1
|
Mistry AC, Chowdhury D, Chakraborty S, Haldar S. Elucidating the novel mechanisms of molecular chaperones by single-molecule technologies. Trends Biochem Sci 2024; 49:38-51. [PMID: 37980187 DOI: 10.1016/j.tibs.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Molecular chaperones play central roles in sustaining protein homeostasis and preventing protein aggregation. Most studies of these systems have been performed in bulk, providing averaged measurements, though recent single-molecule approaches have provided an in-depth understanding of the molecular mechanisms of their activities and structural rearrangements during substrate recognition. Chaperone activities have been observed to be substrate specific, with some associated with ATP-dependent structural dynamics and others via interactions with co-chaperones. This Review aims to describe the novel mechanisms of molecular chaperones as revealed by single-molecule approaches, and to provide insights into their functioning and its implications for protein homeostasis and human diseases.
Collapse
Affiliation(s)
- Ayush Chandrakant Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India; Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India; Department of Chemistry, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
2
|
Ghosh C, Jana B. Intersubunit Assisted Folding of DNA Binding Domains in Dimeric Catabolite Activator Protein. J Phys Chem B 2020; 124:1411-1423. [DOI: 10.1021/acs.jpcb.9b10941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Catherine Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Gershenson A, Gosavi S, Faccioli P, Wintrode PL. Successes and challenges in simulating the folding of large proteins. J Biol Chem 2020; 295:15-33. [PMID: 31712314 PMCID: PMC6952611 DOI: 10.1074/jbc.rev119.006794] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Computational simulations of protein folding can be used to interpret experimental folding results, to design new folding experiments, and to test the effects of mutations and small molecules on folding. However, whereas major experimental and computational progress has been made in understanding how small proteins fold, research on larger, multidomain proteins, which comprise the majority of proteins, is less advanced. Specifically, large proteins often fold via long-lived partially folded intermediates, whose structures, potentially toxic oligomerization, and interactions with cellular chaperones remain poorly understood. Molecular dynamics based folding simulations that rely on knowledge of the native structure can provide critical, detailed information on folding free energy landscapes, intermediates, and pathways. Further, increases in computational power and methodological advances have made folding simulations of large proteins practical and valuable. Here, using serpins that inhibit proteases as an example, we review native-centric methods for simulating the folding of large proteins. These synergistic approaches range from Gō and related structure-based models that can predict the effects of the native structure on folding to all-atom-based methods that include side-chain chemistry and can predict how disease-associated mutations may impact folding. The application of these computational approaches to serpins and other large proteins highlights the successes and limitations of current computational methods and underscores how computational results can be used to inform experiments. These powerful simulation approaches in combination with experiments can provide unique insights into how large proteins fold and misfold, expanding our ability to predict and manipulate protein folding.
Collapse
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003.
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore-560065, India.
| | - Pietro Faccioli
- Dipartimento di Fisica, Universitá degli Studi di Trento, 38122 Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, 38123 Povo (Trento), Italy.
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201.
| |
Collapse
|
4
|
Jahn M, Tych K, Girstmair H, Steinmaßl M, Hugel T, Buchner J, Rief M. Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy. Structure 2018; 26:96-105.e4. [DOI: 10.1016/j.str.2017.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/16/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
5
|
Alaghemandi M, Koller V, Green JR. Nonexponential kinetics of ion pair dissociation in electrofreezing water. Phys Chem Chem Phys 2017; 19:26396-26402. [PMID: 28944386 DOI: 10.1039/c7cp04572g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temporally- or spatially-heterogeneous environments can participate in many kinetic processes, from chemical reactions and self-assembly to the forced dissociation of biomolecules. Here, we simulate the molecular dynamics of a model ion pair forced to dissociate in an explicit, aqueous solution. Triggering dissociation with an external electric field causes the surrounding water to electrofreeze and the ion pair population to decay nonexponentially. To further probe the role of the aqueous environment in the kinetics, we also simulate dissociation events under a purely mechanical force on the ion pair. In this case, regardless of whether the surrounding water is a liquid or already electrofrozen, the ion pair population decays exponentially with a well-defined rate constant that is specific to the medium and applied force. These simulation data, and the rate parameters we extract, suggest the disordered kinetics in an electrofreezing medium are a result of the comparable time scales of two concurrent processes, electrofreezing and dissociation.
Collapse
Affiliation(s)
- Mohammad Alaghemandi
- Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA.
| | | | | |
Collapse
|
6
|
Zhang Y, Cao Z, Xia F. Construction of ultra-coarse-grained model of protein with a Gō-like potential. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Tian P, Best RB. Structural Determinants of Misfolding in Multidomain Proteins. PLoS Comput Biol 2016; 12:e1004933. [PMID: 27163669 PMCID: PMC4862688 DOI: 10.1371/journal.pcbi.1004933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Recent single molecule experiments, using either atomic force microscopy (AFM) or Förster resonance energy transfer (FRET) have shown that multidomain proteins containing tandem repeats may form stable misfolded structures. Topology-based simulation models have been used successfully to generate models for these structures with domain-swapped features, fully consistent with the available data. However, it is also known that some multidomain protein folds exhibit no evidence for misfolding, even when adjacent domains have identical sequences. Here we pose the question: what factors influence the propensity of a given fold to undergo domain-swapped misfolding? Using a coarse-grained simulation model, we can reproduce the known propensities of multidomain proteins to form domain-swapped misfolds, where data is available. Contrary to what might be naively expected based on the previously described misfolding mechanism, we find that the extent of misfolding is not determined by the relative folding rates or barrier heights for forming the domains present in the initial intermediates leading to folded or misfolded structures. Instead, it appears that the propensity is more closely related to the relative stability of the domains present in folded and misfolded intermediates. We show that these findings can be rationalized if the folded and misfolded domains are part of the same folding funnel, with commitment to one structure or the other occurring only at a relatively late stage of folding. Nonetheless, the results are still fully consistent with the kinetic models previously proposed to explain misfolding, with a specific interpretation of the observed rate coefficients. Finally, we investigate the relation between interdomain linker length and misfolding, and propose a simple alchemical model to predict the propensity for domain-swapped misfolding of multidomain proteins.
Collapse
Affiliation(s)
- Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments. Proc Natl Acad Sci U S A 2016; 113:1232-7. [PMID: 26787848 DOI: 10.1073/pnas.1518827113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Folding of small proteins often occurs in a two-state manner and is well understood both experimentally and theoretically. However, many proteins are much larger and often populate misfolded states, complicating their folding process significantly. Here we study the complete folding and assembly process of the 1,418 amino acid, dimeric chaperone Hsp90 using single-molecule optical tweezers. Although the isolated C-terminal domain shows two-state folding, we find that the isolated N-terminal as well as the middle domain populate ensembles of fast-forming, misfolded states. These intradomain misfolds slow down folding by an order of magnitude. Modeling folding as a competition between productive and misfolding pathways allows us to fully describe the folding kinetics. Beyond intradomain misfolding, folding of the full-length protein is further slowed by the formation of interdomain misfolds, suggesting that with growing chain lengths, such misfolds will dominate folding kinetics. Interestingly, we find that small stretching forces applied to the chain can accelerate folding by preventing the formation of cross-domain misfolding intermediates by leading the protein along productive pathways to the native state. The same effect is achieved by cotranslational folding at the ribosome in vivo.
Collapse
|
9
|
Dennis JW. Many Light Touches Convey the Message. Trends Biochem Sci 2015; 40:673-686. [DOI: 10.1016/j.tibs.2015.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 11/28/2022]
|
10
|
The unexpected role of polyubiquitin chains in the formation of fibrillar aggregates. Nat Commun 2015; 6:6116. [PMID: 25600778 PMCID: PMC4309437 DOI: 10.1038/ncomms7116] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022] Open
Abstract
Ubiquitin is known to be one of the most soluble and stably folded intracellular proteins, but it is often found in inclusion bodies associated with various diseases including neurodegenerative disorders and cancer. To gain insight into this contradictory behaviour, we have examined the physicochemical properties of ubiquitin and its polymeric chains that lead to aggregate formation. We find that the folding stability of ubiquitin chains unexpectedly decreases with increasing chain length, resulting in the formation of amyloid-like fibrils. Furthermore, when expressed in cells, polyubiquitin chains covalently linked to EGFP also form aggregates depending on chain length. Notably, these aggregates are selectively degraded by autophagy. We propose a novel model in which the physical and chemical instability of polyubiquitin chains drives the formation of fibrils, which then serve as an initiation signal for autophagy.
Collapse
|
11
|
Piana S, Lindorff-Larsen K, Shaw DE. Atomistic Description of the Folding of a Dimeric Protein. J Phys Chem B 2013; 117:12935-42. [DOI: 10.1021/jp4020993] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Piana
- D. E. Shaw Research, New York, New York
10036, United States
| | | | - David E. Shaw
- D. E. Shaw Research, New York, New York
10036, United States
- Center
for Computational Biology
and Bioinformatics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
12
|
Yu Z, Mao H. Non-B DNA structures show diverse conformations and complex transition kinetics comparable to RNA or proteins--a perspective from mechanical unfolding and refolding experiments. CHEM REC 2013; 13:102-16. [PMID: 23389854 DOI: 10.1002/tcr.201200021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Indexed: 01/03/2023]
Abstract
With the firm demonstration of the in vivo presence and biological functions of many non-B DNA structures, it is of great significance to understand their physiological roles from the perspective of structural conformation, stability, and transition kinetics. Although relatively simple in primary sequences compared to proteins, non-B DNA species show rather versatile conformations and dynamic transitions. As the most-studied non-B DNA species, the G-quadruplex displays a myriad of conformations that can interconvert between each other in different solutions. These features impose challenges for ensemble-average techniques, such as X-ray crystallography, NMR spectroscopy, and circular dichroism (CD), but leave room for single-molecular approaches to illustrate the structure, stability, and transition kinetics of individual non-B DNA species in a solution mixture. Deconvolution of the mixture can be further facilitated by statistical data treatment, such as iPoDNano (integrated population deconvolution with nanometer resolution), which resolves populations with subnanometer size differences. This Personal Account summarizes current mechanical unfolding and refolding methods to interrogate single non-B DNA species, with an emphasis on DNA G-quadruplexes and i-motifs. These single-molecule studies start to demonstrate that structures and transitions in non-B DNA species can approach the complexity of those in RNA or proteins, which provides solid justification for the biological functions carried out by non-B DNA species.
Collapse
Affiliation(s)
- Zhongbo Yu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | | |
Collapse
|
13
|
Arviv O, Levy Y. Folding of multidomain proteins: Biophysical consequences of tethering even in apparently independent folding. Proteins 2012; 80:2780-98. [DOI: 10.1002/prot.24161] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 01/09/2023]
|
14
|
Peng Q, Fang J, Wang M, Li H. Kinetic partitioning mechanism governs the folding of the third FnIII domain of tenascin-C: evidence at the single-molecule level. J Mol Biol 2011; 412:698-709. [PMID: 21839747 DOI: 10.1016/j.jmb.2011.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 02/09/2023]
Abstract
Statistical mechanics and molecular dynamics simulations proposed that the folding of proteins can follow multiple parallel pathways on a rugged energy landscape from unfolded state en route to their folded native states. Kinetic partitioning mechanism is one of the possible mechanisms underlying such complex folding dynamics. Here, we use single-molecule atomic force microscopy technique to directly probe the multiplicity of the folding pathways of the third fibronectin type III domain from the extracellular matrix protein tenascin-C (TNfn3). By stretching individual (TNfn3)(8) molecules, we forced TNfn3 domains to undergo mechanical unfolding and refolding cycles, allowing us to directly observe the folding pathways of TNfn3. We found that, after being mechanically unraveled and then relaxed to zero force, TNfn3 follows multiple parallel pathways to fold into their native states. The majority of TNfn3 fold into the native state in a simple two-state fashion, while a small percentage of TNfn3 were found to be trapped into kinetically stable folding intermediate states with well-defined three-dimensional structures. Furthermore, the folding of TNfn3 was also influenced by its neighboring TNfn3 domains. Complex misfolded states of TNfn3 were observed, possibly due to the formation of domain-swapped dimeric structures. Our studies revealed the ruggedness of the folding energy landscape of TNfn3 and provided direct experimental evidence that the folding dynamics of TNfn3 are governed by the kinetic partitioning mechanism. Our results demonstrated the unique capability of single-molecule AFM to probe the folding dynamics of proteins at the single-molecule level.
Collapse
Affiliation(s)
- Qing Peng
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | | | | | | |
Collapse
|