-in East Africa, which subsequently reduced the intermating between groups and thus made it possible that the mechanism that produced differences between groups (including social forms of selection such as female choice) could be the target of natural selection on the group level. If a social form of selection (e.g., sexual selection) produced differences in fitness between groups, the displacement process between groups would indirectly select those forms of social selection that produce groups that would displace all others. The main hypothesis presented in this paper is that, in this situation, a backchannel between the two levels of selection naturally evolves. A backchannel between the two levels would, for example, emerge when sexual selection (or any other form of social selection) was sensitive to the individual's contribution to the group. Examples of systems utilizing a backchannel are nerve cells being better nourished when used more frequently, enabling them to be conducive to the survival of the whole organism, or a law firm in which all employees get paid to the extent that they contribute to the survival and success of the firm. In both cases, the selection on the higher level informs the selection on the lower level. The aim of the paper is to illuminate these rather opaque claims, to which the reader probably has many objections in this abridged form.
Collapse
|
13
|
Huang Z, Huang W, Liu X, Han Z, Liu G, Boamah GA, Wang Y, Yu F, Gan Y, Xiao Q, Luo X, Chen N, Liu M, You W, Ke C. Genomic insights into the adaptation and evolution of the nautilus, an ancient but evolving "living fossil". Mol Ecol Resour 2022; 22:15-27. [PMID: 34085392 DOI: 10.1111/1755-0998.13439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The nautilus, commonly known as a "living fossil," is endangered and may be at risk of extinction. The lack of genomic information hinders a thorough understanding of its biology and evolution, which can shed light on the conservation of this endangered species. Here, we report the first high-quality chromosome-level genome assembly of Nautilus pompilius. The assembled genome size comprised 785.15 Mb. Comparative genomic analyses indicated that transposable elements (TEs) and large-scale genome reorganizations may have driven lineage-specific evolution in the cephalopods. Remarkably, evolving conserved genes and recent TE insertion activities were identified in N. pompilius, and we speculate that these findings reflect the strong adaptability and long-term survival of the nautilus. We also identified gene families that are potentially responsible for specific adaptation and evolution events. Our study provides unprecedented insights into the specialized biology and evolution of N. pompilius, and the results serve as an important resource for future conservation genomics of the nautilus and closely related species.
Collapse
Affiliation(s)
- Zekun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | | | - Xiaolin Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhaofang Han
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | | | - Grace Afumwaa Boamah
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Yi Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Feng Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Yang Gan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Qizhen Xiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Xuan Luo
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Nan Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
- College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, China
| |
Collapse
|
14
|
DARTS: An Algorithm for Domain-Associated Retrotransposon Search in Genome Assemblies. Genes (Basel) 2021; 13:genes13010009. [PMID: 35052350 PMCID: PMC8775202 DOI: 10.3390/genes13010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023] Open
Abstract
Retrotransposons comprise a substantial fraction of eukaryotic genomes, reaching the highest proportions in plants. Therefore, identification and annotation of retrotransposons is an important task in studying the regulation and evolution of plant genomes. The majority of computational tools for mining transposable elements (TEs) are designed for subsequent genome repeat masking, often leaving aside the element lineage classification and its protein domain composition. Additionally, studies focused on the diversity and evolution of a particular group of retrotransposons often require substantial customization efforts from researchers to adapt existing software to their needs. Here, we developed a computational pipeline to mine sequences of protein-coding retrotransposons based on the sequences of their conserved protein domains—DARTS (Domain-Associated Retrotransposon Search). Using the most abundant group of TEs in plants—long terminal repeat (LTR) retrotransposons (LTR-RTs)—we show that DARTS has radically higher sensitivity for LTR-RT identification compared to the widely accepted tool LTRharvest. DARTS can be easily customized for specific user needs. As a result, DARTS returns a set of structurally annotated nucleotide and amino acid sequences which can be readily used in subsequent comparative and phylogenetic analyses. DARTS may facilitate researchers interested in the discovery and detailed analysis of the diversity and evolution of retrotransposons, LTR-RTs, and other protein-coding TEs.
Collapse
|
15
|
Trigiante G, Blanes Ruiz N, Cerase A. Emerging Roles of Repetitive and Repeat-Containing RNA in Nuclear and Chromatin Organization and Gene Expression. Front Cell Dev Biol 2021; 9:735527. [PMID: 34722514 PMCID: PMC8552494 DOI: 10.3389/fcell.2021.735527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Genomic repeats have been intensely studied as regulatory elements controlling gene transcription, splicing and genome architecture. Our understanding of the role of the repetitive RNA such as the RNA coming from genomic repeats, or repetitive sequences embedded in mRNA/lncRNAs, in nuclear and cellular functions is instead still limited. In this review we discuss evidence supporting the multifaceted roles of repetitive RNA and RNA binding proteins in nuclear organization, gene regulation, and in the formation of dynamic membrane-less aggregates. We hope that our review will further stimulate research in the consolidating field of repetitive RNA biology.
Collapse
Affiliation(s)
| | | | - Andrea Cerase
- Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Yu T, Huang X, Dou S, Tang X, Luo S, Theurkauf WE, Lu J, Weng Z. A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies. Nucleic Acids Res 2021; 49:e44. [PMID: 33511407 PMCID: PMC8096211 DOI: 10.1093/nar/gkab010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 02/01/2023] Open
Abstract
Transposons are genomic parasites, and their new insertions can cause instability and spur the evolution of their host genomes. Rapid accumulation of short-read whole-genome sequencing data provides a great opportunity for studying new transposon insertions and their impacts on the host genome. Although many algorithms are available for detecting transposon insertions, the task remains challenging and existing tools are not designed for identifying de novo insertions. Here, we present a new benchmark fly dataset based on PacBio long-read sequencing and a new method TEMP2 for detecting germline insertions and measuring de novo ‘singleton’ insertion frequencies in eukaryotic genomes. TEMP2 achieves high sensitivity and precision for detecting germline insertions when compared with existing tools using both simulated data in fly and experimental data in fly and human. Furthermore, TEMP2 can accurately assess the frequencies of de novo transposon insertions even with high levels of chimeric reads in simulated datasets; such chimeric reads often occur during the construction of short-read sequencing libraries. By applying TEMP2 to published data on hybrid dysgenic flies inflicted by de-repressed P-elements, we confirmed the continuous new insertions of P-elements in dysgenic offspring before they regain piRNAs for P-element repression. TEMP2 is freely available at Github: https://github.com/weng-lab/TEMP2.
Collapse
Affiliation(s)
- Tianxiong Yu
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiao Huang
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shiqi Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhiping Weng
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
17
|
Pourrajab F, Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials). Heliyon 2021; 7:e06029. [PMID: 33532648 PMCID: PMC7829209 DOI: 10.1016/j.heliyon.2021.e06029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
There is a concept proposing that the primitive lineages of prokaryotes, eukaryotes, and viruses emerged from the primordial pool of primitive genetic elements. In this genetic pool, transposable elements (TEs) became a source of raw material for primitive genomes, tools of genetic innovation, and ancestors of modern genes (e.g. ncRNAs, tRNAs, and rRNAs). TEs contributed directly to the genome evolution of three forms of life on the earth. TEs now appear as tools that were used to giving rise to sexual dimorphism and sex determination, lineage-specific expression of genes and tissue differentiation and finally genome stability and lifespan determination.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
18
|
Ali A, Han K, Liang P. Role of Transposable Elements in Gene Regulation in the Human Genome. Life (Basel) 2021; 11:118. [PMID: 33557056 PMCID: PMC7913837 DOI: 10.3390/life11020118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of genes nearby and even far away at transcriptional and post-transcriptional levels. There are two known principal ways by which TEs regulate the expression of genes. First, TEs provide cis-regulatory sequences in the genome with their intrinsic regulatory properties for their own expression, making them potential factors for regulating the expression of the host genes. TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs with their sequences showed to be present in a substantial fraction of miRNAs and long non-coding RNAs (lncRNAs), indicating the TE origin of these RNAs. Furthermore, TEs sequences were found to be critical for regulatory functions of these RNAs, including binding to the target mRNA. TEs thus provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences. Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs have been implicated in providing evolutionary novelty to gene regulation. These TE-derived regulatory mechanisms also tend to function in a tissue-specific fashion. In this review, we aim to comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation, mainly focusing on the mechanisms, contribution of different types of TEs, differential roles among tissue types, and lineage-specificity, based on data mostly in humans.
Collapse
Affiliation(s)
- Arsala Ali
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Kyudong Han
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre of Biotechnologies, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
19
|
Banerjee A, Kumar A, Ghosh KK, Mitra P. Estimating Change in Foldability Due to Multipoint Deletions in Protein Structures. J Chem Inf Model 2020; 60:6679-6690. [PMID: 33225697 DOI: 10.1021/acs.jcim.0c00802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insertions/deletions of amino acids in the protein backbone potentially result in altered structural/functional specifications. They can either contribute positively to the evolutionary process or can result in disease conditions. Despite being the second most prevalent form of protein modification, there are no databases or computational frameworks that delineate harmful multipoint deletions (MPD) from beneficial ones. We introduce a positive unlabeled learning-based prediction framework (PROFOUND) that utilizes fold-level attributes, environment-specific properties, and deletion site-specific properties to predict the change in foldability arising from such MPDs, both in the non-loop and loop regions of protein structures. In the absence of any protein structure dataset to study MPDs, we introduce a dataset with 153 MPD instances that lead to native-like folded structures and 7650 unlabeled MPD instances whose effect on the foldability of the corresponding proteins is unknown. PROFOUND on 10-fold cross-validation on our newly introduced dataset reports a recall of 82.2% (86.6%) and a fall out rate (FR) of 14.2% (20.6%), corresponding to MPDs in the protein loop (non-loop) region. The low FR suggests that the foldability in proteins subject to MPDs is not random and necessitates unique specifications of the deleted region. In addition, we find that additional evolutionary attributes contribute to higher recall and lower FR. The first of a kind foldability prediction system owing to MPD instances and the newly introduced dataset will potentially aid in novel protein engineering endeavors.
Collapse
Affiliation(s)
- Anupam Banerjee
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amit Kumar
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Kushal Kanti Ghosh
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
20
|
Song Z, Dai S, Bao T, Zuo Y, Xiang Q, Li J, Liu G, Yan Z. Analysis of Structural Genomic Diversity in Aegilops umbellulata, Ae. markgrafii, Ae. comosa, and Ae. uniaristata by Fluorescence In Situ Hybridization Karyotyping. FRONTIERS IN PLANT SCIENCE 2020; 11:710. [PMID: 32655588 PMCID: PMC7325912 DOI: 10.3389/fpls.2020.00710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/05/2020] [Indexed: 05/14/2023]
Abstract
Fluorescence in situ hybridization karyotypes have been widely used for evolutionary analysis on chromosome organization and genetic/genomic diversity in the wheat alliance (tribe Triticeae of Poaceae). The karyotpic diversity of Aegilops umbellulata, Ae. markgrafii, Ae. comosa subsp. comosa and subsp. subventricosa, and Ae. uniaristata was evaluated by the fluorescence in situ hybridization (FISH) probes oligo-pSc119.2 and pTa71 in combination with (AAC)5, (ACT)7, and (CTT)12, respectively. Abundant intra- and interspecific genetic variation was discovered in Ae. umbellulata, Ae. markgrafii, and Ae. comosa, but not Ae. uniaristata. Chromosome 7 of Ae. umbellulata had more variants (six variants) than the other six U chromosomes (2-3 variants) as revealed by probes oligo-pSc119.2 and (AAC)5. Intraspecific variation in Ae. markgrafii and Ae. comosa was revealed by oligo-pSc119.2 in combination with (ACT)7 and (CTT)12, respectively. At least five variants were found in every chromosome of Ae. markgrafii and Ae. comosa, and up to 18, 10, and 15 variants were identified for chromosomes 2 of Ae. markgrafii, 4 of Ae. comosa subsp. comosa, and 6 of Ae. comosa subsp. subventricosa. The six Ae. uniaristata accessions showed identical FISH signal patterns. A large number of intra-specific polymorphic FISH signals were observed between the homologous chromosomes of Ae. markgrafii and Ae. comosa, especially chromosomes 1, 2, 4, and 7 of Ae. markgrafii, chromosome 4 of Ae. comosa subsp. comosa, and chromosome 6 of Ae. comosa subsp. subventricosa. Twelve Ae. comosa and 24 Ae. markgrafii accessions showed heteromorphism between homologous chromosomes. Additionally, a translocation between the short arms of chromosomes 1 and 7 of Ae. comosa PI 551038 was identified. The FISH karyotypes can be used to clearly identify the chromosome variations of each chromosome in these Aegilops species and also provide valuable information for understanding the evolutionary relationships and structural genomic variation among Aegilops species.
Collapse
Affiliation(s)
- Zhongping Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Shoufen Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Tingyu Bao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Yuanyuan Zuo
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Qin Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Gang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Zehong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
21
|
Variant Calling Using Whole Genome Resequencing and Sequence Capture for Population and Evolutionary Genomic Inferences in Norway Spruce (Picea Abies). COMPENDIUM OF PLANT GENOMES 2020. [DOI: 10.1007/978-3-030-21001-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Kim S, Mun S, Kim T, Lee KH, Kang K, Cho JY, Han K. Transposable element-mediated structural variation analysis in dog breeds using whole-genome sequencing. Mamm Genome 2019; 30:289-300. [PMID: 31414176 DOI: 10.1007/s00335-019-09812-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Naturally occurring diseases in dogs provide an important animal model for studying human disease including cancer, heart disease, and autoimmune disorders. Transposable elements (TEs) make up ~ 31% of the dog (Canis lupus familiaris) genome and are one of main drivers to cause genomic variations and alter gene expression patterns of the host genes, which could result in genetic diseases. To detect structural variations (SVs), we conducted whole-genome sequencing of three different breeds, including Maltese, Poodle, and Yorkshire Terrier. Genomic SVs were detected and visualized using BreakDancer program. We identified a total of 2328 deletion SV events in the three breeds compared with the dog reference genome of Boxer. The majority of the genetic variants were found to be TE insertion polymorphism (1229) and the others were TE-mediated deletion (489), non-TE-mediated deletion (542), simple repeat-mediated deletion (32), and other indel (36). Among the TE insertion polymorphism, 286 elements were full-length LINE-1s (L1s). In addition, the 49 SV candidates located in the genic regions were experimentally verified and their polymorphic rates within each breed were examined using PCR assay. Polymorphism analysis of the genomic variants revealed that some of the variants exist polymorphic in the three dog breeds, suggesting that their SV events recently occurred in the dog genome. The findings suggest that TEs have contributed to the genomic variations among the three dog breeds of Maltese, Poodle, and Yorkshire Terrier. In addition, the polymorphic events between the dog breeds indicate that TEs were recently retrotransposed in the dog genome.
Collapse
Affiliation(s)
- Songmi Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
23
|
Gonzalez CE, Roberts P, Ostermeier M. Fitness Effects of Single Amino Acid Insertions and Deletions in TEM-1 β-Lactamase. J Mol Biol 2019; 431:2320-2330. [PMID: 31034887 DOI: 10.1016/j.jmb.2019.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022]
Abstract
Short insertions and deletions (InDels) are a common type of mutation found in nature and a useful source of variation in protein engineering. InDel events have important consequences in protein evolution, often opening new pathways for adaptation. However, much less is known about the effects of InDels compared to point mutations and amino acid substitutions. In particular, deep mutagenesis studies on the distribution of fitness effects of mutations have focused almost exclusively on amino acid substitutions. Here, we present a near-comprehensive analysis of the fitness effects of single amino acid InDels in TEM-1 β-lactamase. While we found InDels to be largely deleterious, partially overlapping deletion-tolerant and insertion-tolerant regions were observed throughout the protein, especially in unstructured regions and at the end of helices. The signal sequence of TEM-1 tolerated InDels more than the mature protein. Most regions of the protein tolerated insertions more than deletions, but a few regions tolerated deletions more than insertions. We examined the relationship between InDel tolerance and a variety of measures to help understand its origin. These measures included evolutionary variation in β-lactamases, secondary structure identity, tolerance to amino acid substitutions, solvent accessibility, and side-chain weighted contact number. We found secondary structure, weighted contact number, and evolutionary variation in class A beta-lactamases to be the somewhat predictive of InDel fitness effects.
Collapse
Affiliation(s)
- Courtney E Gonzalez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Paul Roberts
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
24
|
Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders. Brain Res 2018; 1708:207-219. [PMID: 30578769 DOI: 10.1016/j.brainres.2018.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
piRNAs, small non-coding RNAs, were considered to be restricted to germline cells. Although they have recently been detected in somatic cells including neurons, it remains unclear how piRNA biogenesis is involved in neuronal diseases. We herein examined the possible roles of Aubergine (Aub), a Piwi-family protein (PIWI) responsible for piRNA biogenesis, in the neuronal disorders, using the Cabeza (Caz) knockdown Drosophila. Caz is a Drosophila homologue of FUS, which is one of the genes causing amyotrophic lateral sclerosis (ALS). Aub overexpression enhanced the mobility defects accompanied by anatomical defects in motoneurons at neuromuscular junctions induced by the neuron-specific knockdown of Caz. In order to elucidate the underlying mechanisms, we examined pre-piRNA and mature-size piRNA levels under these conditions. qRT-PCR and RNA-seq analyses revealed that the Caz knockdown increased pre-piRNA levels, but reduced mature-size piRNA levels in the central nervous system (CNS), suggesting a role in the pre-piRNAs production. Aub overexpression did not increase mature-size piRNA levels. These results suggest that the accumulated pre-piRNAs are abnormal abortive pre-piRNAs that cannot be further processed by slicers, including Aub. We also demonstrated a relationship between Caz and pre-piRNAs in the CNS by RNA immunoprecipitation. Aub overexpression induced the abnormal cytoplasmic localization of Caz. Based on these results, we propose a model in which Caz knockdown-induced abnormal pre-piRNAs associate with Caz, then translocate and accumulate in the cytoplasm, a process that may be mediated by Aub. The novel roles for Caz and Aub demonstrated herein using the Caz-knockdown fly will contribute to a deeper understanding of the pathogenesis of ALS.
Collapse
|
25
|
Yasodha R, Vasudeva R, Balakrishnan S, Sakthi AR, Abel N, Binai N, Rajashekar B, Bachpai VKW, Pillai C, Dev SA. Draft genome of a high value tropical timber tree, Teak (Tectona grandis L. f): insights into SSR diversity, phylogeny and conservation. DNA Res 2018; 25:409-419. [PMID: 29800113 PMCID: PMC6105116 DOI: 10.1093/dnares/dsy013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
Teak (Tectona grandis L. f.) is one of the precious bench mark tropical hardwood having qualities of durability, strength and visual pleasantries. Natural teak populations harbour a variety of characteristics that determine their economic, ecological and environmental importance. Sequencing of whole nuclear genome of teak provides a platform for functional analyses and development of genomic tools in applied tree improvement. A draft genome of 317 Mb was assembled at 151× coverage and annotated 36, 172 protein-coding genes. Approximately about 11.18% of the genome was repetitive. Microsatellites or simple sequence repeats (SSRs) are undoubtedly the most informative markers in genotyping, genetics and applied breeding applications. We generated 182,712 SSRs at the whole genome level, of which, 170,574 perfect SSRs were found; 16,252 perfect SSRs showed in silico polymorphisms across six genotypes suggesting their promising use in genetic conservation and tree improvement programmes. Genomic SSR markers developed in this study have high potential in advancing conservation and management of teak genetic resources. Phylogenetic studies confirmed the taxonomic position of the genus Tectona within the family Lamiaceae. Interestingly, estimation of divergence time inferred that the Miocene origin of the Tectona genus to be around 21.4508 million years ago.
Collapse
Affiliation(s)
- Ramasamy Yasodha
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Ramesh Vasudeva
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, India
| | - Swathi Balakrishnan
- Department of Forest Biology and Tree Improvement, University of Agricultural Sciences, College of Forestry, Sirsi, Uttara Kannada, Karnataka, India
| | - Ambothi Rathnasamy Sakthi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Nicodemus Abel
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Nagarajan Binai
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Balaji Rajashekar
- Genotypic Technology Private Limited, Bengaluru, Karnataka, India.,Institute of Computer Science, University of Tartu, Estonia
| | - Vijay Kumar Waman Bachpai
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu, India
| | - Chandrasekhara Pillai
- Department of Forest Biology and Tree Improvement, University of Agricultural Sciences, College of Forestry, Sirsi, Uttara Kannada, Karnataka, India
| | - Suma Arun Dev
- Department of Forest Biology and Tree Improvement, University of Agricultural Sciences, College of Forestry, Sirsi, Uttara Kannada, Karnataka, India
| |
Collapse
|
26
|
Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S. Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev Camb Philos Soc 2018. [PMCID: PMC6378602 DOI: 10.1111/brv.12453] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After decades of debate about the existence of non‐genetic inheritance, the focus is now slowly shifting towards dissecting its underlying mechanisms. Here, we propose a new mechanism that, by integrating non‐genetic and genetic inheritance, may help build the long‐sought inclusive vision of evolution. After briefly reviewing the wealth of evidence documenting the existence and ubiquity of non‐genetic inheritance in a table, we review the categories of mechanisms of parent–offspring resemblance that underlie inheritance. We then review several lines of argument for the existence of interactions between non‐genetic and genetic components of inheritance, leading to a discussion of the contrasting timescales of action of non‐genetic and genetic inheritance. This raises the question of how the fidelity of the inheritance system can match the rate of environmental variation. This question is central to understanding the role of different inheritance systems in evolution. We then review and interpret evidence indicating the existence of shifts from inheritance systems with low to higher transmission fidelity. Based on results from different research fields we propose a conceptual hypothesis linking genetic and non‐genetic inheritance systems. According to this hypothesis, over the course of generations, shifts among information systems allow gradual matching between the rate of environmental change and the inheritance fidelity of the corresponding response. A striking conclusion from our review is that documented shifts between types of inherited non‐genetic information converge towards epigenetics (i.e. inclusively heritable molecular variation in gene expression without change in DNA sequence). We then interpret the well‐documented mutagenicity of epigenetic marks as potentially generating a final shift from epigenetic to genetic encoding. This sequence of shifts suggests the existence of a relay in inheritance systems from relatively labile ones to gradually more persistent modes of inheritance, a relay that could constitute a new mechanistic basis for the long‐proposed, but still poorly documented, hypothesis of genetic assimilation. A profound difference between the genocentric and the inclusive vision of heredity revealed by the genetic assimilation relay proposed here lies in the fact that a given form of inheritance can affect the rate of change of other inheritance systems. To explore the consequences of such inter‐connection among inheritance systems, we briefly review published theoretical models to build a model of genetic assimilation focusing on the shift in the engraving of environmentally induced phenotypic variation into the DNA sequence. According to this hypothesis, when environmental change remains stable over a sufficient number of generations, the relay among inheritance systems has the potential to generate a form of genetic assimilation. In this hypothesis, epigenetics appears as a hub by which non‐genetically inherited environmentally induced variation in traits can become genetically encoded over generations, in a form of epigenetically facilitated mutational assimilation. Finally, we illustrate some of the major implications of our hypothetical framework, concerning mutation randomness, the central dogma of molecular biology, concepts of inheritance and the curing of inherited disorders, as well as for the emergence of the inclusive evolutionary synthesis.
Collapse
Affiliation(s)
- Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Arnaud Pocheville
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- Department of Philosophy and Charles Perkins Centre; University of Sydney; Sydney NSW 2006 Australia
| | - Olivier Rey
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier; F-66860 Perpignan France
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Simon Blanchet
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
| |
Collapse
|
27
|
Rojas-Ríos P, Simonelig M. piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 2018; 145:145/17/dev161786. [PMID: 30194260 DOI: 10.1242/dev.161786] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PIWI proteins and Piwi-interacting RNAs (piRNAs) have established and conserved roles in repressing transposable elements (TEs) in the germline of animals. However, in several biological contexts, a large proportion of piRNAs are not related to TE sequences and, accordingly, functions for piRNAs and PIWI proteins that are independent of TE regulation have been identified. This aspect of piRNA biology is expanding rapidly. Indeed, recent reports have revealed the role of piRNAs in the regulation of endogenous gene expression programs in germ cells, as well as in somatic tissues, challenging dogma in the piRNA field. In this Review, we focus on recent data addressing the biological and developmental functions of piRNAs, highlighting their roles in embryonic patterning, germ cell specification, stem cell biology, neuronal activity and metabolism.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- mRNA Regulation and Development, IGH, Univ. Montpellier, CNRS, Montpellier 34396, France
| | - Martine Simonelig
- mRNA Regulation and Development, IGH, Univ. Montpellier, CNRS, Montpellier 34396, France
| |
Collapse
|
28
|
Nzabarushimana E, Tang H. Insertion sequence elements-mediated structural variations in bacterial genomes. Mob DNA 2018; 9:29. [PMID: 30181787 PMCID: PMC6114881 DOI: 10.1186/s13100-018-0134-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Mobile genetic elements (MGEs) impact the evolution and stability of their host genomes. Insertion sequence (IS) elements are the most common MGEs in bacterial genomes and play a crucial role in mediating large-scale variations in bacterial genomes. It is understood that IS elements and MGEs in general coexist in a dynamical equilibrium with their respective hosts. Current studies indicate that the spontaneous movement of IS elements does not follow a constant rate in different bacterial genomes. However, due to the paucity and sparsity of the data, these observations are yet to be conclusive. In this paper, we conducted a comparative analysis of the IS-mediated genome structural variations in ten mutation accumulation (MA) experiments across eight strains of five bacterial species containing IS elements, including four strains of the E. coli. We used GRASPER algorithm, a denovo structural variation (SV) identification algorithm designed to detect SVs involving repetitive sequences in the genome. We observed highly diverse rates of IS insertions and IS-mediated recombinations across different bacterial species as well as across different strains of the same bacterial species. We also observed different rates of the elements from the same IS family in different bacterial genomes, suggesting that the distinction in rates might not be due to the different composition of IS elements across bacterial genomes.
Collapse
Affiliation(s)
- Etienne Nzabarushimana
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN USA
| | - Haixu Tang
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN USA
| |
Collapse
|
29
|
De novo human genome assemblies reveal spectrum of alternative haplotypes in diverse populations. Nat Commun 2018; 9:3040. [PMID: 30072691 PMCID: PMC6072799 DOI: 10.1038/s41467-018-05513-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
The human reference genome is used extensively in modern biological research. However, a single consensus representation is inadequate to provide a universal reference structure because it is a haplotype among many in the human population. Using 10× Genomics (10×G) “Linked-Read” technology, we perform whole genome sequencing (WGS) and de novo assembly on 17 individuals across five populations. We identify 1842 breakpoint-resolved non-reference unique insertions (NUIs) that, in aggregate, add up to 2.1 Mb of so far undescribed genomic content. Among these, 64% are considered ancestral to humans since they are found in non-human primate genomes. Furthermore, 37% of the NUIs can be found in the human transcriptome and 14% likely arose from Alu-recombination-mediated deletion. Our results underline the need of a set of human reference genomes that includes a comprehensive list of alternative haplotypes to depict the complete spectrum of genetic diversity across populations. The majority of the human reference genome assembly is represented as a single consensus haplotype. Here, Wong et al. analyze de novo assemblies of 17 diverse, haplotype-resolved genomes to gain insights into the structure of genetic diversity and compile a list of alternative haplotypes across populations.
Collapse
|
30
|
Wakisaka KT, Ichiyanagi K, Ohno S, Itoh M. Association of zygotic piRNAs derived from paternal P elements with hybrid dysgenesis in Drosophila melanogaster. Mob DNA 2018; 9:7. [PMID: 29441132 PMCID: PMC5800288 DOI: 10.1186/s13100-018-0110-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 01/27/2023] Open
Abstract
Background P-element transposition in the genome causes P-M hybrid dysgenesis in Drosophila melanogaster. Maternally deposited piRNAs suppress P-element transposition in the progeny, linking them to P-M phenotypes; however, the role of zygotic piRNAs derived from paternal P elements is poorly understood. Results To elucidate the molecular basis of P-element suppression by zygotic factors, we investigated the genomic constitution and P-element piRNA production derived from fathers. As a result, we characterized males of naturally derived Q, M’ and P strains, which show different capacities for the P-element mobilizations introduced after hybridizations with M-strain females. The amounts of piRNAs produced in ovaries of F1 hybrids varied among the strains and were influenced by the characteristics of the piRNA clusters that harbored the P elements. Importantly, while both the Q- and M’-strain fathers restrict the P-element mobilization in ovaries of their daughters, the Q-strain fathers supported the production of the highest piRNA expression in the ovaries of their daughters, and the M’ strain carries KP elements in transcriptionally active regions directing the highest expression of KP elements in their daughters. Interestingly, the zygotic P-element piRNAs, but not the KP element mRNA, contributed to the variations in P transposition immunity in the granddaughters. Conclusions The piRNA-cluster-embedded P elements and the transcriptionally active KP elements from the paternal genome are both important suppressors of P element activities that are co-inherited by the progeny. Expression levels of the P-element piRNA and KP-element mRNA vary among F1 progeny due to the constitution of the paternal genome, and are involved in phenotypic variation in the subsequent generation. Electronic supplementary material The online version of this article (10.1186/s13100-018-0110-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiko Tsuji Wakisaka
- 1Department of Applied Biology, Kyoto Institute of Technology, Hashigamicyo Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan
| | - Kenji Ichiyanagi
- 2Laboratory of Genome and Epigenome Dynamics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Seiko Ohno
- 3Center for Epidemiologic Research in Asia, Shiga Univesity of Medical Science, Otsu, Shiga 520-2192 Japan
| | - Masanobu Itoh
- 1Department of Applied Biology, Kyoto Institute of Technology, Hashigamicyo Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan.,4Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto, 606-8585 Japan
| |
Collapse
|
31
|
Praher D, Zimmermann B, Genikhovich G, Columbus-Shenkar Y, Modepalli V, Aharoni R, Moran Y, Technau U. Characterization of the piRNA pathway during development of the sea anemone Nematostella vectensis. RNA Biol 2017; 14:1727-1741. [PMID: 28783426 PMCID: PMC5731801 DOI: 10.1080/15476286.2017.1349048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) and associated proteins comprise a conserved pathway for silencing transposons in metazoan germlines. piRNA pathway components are also expressed in multipotent somatic stem cells in various organisms. piRNA functions have been extensively explored in bilaterian model systems, however, comprehensive studies in non-bilaterian phyla remain limited. Here we investigate the piRNA pathway during the development of Nematostella vectensis, a well-established model system belonging to Cnidaria, the sister group to Bilateria. To date, no population of somatic stem cells has been identified in this organism, despite its long life-span and regenerative capacities that require a constant cell-renewal. We show that Nematostella piRNA pathway components are broadly expressed in early developmental stages, while piRNAs themselves show differential expression, suggesting specific developmental roles of distinct piRNA families. In adults, piRNA associated proteins are enriched in the germline but also expressed in somatic cells, indicating putative stem cell properties. Furthermore, we provide experimental evidence that Nematostella piRNAs cleave transposable elements as well as protein-coding genes. Our results demonstrate that somatic expression of piRNA associated proteins as well as the roles of piRNAs in transposon repression and gene regulation are likely ancestral features that evolved before the split between Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Daniela Praher
- Department of Molecular Evolution and Development; Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna; Althanstrasse 14, Wien, Austria
| | - Bob Zimmermann
- Department of Molecular Evolution and Development; Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna; Althanstrasse 14, Wien, Austria
| | - Grigory Genikhovich
- Department of Molecular Evolution and Development; Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna; Althanstrasse 14, Wien, Austria
| | - Yaara Columbus-Shenkar
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem; Givat Ram, Jerusalem, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem; Givat Ram, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem; Givat Ram, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem; Givat Ram, Jerusalem, Israel
| | - Ulrich Technau
- Department of Molecular Evolution and Development; Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna; Althanstrasse 14, Wien, Austria
| |
Collapse
|
32
|
Wakisaka KT, Ichiyanagi K, Ohno S, Itoh M. Diversity of P-element piRNA production among M' and Q strains and its association with P-M hybrid dysgenesis in Drosophila melanogaster. Mob DNA 2017; 8:13. [PMID: 29075336 PMCID: PMC5654125 DOI: 10.1186/s13100-017-0096-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/13/2017] [Indexed: 01/24/2023] Open
Abstract
Background Transposition of P elements in the genome causes P–M hybrid dysgenesis in Drosophila melanogaster. For the P strain, the P–M phenotypes are associated with the ability to express a class of small RNAs, called piwi-interacting small RNAs (piRNAs), that suppress the P elements in female gonads. However, little is known about the extent to which piRNAs are involved in the P–M hybrid dysgenesis in M′ and Q strains, which show different abilities to regulate the P elements from P strains. Results To elucidate the molecular basis of the suppression of paternally inherited P elements, we analyzed the mRNA and piRNA levels of P elements in the F1 progeny between males of a P strain and nine-line females of M′ or Q strains (M′ or Q progenies). M′ progenies showed the hybrid dysgenesis phenotype, while Q progenies did not. Consistently, the levels of P-element mRNA in both the ovaries and F1 embryos were higher in M′ progenies than in Q progenies, indicating that the M′ progenies have a weaker ability to suppress P-element expression. The level of P-element mRNA was inversely correlated to the level of piRNAs in F1 embryos. Importantly, the M′ progenies were characterized by a lower abundance of P-element piRNAs in both young ovaries and F1 embryonic bodies. The Q progenies showed various levels of piRNAs in both young ovaries and F1 embryonic bodies despite all of the Q progenies suppressing P-element transposition in their gonad. Conclusions Our results are consistent with an idea that the level of P-element piRNAs is a determinant for dividing strain types between M′ and Q and that the suppression mechanisms of transposable elements, including piRNAs, are varied between natural populations. Electronic supplementary material The online version of this article (10.1186/s13100-017-0096-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiko Tsuji Wakisaka
- Department of Applied Biology, Kyoto Institute of Technology, Hashigamicyo, Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Seiko Ohno
- Center for Epidemiologic Research in Asia, Shiga Univesity of Medical Science, Otsu, Shiga 520-2192 Japan
| | - Masanobu Itoh
- Department of Applied Biology, Kyoto Institute of Technology, Hashigamicyo, Matsugasaki, Sakyo-ku, Kyoto, 606-8585 Japan.,Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto, 606-8585 Japan
| |
Collapse
|
33
|
Mascagni F, Giordani T, Ceccarelli M, Cavallini A, Natali L. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). BMC Genomics 2017; 18:634. [PMID: 28821238 PMCID: PMC5563062 DOI: 10.1186/s12864-017-4050-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
Background Genome divergence by mobile elements activity and recombination is a continuous process that plays a key role in the evolution of species. Nevertheless, knowledge on retrotransposon-related variability among species belonging to the same genus is still limited. Considering the importance of the genus Helianthus, a model system for studying the ecological genetics of speciation and adaptation, we performed a comparative analysis of the repetitive genome fraction across ten species and one subspecies of sunflower, focusing on long terminal repeat retrotransposons at superfamily, lineage and sublineage levels. Results After determining the relative genome size of each species, genomic DNA was isolated and subjected to Illumina sequencing. Then, different assembling and clustering approaches allowed exploring the repetitive component of all genomes. On average, repetitive DNA in Helianthus species represented more than 75% of the genome, being composed mostly by long terminal repeat retrotransposons. Also, the prevalence of Gypsy over Copia superfamily was observed and, among lineages, Chromovirus was by far the most represented. Although nearly all the same sublineages are present in all species, we found considerable variability in the abundance of diverse retrotransposon lineages and sublineages, especially between annual and perennial species. Conclusions This large variability should indicate that different events of amplification or loss related to these elements occurred following species separation and should have been involved in species differentiation. Our data allowed us inferring on the extent of interspecific repetitive DNA variation related to LTR-RE abundance, investigating the relationship between changes of LTR-RE abundance and the evolution of the genus, and determining the degree of coevolution of different LTR-RE lineages or sublineages between and within species. Moreover, the data suggested that LTR-RE abundance in a species was affected by the annual or perennial habit of that species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4050-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
34
|
Nakajima R, Sato T, Ogawa T, Okano H, Noce T. A noncoding RNA containing a SINE-B1 motif associates with meiotic metaphase chromatin and has an indispensable function during spermatogenesis. PLoS One 2017; 12:e0179585. [PMID: 28658256 PMCID: PMC5489172 DOI: 10.1371/journal.pone.0179585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 12/24/2022] Open
Abstract
A search for early response genes that are activated following germ cell induction from mouse embryonic stem cells in vitro led us to the isolation of a long noncoding RNA that contains a SINE (short interspersed element)-B1F motif that was named R53. In situ hybridization and northern blot analyses revealed that the R53 subfragment RNA bears a B1F motif, is processed from the primary transcript, is expressed in adult testis and is predominantly localized in meiotic metaphase chromatin during spermatogenesis. Recent studies of chromosome-associated RNAs have explored novel functions of noncoding RNAs. Specifically, chromosome-bound noncoding RNAs function not only as structural components of chromosome but also as scaffolds that recruit epigenetic modulators for transcriptional regulation, and they are dynamically rearranged during the cell cycle. However, few studies have explored meiotic chromatin; thus, R53 RNA appears to be the first long noncoding RNA to be tightly associated with the metaphase chromatin during spermatogenesis. Furthermore, R53 knockdown using a lentivirus-mediated RNAi injected into mouse testis and organ culture of the fragments revealed a remarkable reduction in postmeiotic cells and irregular up-regulation of several postmeiotic genes, which suggests the possibility that the SINE-B1-derived noncoding RNA R53 plays an indispensable role in the transcriptional regulation of key spermatogenesis genes.
Collapse
Affiliation(s)
- Ryusuke Nakajima
- Department of Physiology, Keio University School of Medicine, 35 Shinamomachi, Shinjuku-ku, Tokyo, Japan
- * E-mail: (RN); (TN)
| | - Takuya Sato
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa, Japan
| | - Takehiko Ogawa
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinamomachi, Shinjuku-ku, Tokyo, Japan
| | - Toshiaki Noce
- Department of Physiology, Keio University School of Medicine, 35 Shinamomachi, Shinjuku-ku, Tokyo, Japan
- * E-mail: (RN); (TN)
| |
Collapse
|
35
|
Hall LL, Lawrence JB. RNA as a fundamental component of interphase chromosomes: could repeats prove key? Curr Opin Genet Dev 2016; 37:137-147. [PMID: 27218204 DOI: 10.1016/j.gde.2016.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 11/29/2022]
Abstract
Beginning with the precedent of XIST RNA as a 'chromosomal RNA' (cRNA), there is growing interest in the possibility that a diversity of non-coding RNAs may function in chromatin. We review findings which lead us to suggest that RNA is essentially a widespread component of interphase chromosomes. Further, RNA likely contributes to architecture and regulation, with repeat-rich 'junk' RNA in euchromatin (ecRNA) promoting a more open chromatin state. Thousands of low-abundance nuclear RNAs have been reported, however it remains a challenge to determine which of these may function in chromatin. Recent findings indicate that repetitive sequences are enriched in chromosome-associated non-coding RNAs, and repeat-rich RNA shows unusual properties, including localization and stability, with similarities to XIST RNA. We suggest two frontiers in genome biology are emerging and may intersect: the broad contribution of RNA to interphase chromosomes and the distinctive properties of repeat-rich intronic or intergenic junk sequences that may play a role in chromosome structure and regulation.
Collapse
Affiliation(s)
- Lisa L Hall
- Department of Cell & Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Cell & Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
36
|
Kang H, Zhu D, Lin R, Opiyo SO, Jiang N, Shiu SH, Wang GL. A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads. DNA Res 2016; 23:241-51. [PMID: 27098848 PMCID: PMC4909310 DOI: 10.1093/dnares/dsw011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/21/2016] [Indexed: 11/16/2022] Open
Abstract
Identification of polymorphic transposable elements (TEs) is important because TE polymorphism creates genetic diversity and influences the function of genes in the host genome. However, de novo scanning of polymorphic TEs remains a challenge. Here, we report a novel computational method, called PTEMD (polymorphic TEs and their movement detection), for de novo discovery of genome-wide polymorphic TEs. PTEMD searches highly identical sequences using reads supported breakpoint evidences. Using PTEMD, we identified 14 polymorphic TE families (905 sequences) in rice blast fungus Magnaporthe oryzae, and 68 (10,618 sequences) in maize. We validated one polymorphic TE family experimentally, MoTE-1; all MoTE-1 family members are located in different genomic loci in the three tested isolates. We found that 57.1% (8 of 14) of the PTEMD-detected polymorphic TE families in M. oryzae are active. Furthermore, our data indicate that there are more polymorphic DNA transposons in maize than their counterparts of retrotransposons despite the fact that retrotransposons occupy largest fraction of genomic mass. We demonstrated that PTEMD is an effective tool for identifying polymorphic TEs in M. oryzae and maize genomes. PTEMD and the genome-wide polymorphic TEs in M. oryzae and maize are publically available at http://www.kanglab.cn/blast/PTEMD_V1.02.htm.
Collapse
Affiliation(s)
- Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China Department of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Runmao Lin
- Department of Plant Pathology, Institute of Vegetables and flowers, Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Stephen Obol Opiyo
- Molecular and Cellular Imaging Center - Columbus, Ohio Agricultural Research and Development Center, Columbus, OH 43210, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48823, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
McCaffrey J, Sibert J, Zhang B, Zhang Y, Hu W, Riethman H, Xiao M. CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis. Nucleic Acids Res 2016; 44:e11. [PMID: 26481349 PMCID: PMC4737172 DOI: 10.1093/nar/gkv878] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/10/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
We have developed a new, sequence-specific DNA labeling strategy that will dramatically improve DNA mapping in complex and structurally variant genomic regions, as well as facilitate high-throughput automated whole-genome mapping. The method uses the Cas9 D10A protein, which contains a nuclease disabling mutation in one of the two nuclease domains of Cas9, to create a guide RNA-directed DNA nick in the context of an in vitro-assembled CRISPR-CAS9-DNA complex. Fluorescent nucleotides are then incorporated adjacent to the nicking site with a DNA polymerase to label the guide RNA-determined target sequences. This labeling strategy is very powerful in targeting repetitive sequences as well as in barcoding genomic regions and structural variants not amenable to current labeling methods that rely on uneven distributions of restriction site motifs in the DNA. Importantly, it renders the labeled double-stranded DNA available in long intact stretches for high-throughput analysis in nanochannel arrays as well as for lower throughput targeted analysis of labeled DNA regions using alternative methods for stretching and imaging the labeled long DNA molecules. Thus, this method will dramatically improve both automated high-throughput genome-wide mapping as well as targeted analyses of complex regions containing repetitive and structurally variant DNA.
Collapse
MESH Headings
- Amino Acid Substitution
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- CRISPR-Associated Protein 9
- CRISPR-Cas Systems
- Chromosome Mapping/methods
- Chromosomes, Artificial, Bacterial/chemistry
- Chromosomes, Artificial, Bacterial/metabolism
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA/chemistry
- DNA/genetics
- Deoxyribonuclease I/chemistry
- Deoxyribonuclease I/genetics
- Endonucleases/chemistry
- Endonucleases/genetics
- Fluorescent Dyes/chemistry
- Genome, Human
- HIV-1/chemistry
- HIV-1/genetics
- Humans
- In Situ Nick-End Labeling/methods
- Mutation
- Plasmids/chemistry
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
Collapse
Affiliation(s)
- Jennifer McCaffrey
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Justin Sibert
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Bin Zhang
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenhui Hu
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | | | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Pampush JD. Selection played a role in the evolution of the human chin. J Hum Evol 2015; 82:127-36. [DOI: 10.1016/j.jhevol.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/24/2014] [Accepted: 02/05/2015] [Indexed: 11/25/2022]
|
39
|
Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Scalabrin S, Velasco R, Morgante M, Cavallini A. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 2015; 6:776-91. [PMID: 24671744 PMCID: PMC4007544 DOI: 10.1093/gbe/evu058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.
Collapse
Affiliation(s)
- Elena Barghini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hellen EHB, Kern AD. The role of DNA insertions in phenotypic differentiation between humans and other primates. Genome Biol Evol 2015; 7:1168-78. [PMID: 25635043 PMCID: PMC4419785 DOI: 10.1093/gbe/evv012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
What makes us human is one of the most interesting and enduring questions in evolutionary biology. To assist in answering this question, we have identified insertions in the human genome which cannot be found in five comparison primate species: Chimpanzee, gorilla, orangutan, gibbon, and macaque. A total of 21,269 nonpolymorphic human-specific insertions were identified, of which only 372 were found in exons. Any function conferred by the remaining 20,897 is likely to be regulatory. Many of these insertions are likely to have been fitness neutral; however, a small number has been identified in genes showing signs of positive selection. Insertions found within positively selected genes show associations to neural phenotypes, which were also enriched in the whole data set. Other phenotypes that are found to be enriched in the data set include dental and sensory perception-related phenotypes, features which are known to differ between humans and other apes. The analysis provides several likely candidates, either genes or regulatory regions, which may be involved in the processes that differentiate humans from other apes.
Collapse
Affiliation(s)
| | - Andrew D Kern
- Department of Genetics, Nelson Biolabs, Piscataway, NJ, USA
| |
Collapse
|
41
|
Soyal SM, Felder T, Auer S, Oberkofler H, Iglseder B, Paulweber B, Dossena S, Nofziger C, Paulmichl M, Esterbauer H, Krempler F, Patsch W. Associations of Haplotypes Upstream of IRS1 with Insulin Resistance, Type 2 Diabetes, Dyslipidemia, Preclinical Atherosclerosis, and Skeletal Muscle LOC646736 mRNA Levels. J Diabetes Res 2015; 2015:405371. [PMID: 26090471 PMCID: PMC4451528 DOI: 10.1155/2015/405371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/22/2015] [Accepted: 04/30/2015] [Indexed: 11/18/2022] Open
Abstract
The genomic region ~500 kb upstream of IRS1 has been implicated in insulin resistance, type 2 diabetes, adverse lipid profile, and cardiovascular risk. To gain further insight into this chromosomal region, we typed four SNPs in a cross-sectional cohort and subjects with type 2 diabetes recruited from the same geographic region. From 16 possible haplotypes, 6 haplotypes with frequencies >0.01 were observed. We identified one haplotype that was protective against insulin resistance (determined by HOMA-IR and fasting plasma insulin levels), type 2 diabetes, an adverse lipid profile, increased C-reactive protein, and asymptomatic atherosclerotic disease (assessed by intima media thickness of the common carotid arteries). BMI and total adipose tissue mass as well as visceral and subcutaneous adipose tissue mass did not differ between the reference and protective haplotypes. In 92 subjects, we observed an association of the protective haplotype with higher skeletal muscle mRNA levels of LOC646736, which is located in the same haplotype block as the informative SNPs and is mainly expressed in skeletal muscle, but only at very low levels in liver or adipose tissues. These data suggest a role for LOC646736 in human insulin resistance and warrant further studies on the functional effects of this locus.
Collapse
Affiliation(s)
- Selma M. Soyal
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Thomas Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Simon Auer
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Hannes Oberkofler
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernhard Iglseder
- Department of Geriatric Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine I, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Franz Krempler
- Department of Internal Medicine, Krankenhaus Hallein, 5400 Hallein, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
- *Wolfgang Patsch:
| |
Collapse
|
42
|
Kundu S, Ghosh SK. Trend of different molecular markers in the last decades for studying human migrations. Gene 2014; 556:81-90. [PMID: 25510397 DOI: 10.1016/j.gene.2014.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 12/15/2022]
Abstract
Anatomically modern humans are known to have widely migrated throughout history. Different scientific evidences suggest that the entire human population descended from just several thousand African migrants. About 85,000 years ago, the first wave of human migration was out of Africa, that followed the coasts through the Middle East, into Southern Asia via Sri Lanka, and in due course around Indonesia and into Australia. Another wave of migration between 40,000 and 12,000 years ago brought humans northward into Europe. However, the frozen north limited human expansion in Europe, and created a land bridge, "Bering land bridge", connecting Asia with North America about 25,000 years ago. Although fossil data give the most direct information about our past, it has certain anomalies. So, molecular archeologists are now using different molecular markers to trace the "most recent common ancestor" and also the migration pattern of modern humans. In this study, we have studied the trend of molecular markers and also the methodologies implemented in the last decades (2003-2014). From our observation, we can say that D-loop region of mtDNA and Y chromosome based markers are predominant. Nevertheless, mtDNA, especially the D-loop region, has some unique features, which makes it a more effective marker for tracing prehistoric footprints of modern human populations. Although, natural selection should also be taken into account in studying mtDNA based human migration. As per technology is concerned, Sanger sequencing is the major technique that is being used in almost all studies. But, the emergence of different cost-effective-and-easy-to-handle NGS platforms has increased its popularity over Sanger sequencing in studying human migration.
Collapse
Affiliation(s)
- Sharbadeb Kundu
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Pin-788011 Assam, India
| | - Sankar Kumar Ghosh
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Pin-788011 Assam, India.
| |
Collapse
|
43
|
Ayarpadikannan S, Kim HS. The impact of transposable elements in genome evolution and genetic instability and their implications in various diseases. Genomics Inform 2014; 12:98-104. [PMID: 25317108 PMCID: PMC4196381 DOI: 10.5808/gi.2014.12.3.98] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/15/2022] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs). Results from the Human Genome Project have emphasized the biological importance of TEs. Many studies have revealed that TEs are not simply "junk" DNA, but rather, they play various roles in processes, including genome evolution, gene expression regulation, genetic instability, and cancer disposition. The effects of TE insertion in the genome varies from negligible to disease conditions. For the past two decades, many studies have shown that TEs are the causative factors of various genetic disorders and cancer. TEs are a subject of interest worldwide, not only in terms of their clinical aspects but also in basic research, such as evolutionary tracking. Although active TEs contribute to genetic instability and disease states, non-long terminal repeat transposons are well studied, and their roles in these processes have been confirmed. In this review, we will give an overview of the importance of TEs in studying genome evolution and genetic instability, and we suggest that further in-depth studies on the mechanisms related to these phenomena will be useful for both evolutionary tracking and clinical diagnostics.
Collapse
Affiliation(s)
- Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
44
|
Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. GENOMICS, PROTEOMICS & BIOINFORMATICS 2014; 12:164-71. [PMID: 25132181 PMCID: PMC4411372 DOI: 10.1016/j.gpb.2014.07.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 12/27/2022]
Abstract
Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size. They can be divided into minisatellite, microsatellite and satellite sequences. Satellite DNA sequences are considered to be a fast-evolving component of eukaryotic genomes, comprising tandemly-arrayed, highly-repetitive and highly-conserved monomer sequences. The monomer unit of satellite DNA is 150-400 base pairs (bp) in length. Repetitive sequences may be species- or genus-specific, and may be centromeric or subtelomeric in nature. They exhibit cohesive and concerted evolution caused by molecular drive, leading to high sequence homogeneity. Repetitive sequences accumulate variations in sequence and copy number during evolution, hence they are important tools for taxonomic and phylogenetic studies, and are known as "tuning knobs" in the evolution. Therefore, knowledge of repetitive sequences assists our understanding of the organization, evolution and behavior of eukaryotic genomes. Repetitive sequences have cytoplasmic, cellular and developmental effects and play a role in chromosomal recombination. In the post-genomics era, with the introduction of next-generation sequencing technology, it is possible to evaluate complex genomes for analyzing repetitive sequences and deciphering the yet unknown functional potential of repetitive sequences.
Collapse
Affiliation(s)
- Shweta Mehrotra
- Department of Botany, University of Delhi, Delhi 110007, India.
| | - Vinod Goyal
- Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
45
|
Campos-Sánchez R, Kapusta A, Feschotte C, Chiaromonte F, Makova KD. Genomic landscape of human, bat, and ex vivo DNA transposon integrations. Mol Biol Evol 2014; 31:1816-32. [PMID: 24809961 DOI: 10.1093/molbev/msu138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The integration and fixation preferences of DNA transposons, one of the major classes of eukaryotic transposable elements, have never been evaluated comprehensively on a genome-wide scale. Here, we present a detailed study of the distribution of DNA transposons in the human and bat genomes. We studied three groups of DNA transposons that integrated at different evolutionary times: 1) ancient (>40 My) and currently inactive human elements, 2) younger (<40 My) bat elements, and 3) ex vivo integrations of piggyBat and Sleeping Beauty elements in HeLa cells. Although the distribution of ex vivo elements reflected integration preferences, the distribution of human and (to a lesser extent) bat elements was also affected by selection. We used regression techniques (linear, negative binomial, and logistic regression models with multiple predictors) applied to 20-kb and 1-Mb windows to investigate how the genomic landscape in the vicinity of DNA transposons contributes to their integration and fixation. Our models indicate that genomic landscape explains 16-79% of variability in DNA transposon genome-wide distribution. Importantly, we not only confirmed previously identified predictors (e.g., DNA conformation and recombination hotspots) but also identified several novel predictors (e.g., signatures of double-strand breaks and telomere hexamer). Ex vivo integrations showed a bias toward actively transcribed regions. Older DNA transposons were located in genomic regions scarce in most conserved elements-likely reflecting purifying selection. Our study highlights how DNA transposons are integral to the evolution of bat and human genomes, and has implications for the development of DNA transposon assays for gene therapy and mutagenesis applications.
Collapse
Affiliation(s)
- Rebeca Campos-Sánchez
- Genetics Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, PA
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT
| | - Francesca Chiaromonte
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, PADepartment of Statistics, Penn State University, University Park, PA
| | - Kateryna D Makova
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, PADepartment of Biology, Penn State University, University Park, PA
| |
Collapse
|
46
|
Zhuang J, Wang J, Theurkauf W, Weng Z. TEMP: a computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Res 2014; 42:6826-38. [PMID: 24753423 PMCID: PMC4066757 DOI: 10.1093/nar/gku323] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Insertions and excisions of transposable elements (TEs) affect both the stability and variability of the genome. Studying the dynamics of transposition at the population level can provide crucial insights into the processes and mechanisms of genome evolution. Pooling genomic materials from multiple individuals followed by high-throughput sequencing is an efficient way of characterizing genomic polymorphisms in a population. Here we describe a novel method named TEMP, specifically designed to detect TE movements present with a wide range of frequencies in a population. By combining the information provided by pair-end reads and split reads, TEMP is able to identify both the presence and absence of TE insertions in genomic DNA sequences derived from heterogeneous samples; accurately estimate the frequencies of transposition events in the population and pinpoint junctions of high frequency transposition events at nucleotide resolution. Simulation data indicate that TEMP outperforms other algorithms such as PoPoolationTE, RetroSeq, VariationHunter and GASVPro. TEMP also performs well on whole-genome human data derived from the 1000 Genomes Project. We applied TEMP to characterize the TE frequencies in a wild Drosophila melanogaster population and study the inheritance patterns of TEs during hybrid dysgenesis. We also identified sequence signatures of TE insertion and possible molecular effects of TE movements, such as altered gene expression and piRNA production. TEMP is freely available at github: https://github.com/JialiUMassWengLab/TEMP.git.
Collapse
Affiliation(s)
- Jiali Zhuang
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology
| | - Jie Wang
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology
| | - William Theurkauf
- Program in Cell and Developmental Dynamics Program in Molecular Medicine, and University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology
| |
Collapse
|
47
|
Abstract
Alus are transposable elements belonging to the short interspersed element family. They occupy over 10% of human genome and have been spreading through genomes over the past 65 million years. In the past, they were considered junk DNA with little function that took up genome volumes. Today, Alus and other transposable elements emerge to be key players in cellular function, including genomic activities, gene expression regulations, and evolution. Here we summarize the current understanding of Alu function in genome and gene expression regulation in human cell nuclei.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine; Chicago, IL USA
| | - Sui Huang
- Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine; Chicago, IL USA
| |
Collapse
|
48
|
Natali L, Cossu RM, Barghini E, Giordani T, Buti M, Mascagni F, Morgante M, Gill N, Kane NC, Rieseberg L, Cavallini A. The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genomics 2013; 14:686. [PMID: 24093210 PMCID: PMC3852528 DOI: 10.1186/1471-2164-14-686] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/03/2013] [Indexed: 11/12/2022] Open
Abstract
Background Next generation sequencing provides a powerful tool to study genome structure in species whose genomes are far from being completely sequenced. In this work we describe and compare different computational approaches to evaluate the repetitive component of the genome of sunflower, by using medium/low coverage Illumina or 454 libraries. Results By varying sequencing technology (Illumina or 454), coverage (0.55 x-1.25 x), assemblers and assembly procedures, six different genomic databases were produced. The annotation of these databases showed that they were composed of different proportions of repetitive DNA families. The final assembly of the sequences belonging to the six databases produced a whole genome set of 283,800 contigs. The redundancy of each contig was estimated by mapping the whole genome set with a large Illumina read set and measuring the number of matched Illumina reads. The repetitive component amounted to 81% of the sunflower genome, that is composed mainly of numerous families of Gypsy and Copia retrotransposons. Also many families of non autonomous retrotransposons and DNA transposons (especially of the Helitron superfamily) were identified. Conclusions The results substantially matched those previously obtained by using a Sanger-sequenced shotgun library and a standard 454 whole-genome-shotgun approach, indicating the reliability of the proposed procedures also for other species. The repetitive sequences were collected to produce a database, SUNREP, that will be useful for the annotation of the sunflower genome sequence and for studying the genome evolution in dicotyledons.
Collapse
Affiliation(s)
- Lucia Natali
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci U S A 2013; 110:16969-74. [PMID: 24089449 DOI: 10.1073/pnas.1310949110] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The postdomestication adaptation of maize to longer days required reduced photoperiod sensitivity to optimize flowering time. We performed a genome-wide association study and confirmed that ZmCCT, encoding a CCT domain-containing protein, is associated with the photoperiod response. In early-flowering maize we detected a CACTA-like transposable element (TE) within the ZmCCT promoter that dramatically reduced flowering time. TE insertion likely occurred after domestication and was selected as maize adapted to temperate zones. This process resulted in a strong selective sweep within the TE-related block of linkage disequilibrium. Functional validations indicated that the TE represses ZmCCT expression to reduce photoperiod sensitivity, thus accelerating maize spread to long-day environments.
Collapse
|
50
|
Ahn K, Bae JH, Gim JA, Lee JR, Jung YD, Park KD, Han K, Cho BW, Kim HS. Identification and characterization of transposable elements inserted into the coding sequences of horse genes. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|