1
|
Ludlaim AM, Waddington SN, McKay TR. Unifying biology of neurodegeneration in lysosomal storage diseases. J Inherit Metab Dis 2025; 48:e12833. [PMID: 39822020 PMCID: PMC11739831 DOI: 10.1002/jimd.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
There are currently at least 70 characterised lysosomal storage diseases (LSD) resultant from inherited single-gene defects. Of these, at least 30 present with central nervous system (CNS) neurodegeneration and overlapping aetiology. Substrate accumulation and dysfunctional neuronal lysosomes are common denominator, but how variants in 30 different genes converge on this central cellular phenotype is unclear. Equally unresolved is how the accumulation of a diverse spectrum of substrates in the neuronal lysosomes results in remarkably similar neurodegenerative outcomes. Conversely, how is it that many other monogenic LSDs cause only visceral disease? Lysosomal substance accumulation in LSDs with CNS neurodegeneration (nLSD) includes lipofuscinoses, mucopolysaccharidoses, sphingolipidoses and glycoproteinoses. Here, we review the latest discoveries in the fundamental biology of four classes of nLSDs, comparing and contrasting new insights into disease mechanism with emerging evidence of unifying convergence.
Collapse
Affiliation(s)
- Anna M. Ludlaim
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUK
- Faculty of Health SciencesWits/SAMRC Antiviral Gene Therapy Research UnitJohannesburgSouth Africa
| | - Tristan R. McKay
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
2
|
den Hollander B, Le HL, Swart EL, Bikker H, Hollak CEM, Brands MM. Clinical and preclinical insights into high-dose ambroxol therapy for Gaucher disease type 2 and 3: A comprehensive systematic review. Mol Genet Metab 2024; 143:108556. [PMID: 39116528 DOI: 10.1016/j.ymgme.2024.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
RATIONALE Gaucher disease (GD), an autosomal recessive lysosomal storage disease, results from GBA1 variants causing glucocerebrosidase (GCase) deficiency. While enzyme replacement therapy (ERT) helps with systemic symptoms, neurological complications in GD2 and GD3 persist due to the blood-brain-barrier (BBB) limiting ERT efficacy. Ambroxol, a BBB-permeable chaperone, enhances GCase activity. Our review explores high-dose ambroxol's therapeutic potential, both preclinical and clinical, in GD2 and GD3. METHODS PubMed was searched for studies published before March 2023, including clinical, animal, and in vitro studies focusing on the effect of high-dose ambroxol in GD2 and GD3. A narrative synthesis was performed. RESULTS Nine in vitro, three animal, and eight clinical studies were included, demonstrating varied responses to ambroxol across diverse outcome measures. In vitro and animal studies demonstrated reduced endoplasmatic reticulum stress due to the relocation of GCase from the ER to the lysosomes. In vitro cell lines exhibited varying degrees of increased GCase activity. Clinical trials observed reduced lyso-GL1 levels in plasma (41-89%) and cerebrospinal fluid (CSF) (26-97%), alongside increased GCase activity in GD3 patients. Ambroxol exhibited varying effects on neurological outcomes and development. No severe adverse events were reported. CONCLUSION High-dose ambroxol shows promise in managing neurological manifestations in GD3, albeit with uncertainties resulting from genetic heterogeneity and variable response. Further clinical trials, are essential for elucidating dosage-response relationships and refining treatment outcomes and strategies for neuronopathic GD.
Collapse
Affiliation(s)
- Bibiche den Hollander
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Hoang Lan Le
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Clinical Pharmacology and Pharmacy, Meibergdreef 9, Amsterdam, the Netherlands
| | - Eleonora L Swart
- Amsterdam UMC location University of Amsterdam, Department of Clinical Pharmacology and Pharmacy, Meibergdreef 9, Amsterdam, the Netherlands
| | - Hennie Bikker
- Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Carla E M Hollak
- Amsterdam UMC location University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Marion M Brands
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Onal G, Yalçın‐Çakmaklı G, Özçelik CE, Boussaad I, Şeker UÖŞ, Fernandes HJR, Demir H, Krüger R, Elibol B, Dökmeci S, Salman MM. Variant-specific effects of GBA1 mutations on dopaminergic neuron proteostasis. J Neurochem 2024; 168:2543-2560. [PMID: 38641924 PMCID: PMC11898552 DOI: 10.1111/jnc.16114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Glucocerebrosidase 1 (GBA1) mutations are the most important genetic risk factors for Parkinson's disease (PD). Clinically, mild (e.g., p.N370S) and severe (e.g., p.L444P and p.D409H) GBA1 mutations have different PD phenotypes, with differences in age at disease onset, progression, and the severity of motor and non-motor symptoms. We hypothesize that GBA1 mutations cause the accumulation of α-synuclein by affecting the cross-talk between cellular protein degradation mechanisms, leading to neurodegeneration. Accordingly, we tested whether mild and severe GBA1 mutations differentially affect the degradation of α-synuclein via the ubiquitin-proteasome system (UPS), chaperone-mediated autophagy (CMA), and macroautophagy and differentially cause accumulation and/or release of α-synuclein. Our results demonstrate that endoplasmic reticulum (ER) stress and total ubiquitination rates were significantly increased in cells with severe GBA1 mutations. CMA was found to be defective in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons with mild GBA1 mutations, but not in those with severe GBA1 mutations. When examining macroautophagy, we observed reduced formation of autophagosomes in cells with the N370S and D409H GBA1 mutations and impairments in autophagosome-lysosome fusion in cells with the L444P GBA1 mutation. Accordingly, severe GBA1 mutations were found to trigger the accumulation and release of oligomeric α-synuclein in iPSC-derived dopaminergic neurons, primarily as a result of increased ER stress and defective macroautophagy, while mild GBA1 mutations affected CMA, which is mainly responsible for the degradation of the monomeric form of α-synuclein. Overall, our findings provide new insight into the molecular basis of the clinical variability in PD associated with different GBA1 mutations.
Collapse
Affiliation(s)
- G. Onal
- Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| | - G. Yalçın‐Çakmaklı
- Department of Neurology, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| | - C. E. Özçelik
- National Nanotechnology Research Center, UNAM‐Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
| | - I. Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - U. Ö. Ş. Şeker
- Interdisciplinary Neuroscience Program, National Nanotechnology Research Center, UNAM‐Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
| | - Hugo J. R. Fernandes
- Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| | - H. Demir
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| | - R. Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Transversal Translational MedicineLuxembourg Institute of Health (LIH)StrassenLuxembourg
- Parkinson Research ClinicCentre Hospitalier de Luxembourg (CHL)Luxembourg CityLuxembourg
| | - B. Elibol
- Department of Neurology, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| | - S. Dökmeci
- Department of Medical Biology, Faculty of MedicineHacettepe UniversityAnkaraTurkey
| | - M. M. Salman
- Department of Physiology, Anatomy and Genetics, Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Jong T, Gehrlein A, Sidransky E, Jagasia R, Chen Y. Characterization of Novel Human β-glucocerebrosidase Antibodies for Parkinson's Disease Research. JOURNAL OF PARKINSON'S DISEASE 2024; 14:65-78. [PMID: 38251062 PMCID: PMC10836542 DOI: 10.3233/jpd-230295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Mutations in GBA1, which encodes the lysosome enzyme β-glucocerebrosidase (also referred to as acid β-glucosidase or GCase), are the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence also suggests that loss of GCase activity is implicated in PD without GBA1 mutations. Consequently, therapies targeting GCase are actively being pursued as potential strategies to modify the progression of PD and related synucleinopathies. Despite this significant interest in GCase as a therapeutic target, the lack of well-characterized GCase antibodies continues to impede progress in the development of GCase-targeted therapies. OBJECTIVE This study aims to independently evaluate human GCase (hGCase) antibodies to provide recommendations for western blot, immunofluorescence, immunoprecipitation, and AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay) assays. METHODS Two mouse monoclonal antibodies, hGCase-1/17 and hGCase-1/23, were raised against hGCase using imiglucerase, the recombinant enzyme developed to treat patients, as the antigen. These novel antibodies, alongside commonly used antibodies in the field, underwent evaluation in a variety of assays. RESULTS The characterization of hGCase-1/17 and hGCase-1/23 using genetic models including GBA1 loss-of-function human neuroglioma H4 line and neurons differentiated from human embryonic stem cells revealed their remarkable specificity and potency in immunofluorescence and immunoprecipitation assays. Furthermore, a hGCase AlphaLISA assay with excellent sensitivity, a broad dynamic range, and suitability for high throughput applications was developed using hGCase-1/17 and hGCase-1/23, which enabled a sandwich assay configuration. CONCLUSIONS The hGCase immunofluorescence, immunoprecipitation, and AlphaLISA assays utilizing hGCase-1/17 and hGCase-1/23 will not only facilitate improved investigations of hGCase biology, but can also serve as tools to assess the distribution and effectiveness of GCase-targeted therapies for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Tiffany Jong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Patel S, Radhakrishnan D, Kumari D, Bhansali P, Setty SRG. Restoration of β-GC trafficking improves the lysosome function in Gaucher disease. Traffic 2023; 24:489-503. [PMID: 37491971 DOI: 10.1111/tra.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023]
Abstract
Lysosomes function as a primary site for catabolism and cellular signaling. These organelles digest a variety of substrates received through endocytosis, secretion and autophagy with the help of resident acid hydrolases. Lysosomal enzymes are folded in the endoplasmic reticulum (ER) and trafficked to lysosomes via Golgi and endocytic routes. The inability of hydrolase trafficking due to mutations or mutations in its receptor or cofactor leads to cargo accumulation (storage) in lysosomes, resulting in lysosome storage disorder (LSD). In Gaucher disease (GD), the lysosomes accumulate glucosylceramide because of low β-glucocerebrosidase (β-GC) activity that causes lysosome enlargement/dysfunction. We hypothesize that improving the trafficking of mutant β-GC to lysosomes may improve the lysosome function in GD. RNAi screen using high throughput based β-GC activity assay followed by reporter trafficking assay utilizing β-GC-mCherry led to the identification of nine potential phosphatases. Depletion of these phosphatases in HeLa cells enhanced the β-GC activity by increasing the folding and trafficking of Gaucher mutants to the lysosomes. Consistently, the lysosomes in primary fibroblasts from GD patients restored their β-GC activity upon the knockdown of these phosphatases. Thus, these studies provide evidence that altering phosphatome activity is an alternative therapeutic strategy to restore the lysosome function in GD.
Collapse
Affiliation(s)
- Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dhwani Radhakrishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Darpan Kumari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Jong T, Gehrlein A, Sidransky E, Jagasia R, Chen Y. Characterization of Novel Human β-glucocerebrosidase Antibodies for Parkinson Disease Research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557851. [PMID: 37886493 PMCID: PMC10602026 DOI: 10.1101/2023.09.14.557851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
BACKGROUND Mutations in GBA1, which encodes the lysosome enzyme β-glucocerebrosidase (also referred to as acid β-glucosidase or GCase), are the most common genetic risk factor for Parkinson disease (PD) and dementia with Lewy bodies (DLB). Evidence also suggests that loss of GCase activity is implicated in PD without GBA1 mutations. Consequently, therapies targeting GCase are actively being pursued as potential strategies to modify the progression of PD and related synucleinopathies. Despite this significant interest in GCase as a therapeutic target, the lack of well-characterized GCase antibodies continues to impede progress in the development of GCase-targeted therapies. OBJECTIVE This study aims to independently evaluate human GCase (hGCase) antibodies to provide recommendations for western blot, immunofluorescence, immunoprecipitation, and AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay) assays. METHODS Two mouse monoclonal antibodies, hGCase-1/17 and hGCase-1/23, were raised against hGCase using imiglucerase, the recombinant enzyme used to treat patients, as the antigen. These novel antibodies, alongside commonly used antibodies in the field, underwent evaluation in a variety of assays. RESULTS The characterization of hGCase-1/17 and hGCase-1/23 using genetic models including GBA1 loss-of-function human neuroglioma H4 line and neurons differentiated from human embryonic stem cells (hESCs) revealed their remarkable specificity and potency in immunofluorescence and immunoprecipitation assays. Furthermore, a hGCase AlphaLISA assay with excellent sensitivity, a broad dynamic range, and suitability for high throughput applications was developed using hGCase-1/17 and hGCase-1/23, which enabled a sandwich assay configuration. CONCLUSIONS The hGCase immunofluorescence, immunoprecipitation, and AlphaLISA assays utilizing hGCase-1/17 and hGCase-1/23 will not only facilitate improved investigations of hGCase biology, but can also serve as tools to assess the distribution and effectiveness of GCase-targeted therapies for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Tiffany Jong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandra Gehrlein
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Patel S, Bhatt AM, Bhansali P, Setty SRG. Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress. Traffic 2023; 24:254-269. [PMID: 37198709 DOI: 10.1111/tra.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.
Collapse
Affiliation(s)
- Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Lysosomal functions and dysfunctions: Molecular and cellular mechanisms underlying Gaucher disease and its association with Parkinson disease. Adv Drug Deliv Rev 2022; 187:114402. [DOI: 10.1016/j.addr.2022.114402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023]
|
9
|
Glucocerebrosidase-associated Parkinson disease: Pathogenic mechanisms and potential drug treatments. Neurobiol Dis 2022; 166:105663. [DOI: 10.1016/j.nbd.2022.105663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
|
10
|
van Smeden J, Al-Khakany H, Wang Y, Visscher D, Stephens N, Absalah S, Overkleeft HS, Aerts JMFG, Hovnanian A, Bouwstra JA. Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities. J Lipid Res 2020; 61:859-869. [PMID: 32265319 PMCID: PMC7269766 DOI: 10.1194/jlr.ra120000639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine protease activity in NTS correlates with changes in the stratum corneum (SC) ceramides, which are crucial components of the skin barrier. We examined two key enzymes involved in epidermal ceramide biosynthesis, β-glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ expression levels and activities of GBA and ASM between NTS patients and controls and correlated the expression and activities with i) SC ceramide profiles, ii) in situ serine protease activity, and iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They also displayed a stronger increase in SC ceramides processed via ASM. We conclude that changes in the localization of active GBA and ASM correlate with i) altered SC ceramide composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS.
Collapse
Affiliation(s)
- Jeroen van Smeden
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands
| | - Hanin Al-Khakany
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yichen Wang
- INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Dani Visscher
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Nicole Stephens
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Samira Absalah
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alain Hovnanian
- INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France; Department of Genetics Necker-Enfants Malades Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands. mailto:
| |
Collapse
|
11
|
Toffoli M, Smith L, Schapira AHV. The biochemical basis of interactions between Glucocerebrosidase and alpha-synuclein in GBA1 mutation carriers. J Neurochem 2020; 154:11-24. [PMID: 31965564 DOI: 10.1111/jnc.14968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
The discovery of genes involved in familial as well as sporadic forms of Parkinson disease (PD) constitutes an important milestone in understanding this disorder's pathophysiology and potential treatment. Among these genes, GBA1 is one of the most common and well-studied, but it is still unclear how mutations in GBA1 translate into an increased risk for developing PD. In this review, we provide an overview of the biochemical and structural relationship between GBA1 and PD to help understand the recent advances in the development of PD therapies intended to target this pathway.
Collapse
Affiliation(s)
- Marco Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Laura Smith
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
12
|
Vinje T, Laerdahl JK, Bjune K, Leren TP, Strøm TB. Characterization of the mechanisms by which missense mutations in the lysosomal acid lipase gene disrupt enzymatic activity. Hum Mol Genet 2019; 28:3043-3052. [DOI: 10.1093/hmg/ddz114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Hydrolysis of cholesteryl esters and triglycerides in the lysosome is performed by lysosomal acid lipase (LAL). In this study we have investigated how 23 previously identified missense mutations in the LAL gene (LIPA) (OMIM# 613497) affect the structure of the protein and thereby disrupt LAL activity. Moreover, we have performed transfection studies to study intracellular transport of the 23 mutants. Our main finding was that most pathogenic mutations result in defective enzyme activity by affecting the normal folding of LAL. Whereas, most of the mutations leading to reduced stability of the cap domain did not alter intracellular transport, nearly all mutations that affect the stability of the core domain gave rise to a protein that was not efficiently transported from the endoplasmic reticulum (ER) to the Golgi apparatus. As a consequence, ER stress was generated that is assumed to result in ER-associated degradation of the mutant proteins. The two LAL mutants Q85K and S289C were selected to study whether secretion-defective mutants could be rescued from ER-associated degradation by the use of chemical chaperones. Of the five chemical chaperones tested, only the proteasomal inhibitor MG132 markedly increased the amount of mutant LAL secreted. However, essentially no increased enzymatic activity was observed in the media. These data indicate that the use of chemical chaperones to promote the exit of folding-defective LAL mutants from the ER, may not have a great therapeutic potential as long as these mutants appear to remain enzymatically inactive.
Collapse
Affiliation(s)
- Terje Vinje
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- ELIXIR Norway, Department of Informatics, University of Oslo, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Validation of anti-glucocerebrosidase antibodies for western blot analysis on protein lysates of murine and human cells. Biochem J 2019; 476:261-274. [DOI: 10.1042/bcj20180708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/01/2023]
Abstract
Abstract
Gaucher disease (GD) is a rare lysosomal storage disorder caused by mutations in the GBA1 gene, encoding the lysosome-resident glucocerebrosidase enzyme involved in the hydrolysis of glucosylceramide. The discovery of an association between mutations in GBA1 and the development of synucleinopathies, including Parkinson disease, has directed attention to glucocerebrosidase as a potential therapeutic target for different synucleinopathies. These findings initiated an exponential growth in research and publications regarding the glucocerebrosidase enzyme. The use of various commercial and custom-made glucocerebrosidase antibodies has been reported, but standardized in-depth validation is still not available for many of these antibodies. This work details the evaluation of several previously reported glucocerebrosidase antibodies for western blot analysis, tested on protein lysates of murine gba+/+ and gba−/− immortalized neurons and primary human wild-type and type 2 GD fibroblasts.
Collapse
|
14
|
Davidson BA, Hassan S, Garcia EJ, Tayebi N, Sidransky E. Exploring genetic modifiers of Gaucher disease: The next horizon. Hum Mutat 2018; 39:1739-1751. [PMID: 30098107 PMCID: PMC6240360 DOI: 10.1002/humu.23611] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/26/2022]
Abstract
Gaucher disease is an autosomal recessive lysosomal storage disorder resulting from mutations in the gene GBA1 that lead to a deficiency in the enzyme glucocerebrosidase. Accumulation of the enzyme's substrates, glucosylceramide and glucosylsphingosine, results in symptoms ranging from skeletal and visceral involvement to neurological manifestations. Nonetheless, there is significant variability in clinical presentations amongst patients, with limited correlation between genotype and phenotype. Contributing to this clinical variation are genetic modifiers that influence the phenotypic outcome of the disorder. In this review, we explore the role of genetic modifiers in Mendelian disorders and describe methods to facilitate their discovery. In addition, we provide examples of candidate modifiers of Gaucher disease, explore their relevance in the development of potential therapeutics, and discuss the impact of GBA1 and modifying mutations on other more common diseases like Parkinson disease. Identifying these important modulators of Gaucher phenotype may ultimately unravel the complex relationship between genotype and phenotype and lead to improved counseling and treatments.
Collapse
Affiliation(s)
- Brad A. Davidson
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Shahzeb Hassan
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Eric Joshua Garcia
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Nahid Tayebi
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
15
|
Kim D, Hwang H, Choi S, Kwon SH, Lee S, Park JH, Kim S, Ko HS. D409H GBA1 mutation accelerates the progression of pathology in A53T α-synuclein transgenic mouse model. Acta Neuropathol Commun 2018; 6:32. [PMID: 29703245 PMCID: PMC5923019 DOI: 10.1186/s40478-018-0538-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022] Open
Abstract
Heterozygous mutations in glucocerebrosidase 1 (GBA1) are a major genetic risk factor for Parkinson’s disease and Dementia with Lewy bodies. Mutations in GBA1 leads to GBA1 enzyme deficiency, and GBA1-associated parkinsonism has an earlier age of onset and more progressive parkinsonism. To investigate a potential influence of GBA1 deficiency caused by mutations in GBA1 on the disease progression of PD, GBA1 mice carrying D409H knock-in mutation were crossbred with the human A53T (hA53T) α-synuclein transgenic mice. Here, we show that GBA1 enzyme activity plays a significant role in the hA53T α-synuclein induced α-synucleinopathy. The expression of D409H GBA1 markedly shortens the lifespan of hA53T α-synuclein transgenic mice. Moreover, D409H GBA1 expression exacerbates the formation of insoluble aggregates of α-synuclein, glial activation, neuronal degeneration, and motor abnormalities in the hA53T α-synuclein transgenic mice. Interestingly, the expression of D409H GBA1 results in the loss of dopaminergic neurons in the substantia nigra pars compacta of hA53T transgenic mice. Taken together, these results indicate that GBA1 deficiency due to D409H mutation affects the disease onset and course in hA53T α-synuclein transgenic mice. Therefore, strategies aimed to maintain GBA1 enzyme activity could be employed to develop an effective novel therapy for GBA1 linked-PD and related α-synucleinopathies.
Collapse
|
16
|
Chen Y, Sud N, Hettinghouse A, Liu CJ. Molecular regulations and therapeutic targets of Gaucher disease. Cytokine Growth Factor Rev 2018; 41:65-74. [PMID: 29699937 DOI: 10.1016/j.cytogfr.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease caused by deficiency of beta-glucocerebrosidase (GCase) resulting in lysosomal accumulation of its glycolipid substrate glucosylceramide. The activity of GCase depends on many factors such as proper folding and lysosomal localization, which are influenced by mutations in GCase encoding gene, and regulated by various GCase-binding partners including Saposin C, progranulin and heat shock proteins. In addition, proinflammatory molecules also contribute to pathogenicity of GD. In this review, we summarize the molecules that are known to be important for the pathogenesis of GD, particularly those modulating GCase lysosomal appearance and activity. In addition, small molecules that inhibit inflammatory mediators, calcium ion channels and other factors associated with GD are also described. Discovery and characterization of novel molecules that impact GD are not only important for deciphering the pathogenic mechanisms of the disease, but they also provide new targets for drug development to treat the disease.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neetu Sud
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
17
|
Subramaniyan V, Mathiyalagan S, Praveenkumar A, Srinivasan P, Palani M, Ravichandran V, Nallasamy P. Molecular docking and ADME properties of bioactive molecules against human acid-beta-glucosidase enzyme, cause of Gaucher's disease. In Silico Pharmacol 2018; 6:3. [PMID: 30607316 DOI: 10.1007/s40203-018-0039-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Gaucher disease is one of the common lysosomal storage diseases widespread all over the world. It is divided into three types such as type 1 (non-neuropathic), type 2 (acute infantile neuropathic) and type 3 (chronic neuropathic). This is caused by the deficiency of glucocerebrosidases from the midpoint nervous system. Recent years, computational tools are very important and play a vital role in identifying new leads for disease treatment. This study was performed to screen the effective bioactive molecules against glucocerebrosidases. In this study, Molecular docking and ADME profiles of bioactive molecules were found with the help of Schrödinger software. Results showed that, (-)-epicatechin are having best docking score and good binding affinity than other ligands. Hence, we concluded that the (-)-epicatechin may be a better drug candidate for gaucher disease which can be explored further.
Collapse
Affiliation(s)
- Vijayakumar Subramaniyan
- 1Computational Phytochemistry Lab, P.G. and Research Department of Botany and Microbiology, A.V.V.M. Sri Pushpam College (Autonomous), Poondi, Thanjavur (Dt), Tamil Nadu 613 503 India
| | - Sathiya Mathiyalagan
- 1Computational Phytochemistry Lab, P.G. and Research Department of Botany and Microbiology, A.V.V.M. Sri Pushpam College (Autonomous), Poondi, Thanjavur (Dt), Tamil Nadu 613 503 India.,2State Key Laboratory of Microbial Technology, Helmholtz Institute of Biotechnology, School of Life Science, Shandong University, Jinan, People's Republic of China.,Department of Zoology, Arulmigu Palani Andavar College of Arts and Culture, Palani, Tamil Nadu India
| | - Arulmozhi Praveenkumar
- 1Computational Phytochemistry Lab, P.G. and Research Department of Botany and Microbiology, A.V.V.M. Sri Pushpam College (Autonomous), Poondi, Thanjavur (Dt), Tamil Nadu 613 503 India.,2State Key Laboratory of Microbial Technology, Helmholtz Institute of Biotechnology, School of Life Science, Shandong University, Jinan, People's Republic of China.,Department of Zoology, Arulmigu Palani Andavar College of Arts and Culture, Palani, Tamil Nadu India
| | - Prabhu Srinivasan
- 1Computational Phytochemistry Lab, P.G. and Research Department of Botany and Microbiology, A.V.V.M. Sri Pushpam College (Autonomous), Poondi, Thanjavur (Dt), Tamil Nadu 613 503 India
| | - Manogar Palani
- 1Computational Phytochemistry Lab, P.G. and Research Department of Botany and Microbiology, A.V.V.M. Sri Pushpam College (Autonomous), Poondi, Thanjavur (Dt), Tamil Nadu 613 503 India
| | - Vinothkannan Ravichandran
- 2State Key Laboratory of Microbial Technology, Helmholtz Institute of Biotechnology, School of Life Science, Shandong University, Jinan, People's Republic of China
| | - Parameswari Nallasamy
- Department of Zoology, Arulmigu Palani Andavar College of Arts and Culture, Palani, Tamil Nadu India
| |
Collapse
|
18
|
Gegg ME, Schapira AHV. The role of glucocerebrosidase in Parkinson disease pathogenesis. FEBS J 2018; 285:3591-3603. [DOI: 10.1111/febs.14393] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew E. Gegg
- Department of Clinical Neuroscience; Institute of Neurology; University College London; UK
| | - Anthony H. V. Schapira
- Department of Clinical Neuroscience; Institute of Neurology; University College London; UK
| |
Collapse
|
19
|
Collins LM, Drouin-Ouellet J, Kuan WL, Cox T, Barker RA. Dermal fibroblasts from patients with Parkinson's disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations. F1000Res 2017; 6:1751. [PMID: 29527290 PMCID: PMC5820594 DOI: 10.12688/f1000research.12090.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 01/29/2023] Open
Abstract
Background: Recently, the development of Parkinson's disease (PD) has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA) mutations. Methods: We investigated PD and Gaucher Disease (GD) patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase) activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.
Collapse
Affiliation(s)
- Lucy M Collins
- Cambridge Stem Cell Institute, University of Cambridge , Cambridge , UK
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| | - Janelle Drouin-Ouellet
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Wei-Li Kuan
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| | - Timothy Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Cambridge Stem Cell Institute, University of Cambridge , Cambridge , UK
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| |
Collapse
|
20
|
Collins LM, Drouin-Ouellet J, Kuan WL, Cox T, Barker RA. Dermal fibroblasts from patients with Parkinson's disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations. F1000Res 2017; 6:1751. [PMID: 29527290 PMCID: PMC5820594 DOI: 10.12688/f1000research.12090.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 07/28/2023] Open
Abstract
Background: Recently, the development of Parkinson's disease (PD) has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA) mutations. Methods: We investigated PD and Gaucher Disease (GD) patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase) activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.
Collapse
Affiliation(s)
- Lucy M Collins
- Cambridge Stem Cell Institute, University of Cambridge , Cambridge , UK
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| | - Janelle Drouin-Ouellet
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Wei-Li Kuan
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| | - Timothy Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Cambridge Stem Cell Institute, University of Cambridge , Cambridge , UK
- John Van Geest Centre for Brain Repair, University of Cambridge , Cambridge , UK
| |
Collapse
|
21
|
Horowitz M, Elstein D, Zimran A, Goker-Alpan O. New Directions in Gaucher Disease. Hum Mutat 2016; 37:1121-1136. [DOI: 10.1002/humu.23056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Mia Horowitz
- Department of Cell Research and Immunology, Faculty of Life Sciences; Tel Aviv University; Ramat Aviv Israel
| | - Deborah Elstein
- Gaucher Clinic; Shaare Zedek Medical Center; Jerusalem Israel
| | - Ari Zimran
- Gaucher Clinic; Shaare Zedek Medical Center; Jerusalem Israel
| | | |
Collapse
|
22
|
Sanchez-Martinez A, Beavan M, Gegg ME, Chau KY, Whitworth AJ, Schapira AHV. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep 2016; 6:31380. [PMID: 27539639 PMCID: PMC4990939 DOI: 10.1038/srep31380] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
GBA gene mutations are the greatest cause of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase) but the mechanisms by which loss of GCase contributes to PD remain unclear. Inhibition of autophagy and the generation of endoplasmic reticulum (ER) stress are both implicated. Mutant GCase can unfold in the ER and be degraded via the unfolded protein response, activating ER stress and reducing lysosomal GCase. Small molecule chaperones that cross the blood brain barrier help mutant GCase refold and traffic correctly to lysosomes are putative treatments for PD. We treated fibroblast cells from PD patients with heterozygous GBA mutations and Drosophila expressing human wild-type, N370S and L444P GBA with the molecular chaperones ambroxol and isofagomine. Both chaperones increased GCase levels and activity, but also GBA mRNA, in control and mutant GBA fibroblasts. Expression of mutated GBA in Drosophila resulted in dopaminergic neuronal loss, a progressive locomotor defect, abnormal aggregates in the ER and increased levels of the ER stress reporter Xbp1-EGFP. Treatment with both chaperones lowered ER stress and prevented the loss of motor function, providing proof of principle that small molecule chaperones can reverse mutant GBA-mediated ER stress in vivo and might prove effective for treating PD.
Collapse
Affiliation(s)
- Alvaro Sanchez-Martinez
- Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Michelle Beavan
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Matthew E Gegg
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Kai-Yin Chau
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK
| | - Alexander J Whitworth
- Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Anthony H V Schapira
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London NW3 2PF, UK
| |
Collapse
|
23
|
Gao P, Yang C, Nesvick CL, Feldman MJ, Sizdahkhani S, Liu H, Chu H, Yang F, Tang L, Tian J, Zhao S, Li G, Heiss JD, Liu Y, Zhuang Z, Xu G. Hypotaurine evokes a malignant phenotype in glioma through aberrant hypoxic signaling. Oncotarget 2016; 7:15200-15214. [PMID: 26934654 PMCID: PMC4924780 DOI: 10.18632/oncotarget.7710] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/31/2016] [Indexed: 12/29/2022] Open
Abstract
Metabolomics has shown significant potential in identifying small molecules specific to tumor phenotypes. In this study we analyzed resected tissue metabolites using capillary electrophoresis-mass spectrometry and found that tissue hypotaurine levels strongly and positively correlated with glioma grade. In vitro studies were conducted to show that hypotaurine activates hypoxia signaling through the competitive inhibition of prolyl hydroxylase domain-2. This leads to the activation of hypoxia signaling as well as to the enhancement of glioma cell proliferation and invasion. In contrast, taurine, the oxidation metabolite of hypotaurine, decreased intracellular hypotaurine and resulted in glioma cell growth arrest. Lastly, a glioblastoma xenograft mice model was supplemented with taurine feed and exhibited impaired tumor growth. Taken together, these findings suggest that hypotaurine is an aberrantly produced oncometabolite, mediating tumor molecular pathophysiology and progression. The hypotaurine metabolic pathway may provide a potentially new target for glioblastoma diagnosis and therapy.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Clinical Laboratory, Dalian Sixth People's Hospital, Dalian, China
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Cody L. Nesvick
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Feldman
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Saman Sizdahkhani
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Huailei Liu
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Fengxu Yang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Ling Tang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jing Tian
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Shiguang Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
24
|
Choi S, Kim D, Kam TI, Yun S, Kim S, Park H, Hwang H, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM, Ko HS. Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity. PLoS One 2015; 10:e0143854. [PMID: 26629917 PMCID: PMC4668030 DOI: 10.1371/journal.pone.0143854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/10/2015] [Indexed: 01/31/2023] Open
Abstract
Glucocerebrosidase (GCase) functions as a lysosomal enzyme and its mutations are known to be related to many neurodegenerative diseases, including Gaucher’s disease (GD), Parkinson’s disease (PD), and Dementia with Lewy Bodies (DLB). However, there is little information about the role of GCase in the pathogenesis of Alzheimer’s disease (AD). Here we demonstrate that GCase protein levels and enzyme activity are significantly decreased in sporadic AD. Moreover, Aβ1–42 oligomer treatment results in neuronal cell death that is concomitant with decreased GCase protein levels and enzyme activity, as well as impairment in lysosomal biogenesis and acidification. Importantly, overexpression of GCase promotes the lysosomal degradation of Aβ1–42 oligomers, restores the lysosomal impairment, and protects against the toxicity in neurons treated with Aβ1–42 oligomers. Our findings indicate that a deficiency of GCase could be involved in progression of AD pathology and suggest that augmentation of GCase activity may be a potential therapeutic option for the treatment of AD.
Collapse
Affiliation(s)
- Seulah Choi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, United States of America
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, United States of America
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Seungpil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, United States of America
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Heehong Hwang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Juan C. Troncoso
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, United States of America
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, United States of America
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
Pharmacological chaperone therapy is an emerging approach to treat lysosomal storage diseases. Small-molecule chaperones interact with mutant enzymes, favor their correct conformation and enhance their stability. This approach shows significant advantages when compared with existing therapies, particularly in terms of the bioavailability of drugs, oral administration and positive impact on the quality of patients' lives. On the other hand, future research in this field must confront important challenges. The identification of novel chaperones is indispensable to expanding the number of patients amenable to this treatment and to optimize therapeutic efficacy. It is important to develop new allosteric drugs, to address the risk of inhibiting target enzymes. Future research must also be directed towards the exploitation of synergies between chaperone treatment and other therapeutic approaches.
Collapse
|
26
|
Mutant glucocerebrosidase in Gaucher disease recruits Hsp27 to the Hsp90 chaperone complex for proteasomal degradation. Proc Natl Acad Sci U S A 2015; 112:1137-42. [PMID: 25583479 DOI: 10.1073/pnas.1424288112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gaucher disease is caused by mutations of the GBA1 gene, which encodes the lysosomal anchored gluococerebrosidase (GCase). GBA1 mutations commonly result in protein misfolding, abnormal chaperone recognition, and premature degradation, but are less likely to affect catalytic activity. In the present study, we demonstrate that the Hsp90/HOP/Cdc37 complex recruits Hsp27 after recognition of GCase mutants with subsequent targeting of GCase mutant peptides to degradation mechanisms such as VCP and the 26S proteasome. Inhibition of Hsp27 not only increased the quantity of enzyme but also enhanced GCase activity in fibroblasts derived from patients with Gaucher disease. These findings provide insight into a possible therapeutic strategy for protein misfolding diseases by correcting chaperone binding and altering subsequent downstream patterns of protein degradation.
Collapse
|
27
|
Segatori L. Impairment of homeostasis in lysosomal storage disorders. IUBMB Life 2014; 66:472-7. [PMID: 25044960 DOI: 10.1002/iub.1288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/23/2014] [Indexed: 12/27/2022]
Abstract
Lysosomal storage disorders (LSDs) are inherited metabolic diseases caused by deficiencies in lysosomal proteins, which result in accumulation of undegraded metabolites and disruption of lysosomal proteostasis. Despite significant progress in the molecular genetics and biochemistry underlying the cellular pathogenesis of LSDs, the mechanisms that link accumulation of storage material to development and progression of these diseases are still unclear. At the crossroad of degradative pathways, lysosomes play a fundamental role in the maintenance of cellular homeostasis. Through a series of examples, this review illustrates how defects in lysosomal biogenesis and function impact a number of cellular pathways that are involved in the pathogenic cascade.
Collapse
Affiliation(s)
- Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
28
|
Bendikov-Bar I, Rapaport D, Larisch S, Horowitz M. Parkin-mediated ubiquitination of mutant glucocerebrosidase leads to competition with its substrates PARIS and ARTS. Orphanet J Rare Dis 2014; 9:86. [PMID: 24935484 PMCID: PMC4074407 DOI: 10.1186/1750-1172-9-86] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/28/2014] [Indexed: 01/07/2023] Open
Abstract
Background Parkinson’s disease (PD) is a movement neurodegenerative disorder characterized by death of dopaminergic neurons in the substantia nigra pars compacta of the brain that leads to movement impairments including bradykinesia, resting tremor, postural instability and rigidity. Mutations in several genes have been associated with familial PD, such as parkin, pink, DJ-1, LRKK2 and α-synuclein. Lately, mutations in the GBA gene were recognized as a major cause for the development of PD. Mutations in the GBA gene, which encodes for lysosomal β-glucocerebrosidase (GCase), lead to Gaucher disease (GD), an autosomal recessive sphingolipidosis characterized by accumulation of glucosylceramide, mainly in monocyte-derived cells. It is a heterogeneous disease, with Type 1 patients that do not present any primary neurological signs, and Type 2 or Type 3 patients who suffer from a neurological disease. The propensity of type 1 GD patients and carriers of GD mutations to develop PD is significantly higher than that of the non-GD population. We have shown in the past that parkin and mutant GCase, expressed in heterologous systems, interact with each other, and that normal but not mutant parkin mediates K48-dependent proteasomal degradation of mutant GCase variants. Methods We tested possible competition between mutant GCase and PARIS or ARTS on the E3 ubiquitin ligase parkin, using coimmunoprecipitation assays and quantitative real-time PCR. Results We show that endogenous mutant GCase variants associate with parkin and undergo parkin-dependent degradation. Mutant GCase competes with the known parkin substrates PARIS and ARTS, whose accumulation leads to apoptosis. Dopaminergic cells expressing mutant GCase are more susceptible to apoptotic stimuli than dopaminergic cells expressing normal GCase, present increased cleavage of caspase 3 and caspase 9 levels and undergo cell death. Conclusions Our results imply that presence of mutant GCase leads to accumulation of parkin substrates like PARIS and ARTS, which may cause apoptotic death of cells.
Collapse
Affiliation(s)
| | | | | | - Mia Horowitz
- Department of Cell Research and Immunology, Life Sciences, Tel Aviv University, Levanon St, Ramat Aviv 69978, Israel.
| |
Collapse
|
29
|
Siebert M, Sidransky E, Westbroek W. Glucocerebrosidase is shaking up the synucleinopathies. ACTA ACUST UNITED AC 2014; 137:1304-22. [PMID: 24531622 DOI: 10.1093/brain/awu002] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The lysosomal enzyme glucocerebrosidase, encoded by the glucocerebrosidase gene, is involved in the breakdown of glucocerebroside into glucose and ceramide. Lysosomal build-up of the substrate glucocerebroside occurs in cells of the reticulo-endothelial system in patients with Gaucher disease, a rare lysosomal storage disorder caused by the recessively inherited deficiency of glucocerebrosidase. Gaucher disease has a broad clinical phenotypic spectrum, divided into non-neuronopathic and neuronopathic forms. Like many monogenic diseases, the correlation between clinical manifestations and molecular genotype is not straightforward. There is now a well-established clinical association between mutations in the glucocerebrosidase gene and the development of more prevalent multifactorial disorders including Parkinson's disease and other synucleinopathies. In this review we discuss recent studies advancing our understanding of the cellular relationship between glucocerebrosidase and α-synuclein, the potential impact of established and emerging therapeutics for Gaucher disease for the treatment of the synucleinopathies, and the role of lysosomal pathways in the pathogenesis of these neurodegenerative disorders.
Collapse
Affiliation(s)
- Marina Siebert
- 1 Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35 Room 1A213, 35 Convent Drive, MSC 3708, Bethesda, MD 20892-3708, USA
| | | | | |
Collapse
|
30
|
Celastrol increases glucocerebrosidase activity in Gaucher disease by modulating molecular chaperones. Proc Natl Acad Sci U S A 2013; 111:249-54. [PMID: 24351928 DOI: 10.1073/pnas.1321341111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gaucher disease is caused by mutations in the glucosidase, beta, acid gene that encodes glucocerebrosidase (GCase). Glucosidase, beta, acid mutations often cause protein misfolding and quantitative loss of GCase. In the present study, we found that celastrol, an herb derivative with known anticancer, anti-inflammatory, and antioxidant activity, significantly increased the quantity and catalytic activity of GCase. Celastrol interfered with the establishment of the heat-shock protein 90/Hsp90 cochaperone Cdc37/Hsp90-Hsp70-organizing protein chaperone complex with mutant GCase and reduced heat-shock protein 90-associated protein degradation. In addition, celastrol modulated the expression of molecular chaperones. Bcl2-associated athanogene 3 and heat shock 70kDa proteins 1A and 1B were significantly increased by celastrol. Furthermore, BAG family molecular chaperone regulator 3 assisted protein folding and maturation of mutant GCase. These findings provide insight into a therapeutic strategy for Gaucher disease and other human disorders that are associated with protein misfolding.
Collapse
|
31
|
Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK, Hwa Liu S. Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One 2013; 8:e79814. [PMID: 24223196 PMCID: PMC3819246 DOI: 10.1371/journal.pone.0079814] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/04/2013] [Indexed: 02/04/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of renal I/R injury is still not fully clear. Here, we investigate the role of AMP-activated protein kinase (AMPK)-evoked autophagy in the renal proximal tubular cell death in an in vitro I/R injury model. To mimic in vivo renal I/R injury, LLC-PK1 cells, a renal tubular cell line derived from pig kidney, were treated with antimycin A and 2-deoxyglucose to mimic ischemia injury followed by reperfusion with growth medium. This I/R injury model markedly induced apoptosis and autophagy in LLC-PK1 cells in a time-dependent manner. Autophagy inhibitor 3-methyladenine (3MA) significantly enhanced I/R injury-induced apoptosis. I/R could also up-regulate the phosphorylation of AMPK and down-regulate the phosphorylation of mammalian target of rapamycin (mTOR). Cells transfected with small hairpin RNA (shRNA) for AMPK significantly increased the phosphorylation of mTOR as well as decreased the induction of autophagy followed by enhancing cell apoptosis during I/R. Moreover, the mTOR inhibitor RAD001 significantly enhanced autophagy and attenuated cell apoptosis during I/R. Taken together, these findings suggest that autophagy induction protects renal tubular cell injury via an AMPK-regulated mTOR pathway in an in vitro I/R injury model. AMPK-evoked autophagy may be as a potential target for therapeutic intervention in I/R renal injury.
Collapse
Affiliation(s)
- Li-Ting Wang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bo-Lin Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Departments of Integrated Diagnostics & Therapeutics and Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (SHL); (CKC)
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail: (SHL); (CKC)
| |
Collapse
|
32
|
Abstract
Gaucher disease is a progressive lysosomal storage disorder caused by a deficiency in the activity of β-glucocerebrosidase and is characterized by the accumulation of the glycosphingolipid glucosylceramide in the lysosomes of macrophages that leads to dysfunction in multiple organ system. An emerging strategy for the treatment of Gaucher disease is pharmacological chaperone therapy, based on the use of β-glucocerebrosidase inhibitors that are capable of enhancing residual hydrolytic activity at subinhibitory concentrations. In this article, the most common lysosomal storage disorder, Gaucher disease, is introduced and the current therapeutic strategies based on the use of enzyme inhibitors to ameliorate this disease are discussed, with a focus on the efforts being made toward finding and optimizing novel molecules as pharmacological chaperones for Gaucher disease that offer the promise to remedy this malady.
Collapse
|
33
|
Mistry PK, Taddei T, vom Dahl S, Rosenbloom BE. Gaucher disease and malignancy: a model for cancer pathogenesis in an inborn error of metabolism. Crit Rev Oncog 2013; 18:235-46. [PMID: 23510066 DOI: 10.1615/critrevoncog.2013006145] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical observations spanning almost half a century have demonstrated a consistent association of type 1 Gaucher disease (GD1) and cancers. However, the cellular and molecular bases of the association are not understood. Gaucher disease (GD) is a lysosomal storage disorder due to an inherited deficiency of acid β-glucosidase that underlies the accumulation of glucosylceramide in lysosomes of mononuclear phagocytes and immune dysregulation. The overall cancer risk is markedly increased in GD, and the determinants of malignancy in a subset of patients with GD1 are not known. The association of GD and cancer is most striking for hematological malignancies, with the risk for multiple myeloma estimated at almost 37-fold compared to the general population; some studies have also suggested increased cancer risk for non-hematological malignancies. There is no association of overall severity of GD to risk of cancer, although there is an increased prevalence of splenectomy among patients exhibiting the GD/cancer phenotype. Moreover, there appears to be an increased incidence of multiple consecutive cancers in individual patients. Several factors could contribute to cancer development in GD, including polarization of macrophages to the alternatively activated phenotype, chronic inflammation, chronic B-cell stimulation, splenectomy, hyperferritinemia, lysosomal dysfunction, and endoplasmic reticulum stress. Recent studies have highlighted T-cell dysfunction and modifier genes contributing to an increased cancer risk in GD. Macrophage-targeted enzyme replacement therapy (ERT) reverses systemic features of GD1; while cancer risk appears to be reduced in the era of ERT, it is not known whether this is a direct effect of therapy. Delineation of the mechanisms underlying the increased cancer risk in GD will provide additional novel insights into the role of lipids and macrophages in cancer pathogenesis and, moreover, have the potential to reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Pramod K Mistry
- Pediatric Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06520-8064, USA.
| | | | | | | |
Collapse
|
34
|
Brady RO, Yang C, Zhuang Z. An innovative approach to the treatment of Gaucher disease and possibly other metabolic disorders of the brain. J Inherit Metab Dis 2013; 36:451-4. [PMID: 22814681 PMCID: PMC4748852 DOI: 10.1007/s10545-012-9515-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/29/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
The extraordinary benefit of enzyme replacement therapy (ERT) on the systemic manifestations of Gaucher disease was demonstrated in 1991. Since that time, investigators have devoted substantial effort to improve the delivery of enzymes to the brain because many hereditary metabolic disorders are characterized by extensive central nervous system involvement. Because the required supplemental enzyme is too large to cross the blood-brain barrier (BBB), ERT for central nervous system involvement was out of the question at that time. Several innovative strategies that have been reported to overcome this impediment are discussed. Recent investigations have provided additional insight concerning the pathogenesis of enzyme deficiency disorders. For many years it was presumed that alterations of the amino acid sequence of enzymes such as glucocerebrosidase reduced the catalytic activity of the enzyme. It has recently been shown that the decrease of glucocerebrosidase activity was the result of a quantitative loss of the amount of this enzyme. Significant increases of its activity were obtained with small molecule inhibitors of histone deacetylase that cross the BBB. The effect of such materials on neuronopathic Gaucher disease and other CNS metabolic disorders is discussed.
Collapse
Affiliation(s)
- Roscoe O. Brady
- Scientist Emeritus, National Institutes of Health, Building 10 Room 3D03, Bethesda, MD 20892-1260, USA,
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institutes of Health, Building 10 Room 7N246, Bethesda, MD 20892-1414, USA,
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institutes of Health, Building 10 Room 7N246, Bethesda, MD 20892-1414, USA,
| |
Collapse
|
35
|
Alfonso P, Andreu V, Pino-Angeles A, Moya-García AA, García-Moreno MI, Rodríguez-Rey JC, Sánchez-Jiménez F, Pocoví M, Ortiz Mellet C, García Fernández JM, Giraldo P. Bicyclic derivatives of L-idonojirimycin as pharmacological chaperones for neuronopathic forms of Gaucher disease. Chembiochem 2013; 14:943-9. [PMID: 23606264 DOI: 10.1002/cbic.201200708] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Indexed: 12/12/2022]
Abstract
New human β-glucocerebrosidase (GCase) ligands with rigid 1,6-anhydro-β-L-idonojirimycin cores have been designed with the aid of molecular modeling. Efficient pharmacological chaperones for the L444P (trafficking-incompetent) mutant GCase enzyme associated with type 2 and 3 Gaucher disease (GD) were identified.
Collapse
Affiliation(s)
- Pilar Alfonso
- Biomedical Network Research Center on Rare Diseases (CIBERER), ISCIII, Alvaro de Bazán 10 bajo, 46010 Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, Segatori L. TFEB regulates lysosomal proteostasis. Hum Mol Genet 2013; 22:1994-2009. [PMID: 23393155 DOI: 10.1093/hmg/ddt052] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay-Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs.
Collapse
Affiliation(s)
- Wensi Song
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones. Proc Natl Acad Sci U S A 2012; 110:966-71. [PMID: 23277556 DOI: 10.1073/pnas.1221046110] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gaucher disease is caused by mutations of the GBA gene that encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA mutations often result in protein misfolding and premature degradation, but usually exert less effect on catalytic activity. In this study, we identified the molecular mechanism by which histone deacetylase inhibitors increase the quantity and activity of GCase. Specifically, these inhibitors limit the deacetylation of heat shock protein 90, resulting in less recognition of the mutant peptide and GCase degradation. These findings provide insight into a possible therapeutic strategy for Gaucher disease and other genetic disorders by modifying molecular chaperone and protein degradation pathways.
Collapse
|
38
|
Maor G, Filocamo M, Horowitz M. ITCH regulates degradation of mutant glucocerebrosidase: implications to Gaucher disease. Hum Mol Genet 2012; 22:1316-27. [PMID: 23255161 DOI: 10.1093/hmg/dds535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inability to properly degrade unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and unfolded protein response. This is particularly important in cases of diseases in which the mutant proteins undergo ER-associated degradation (ERAD), as in Gaucher disease (GD). GD is a genetic, autosomal recessive disease that results from mutations in the GBA1 gene, encoding the lysosomal enzyme acid β-glucocerebrosidase (GCase). We have shown that mutant GCase variants undergo ERAD, the degree of which is a major determinant of disease severity. Most ERAD substrates undergo polyubiquitination and proteasomal degradation. Therefore, one expects that mutant GCase variants are substrates for several E3 ubiquitin ligases in different cells. We tested the possibility that ITCH, a known E3 ubiquitin ligase, with a pivotal role in proliferation and differentiation of the skin, recognizes mutant GCase variants and mediates their polyubiquitination and degradation. Our results strongly suggest that ITCH interacts with mutant GCase variants and mediates their lysine 48 polyubiquitination and degradation.
Collapse
Affiliation(s)
- Gali Maor
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
39
|
Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW, Schapira AHV. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol 2012; 72:455-63. [PMID: 23034917 PMCID: PMC3638323 DOI: 10.1002/ana.23614] [Citation(s) in RCA: 443] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective Mutations in the glucocerebrosidase gene (GBA) represent a significant risk factor for developing Parkinson disease (PD). We investigated the enzymatic activity of glucocerebrosidase (GCase) in PD brains carrying heterozygote GBA mutations (PD+GBA) and sporadic PD brains. Methods GCase activity was measured using a fluorescent assay in cerebellum, frontal cortex, putamen, amygdala, and substantia nigra of PD+GBA (n = 9–14) and sporadic PD brains (n = 12–14). Protein expression of GCase and other lysosomal proteins was determined by western blotting. The relation between GCase, α-synuclein, and mitochondria function was also investigated in vitro. Results A significant decrease in GCase activity was observed in all PD+GBA brain areas except the frontal cortex. The greatest deficiency was in the substantia nigra (58% decrease; p < 0.01). GCase activity was also significantly decreased in the substantia nigra (33% decrease; p < 0.05) and cerebellum (24% decrease; p < 0.05) of sporadic PD brains. GCase protein expression was lower in PD+GBA and PD brains, whereas increased C/EBP homologous protein and binding immunoglobulin protein levels indicated that the unfolded protein response was activated. Elevated α-synuclein levels or PTEN-induced putative kinase 1 deficiency in cultured cells had a significant effect on GCase protein levels. Interpretation GCase deficiency in PD brains with GBA mutations is a combination of decreased catalytic activity and reduced protein levels. This is most pronounced in the substantia nigra. Biochemical changes involved in PD pathogenesis affect wild-type GCase protein expression in vitro, and these could be contributing factors to the GCase deficiency observed in sporadic PD brains. ANN NEUROL 2012;72:455–463.
Collapse
Affiliation(s)
- Matthew E Gegg
- Department of Clinical Neurosciences, University College London Institute of Neurology
| | | | | | | | | | | | | |
Collapse
|
40
|
Yang C, Matro JC, Huntoon KM, Ye DY, Huynh TT, Fliedner SMJ, Breza J, Zhuang Z, Pacak K. Missense mutations in the human SDHB gene increase protein degradation without altering intrinsic enzymatic function. FASEB J 2012; 26:4506-16. [PMID: 22835832 DOI: 10.1096/fj.12-210146] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations of succinate dehydrogenase subunit B (SDHB) play a crucial role in the pathogenesis of the most aggressive and metastatic pheochromocytomas (PHEOs) and paragangliomas (PGLs). Although a variety of missense mutations in the coding sequence of the SDHB gene have been found in PHEOs and PGLs, it has been unclear whether these mutations impair mRNA expression, protein stability, subcellular localization, or intrinsic protein function. RT-PCR and Western blot analysis of SDHB mRNA and protein expression from SDHB-related PHEOs and PGLs demonstrated intact mRNA expression but significantly reduced protein expression compared to non-SDHB PHEOs and PGLs. A pulse-chase assay of common SDHB missense mutations in transfected HeLa cell lines demonstrated that the loss of SDHB function was due to a reduction in mutant protein half-life, whereas colocalization of SDHB with mitochondria and immunoprecipitation with SDHA demonstrated intact subcellular localization and complex formation. The half-life of the SDHB protein increased after treatment with histone deacetylase inhibitors (HDACis), implicating the protein quality control machinery in the degradation of mutant SDHB protein. These findings provide the first direct mechanism of functional loss resulting from SDHB mutations and suggest that reducing protein degradation with HDACis may serve as a novel therapeutic paradigm for preventing the development of SDHB-related tumors.
Collapse
Affiliation(s)
- Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1414, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Trapero A, González-Bulnes P, Butters TD, Llebaria A. Potent aminocyclitol glucocerebrosidase inhibitors are subnanomolar pharmacological chaperones for treating gaucher disease. J Med Chem 2012; 55:4479-88. [PMID: 22512696 DOI: 10.1021/jm300342q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amino-myo-inositol derivatives have been found to be potent inhibitors of glucocerebrosidase (GCase), the β-glucosidase enzyme deficient in Gaucher disease (GD). When tested using lymphoblasts derived from patients with GD homozygous for N370S or L444P mutations, the compounds enhanced GCase activity at very low concentrations. The most potent inhibitor, (1R,2S,3R,4S,5S,6R)-5-(nonylamino)-6-(nonyloxy)cyclohexane-1,2,3,4-tetraol had a K(i) of 1 nM using isolated enzyme and an IC(50) of 4.3 nM when assayed in human fibroblast cell culture. This aminocyclitol produced maximum increases of GCase activities of 90% in N370S lymphoblasts at 1 nM and 40% in L444P at 0.01 nM following a three-day incubation. In addition to inhibitory potency, this compound has the permeability, subcellular distribution, and cell metabolism characteristics that are important for use as a pharmacological chaperone. It is a remarkable finding that picomolar concentrations of aminocyclitols are sufficient to enhance activity in the L444P variant, which produces a severe neuronopathic form of GD without clinical treatment.
Collapse
Affiliation(s)
- Ana Trapero
- Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
42
|
β-Catenin signaling initiates the activation of astrocytes and its dysregulation contributes to the pathogenesis of astrocytomas. Proc Natl Acad Sci U S A 2012; 109:6963-8. [PMID: 22505738 DOI: 10.1073/pnas.1118754109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Astrocytes are the most abundant cell of the CNS and demonstrate contact inhibition in which a nonproliferative, nonmotile cellular state is achieved once stable intercellular contacts are formed between mature cells. Cellular injury disrupts these intercellular contacts, causing a loss of contact inhibition and the rapid initiation of healing. Dysregulation of the molecular pathways involved in this process is thought to lead to an aggressive cellular state associated with neoplasia. We investigated whether a comparable correlation exists between the response of astrocytes to injury and the malignant phenotype of astrocytomas. We discovered that the loss of contact inhibition plays a critical role in the initiation and regulation of reactive astrocytes in the healing of wounds. In particular, injury of the astrocytes interrupts and destabilizes the cadherin-catenin complexes at the cell membrane leading to nuclear translocation of β-catenin and characteristic changes associated with the activation of astrocytes. Similar signaling pathways are found to be active--but dysregulated--in astrocytomas. Inhibition of β-catenin signaling diminished both the response of astrocytes to injury and induction of the malignant phenotype of astrocytomas. The findings shed light on a unique mechanism associated with the pathogenesis of astrocytomas and provide a model for the loss of contact inhibition that may broadly apply to understanding the mechanisms of tissue repair and tumorigenesis in the brain.
Collapse
|
43
|
Histone deacetylase inhibitors prevent the degradation and restore the activity of glucocerebrosidase in Gaucher disease. Proc Natl Acad Sci U S A 2011; 108:21200-5. [PMID: 22160715 DOI: 10.1073/pnas.1119181109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease (GD) is caused by a spectrum of genetic mutations within the gene encoding the lysosomal enzyme glucocerebrosidase (GCase). These mutations often lead to misfolded proteins that are recognized by the unfolded protein response system and are degraded through the ubiquitin-proteasome pathway. Modulating this pathway with histone deacetylase inhibitors (HDACis) has been shown to improve protein stability in other disease settings. To identify the mechanisms involved in the regulation of GCase and determine the effects of HDACis on protein stability, we investigated the most prevalent mutations for nonneuronopathic (N370S) and neuronopathic (L444P) GD in cultured fibroblasts derived from GD patients and HeLa cells transfected with these mutations. The half-lives of mutant GCase proteins correspond to decreases in protein levels and enzymatic activity. GCase was found to bind to Hsp70, which directed the protein to TCP1 for proper folding, and to Hsp90, which directed the protein to the ubiquitin-proteasome pathway. Using a known HDACi (SAHA) and a unique small-molecule HDACi (LB-205), GCase levels increased rescuing enzymatic activity in mutant cells. The increase in the quantity of protein can be attributed to increases in protein half-life that correspond primarily with a decrease in degradation rather than an increase in chaperoned folding. HDACis reduce binding to Hsp90 and prevent subsequent ubiquitination and proteasomal degradation without affecting binding to Hsp70 or TCP1. These findings provide insight into the pathogenesis of GD and indicate a potent therapeutic potential of HDAC inhibitors for the treatment of GD and other human protein misfolding disorders.
Collapse
|
44
|
Lieberman RL. A Guided Tour of the Structural Biology of Gaucher Disease: Acid-β-Glucosidase and Saposin C. Enzyme Res 2011; 2011:973231. [PMID: 22145077 PMCID: PMC3226326 DOI: 10.4061/2011/973231] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/07/2011] [Indexed: 01/27/2023] Open
Abstract
Mutations in both acid-β-glucosidase (GCase) and saposin C lead to Gaucher disease, the most common lysosomal storage disorder. The past several years have seen an explosion of structural and biochemical information for these proteins, which have provided new insight into the biology and pathogenesis of Gaucher disease, as well as opportunities for new therapeutic directions. Nearly 20 crystal structures of GCase are now available, from different heterologous sources, complexed with different ligands in the active site, in different glycosylation states, as well as one that harbors a prevalent disease-causing mutation, N370S. For saposin C, two NMR and 3 crystal structures have been solved, each with its unique snapshot. This review focuses on the details of these structures to highlight salient common and disparate features that contribute to our current state of knowledge of this complex orphan disease.
Collapse
Affiliation(s)
- Raquel L. Lieberman
- School of Chemistry & Biochemistry, Institute for Bioscience and Bioengineering, Georgia Institute of Technology, 901 Atlantic Drive NW Atlanta, GA 30332-0400, USA
| |
Collapse
|
45
|
Wang F, Song W, Brancati G, Segatori L. Inhibition of endoplasmic reticulum-associated degradation rescues native folding in loss of function protein misfolding diseases. J Biol Chem 2011; 286:43454-64. [PMID: 22006919 DOI: 10.1074/jbc.m111.274332] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomal storage disorders are often caused by mutations that destabilize native folding and impair trafficking of secretory proteins. We demonstrate that endoplasmic reticulum (ER)-associated degradation (ERAD) prevents native folding of mutated lysosomal enzymes in patient-derived fibroblasts from two clinically distinct lysosomal storage disorders, namely Gaucher and Tay-Sachs disease. Prolonging ER retention via ERAD inhibition enhanced folding, trafficking, and activity of these unstable enzyme variants. Furthermore, combining ERAD inhibition with enhancement of the cellular folding capacity via proteostasis modulation resulted in synergistic rescue of mutated enzymes. ERAD inhibition was achieved by cell treatment with small molecules that interfere with recognition (kifunensine) or retrotranslocation (eeyarestatin I) of misfolded substrates. These different mechanisms of ERAD inhibition were shown to enhance ER retention of mutated proteins but were associated with dramatically different levels of ER stress, unfolded protein response activation, and unfolded protein response-induced apoptosis.
Collapse
Affiliation(s)
- Fan Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
46
|
Missense mutations in the NF2 gene result in the quantitative loss of merlin protein and minimally affect protein intrinsic function. Proc Natl Acad Sci U S A 2011; 108:4980-5. [PMID: 21383154 DOI: 10.1073/pnas.1102198108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurofibromatosis type 2 (NF2) is a multiple neoplasia syndrome and is caused by a mutation of the NF2 tumor suppressor gene that encodes for the tumor suppressor protein merlin. Biallelic NF2 gene inactivation results in the development of central nervous system tumors, including schwannomas, meningiomas, ependymomas, and astrocytomas. Although a wide variety of missense germline mutations in the coding sequences of the NF2 gene can cause loss of merlin function, the mechanism of this functional loss is unknown. To gain insight into the mechanisms underlying loss of merlin function in NF2, we investigated mutated merlin homeostasis and function in NF2-associated tumors and cell lines. Quantitative protein and RT-PCR analysis revealed that whereas merlin protein expression was significantly reduced in NF2-associated tumors, mRNA expression levels were unchanged. Transfection of genetic constructs of common NF2 missense mutations into NF2 gene-deficient meningioma cell lines revealed that merlin loss of function is due to a reduction in mutant protein half-life and increased protein degradation. Transfection analysis also demonstrated that recovery of tumor suppressor protein function is possible, indicating that these mutants maintain intrinsic functional capacity. Further, increased expression of mutant protein is possible after treatment with specific proteostasis regulators, implicating protein quality control systems in the degradative fate of mutant tumor suppressor proteins. These findings provide direct insight into protein function and tumorigenesis in NF2 and indicate a unique treatment paradigm for this disorder.
Collapse
|