1
|
Halma MTJ, Xu L. Life under tension: the relevance of force on biological polymers. BIOPHYSICS REPORTS 2024; 10:48-56. [PMID: 38737478 PMCID: PMC11079598 DOI: 10.52601/bpr.2023.230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 05/14/2024] Open
Abstract
Optical tweezers have elucidated numerous biological processes, particularly by enabling the precise manipulation and measurement of tension. One question concerns the biological relevance of these experiments and the generalizability of these experiments to wider biological systems. Here, we categorize the applicability of the information garnered from optical tweezers in two distinct categories: the direct relevance of tension in biological systems, and what experiments under tension can tell us about biological systems, while these systems do not reach the same tension as the experiment, still, these artificial experimental systems reveal insights into the operations of biological machines and life processes.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
- LUMICKS B. V., 1081 HV, Amsterdam, the Netherlands
| | - Longfu Xu
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Shirmovsky SE. Quantum dynamics of a hole migration through DNA: A single strand DNA model. Biophys Chem 2016; 217:42-57. [PMID: 27497061 DOI: 10.1016/j.bpc.2016.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 11/24/2022]
Abstract
A model predicting the behavior of a hole acting on the DNA strand was investigated. The hole-DNA interaction on the basis of a quantum-classical, non-linear DNA single strand model was described. The fact that a DNA molecule is formed by a furanose ring as its sugar, phosphate group and bases was taken into consideration. Based on the model, results were obtained for the probability of a hole location on the DNA base sequences, such as GTTGGG, GATGTGGG, GTTGTTGGG as well as on the sugar-phosphate groups mated with them.
Collapse
Affiliation(s)
- S Eh Shirmovsky
- Far Eastern Federal University, 8 Sukhanov St., Vladivostok 690950, Russia.
| |
Collapse
|
3
|
Affiliation(s)
- Thomas T. Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309;
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
4
|
Sharma AK, Chowdhury D. First-passage problems in DNA replication: effects of template tension on stepping and exonuclease activities of a DNA polymerase motor. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:374105. [PMID: 23945294 DOI: 10.1088/0953-8984/25/37/374105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A DNA polymerase (DNAP) replicates a template DNA strand. It also exploits the template as the track for its own motor-like mechanical movement. In the polymerase mode it elongates the nascent DNA by one nucleotide in each step. However, whenever it commits an error by misincorporating an incorrect nucleotide, it can switch to an exonuclease mode. In the latter mode it excises the wrong nucleotide before switching back to its polymerase mode. We develop a stochastic kinetic model of DNA replication that mimics an in vitro experiment where single-stranded DNA, subjected to a mechanical tension F, is converted to double-stranded DNA by a single DNAP. The F-dependence of the average rate of replication, which depends on the rates of both polymerase and exonuclease activities of the DNAP, is in good qualitative agreement with the corresponding experimental results. We introduce nine novel distinct conditional dwell times of a DNAP. Using the method of first-passage times, we also derive the exact analytical expressions for the probability distributions of these conditional dwell times. The predicted F-dependences of these distributions are, in principle, accessible to single-molecule experiments.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Kanpur, 208016, India
| | | |
Collapse
|
5
|
SHARMA AJEETK, CHOWDHURY DEBASHISH. TEMPLATE-DIRECTED BIOPOLYMERIZATION: TAPE-COPYING TURING MACHINES. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793048012300083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA, RNA and proteins are among the most important macromolecules in a living cell. These molecules are polymerized by molecular machines. These natural nano-machines polymerize such macromolecules, adding one monomer at a time, using another linear polymer as the corresponding template. The machine utilizes input chemical energy to move along the template which also serves as a track for the movements of the machine. In the Alan Turing year 2012, it is worth pointing out that these machines are "tape-copying Turing machines". We review the operational mechanisms of the polymerizer machines and their collective behavior from the perspective of statistical physics, emphasizing their common features in spite of the crucial differences in their biological functions. We also draw the attention of the physics community to another class of modular machines that carry out a different type of template-directed polymerization. We hope this review will inspire new kinetic models for these modular machines.
Collapse
Affiliation(s)
- AJEET K. SHARMA
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
6
|
Abstract
During DNA synthesis, high-fidelity DNA polymerase (DNAP) translocates processively along the template by utilizing the chemical energy from nucleotide incorporation. Thus, understanding the chemomechanical coupling mechanism and the effect of external mechanical force on replication velocity are the most fundamental issues for high-fidelity DNAP. Here, based on our proposed model, we take Klenow fragment as an example to study theoretically the dynamics of high-fidelity DNAPs such as the replication velocity versus different types of external force, i.e., a stretching force on the template, a backward force on the enzyme and a forward force on the enzyme. Replication velocity as a function of the template tension with only one adjustable parameter is in good agreement with the available experimental data. The replication velocity is nearly independent of the forward force, even at very low dNTP concentration. By contrast, the backward force has a large effect on the replication velocity, especially at high dNTP concentration. A small backward force can increase the replication velocity and an optimal backward force exists at which the replication velocity has maximum value; with any further increase in the backward force the velocity decreases rapidly. These results can be tested easily by future experiments and are aid our understanding of the chemomechanical coupling mechanism and polymerization dynamics of high-fidelity DNAP.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Sharma AK, Chowdhury D. Error correction during DNA replication. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:011913. [PMID: 23005458 DOI: 10.1103/physreve.86.011913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/04/2012] [Indexed: 06/01/2023]
Abstract
DNA polymerase (DNAP) is a dual-purpose enzyme that plays two opposite roles in two different situations during DNA replication. It plays its a normal role as a polymerase catalyzing the elongation of a new DNA molecule by adding a monomer. However, it can switch to the role of an exonuclease and shorten the same DNA by cleavage of the last incorporated monomer from the nascent DNA. Just as misincorporated nucleotides can escape exonuclease causing a replication error, the correct nucleotide may get sacrificed unnecessarily by erroneous cleavage. The interplay of polymerase and exonuclease activities of a DNAP is explored here by developing a minimal stochastic kinetic model of DNA replication. Exact analytical expressions are derived for a few key statistical distributions; these characterize the temporal patterns in the mechanical stepping and the chemical (cleavage) reaction. The Michaelis-Menten-like analytical expression derived for the average rates of these two processes not only demonstrate the effects of their coupling, but are also utilized to measure the extent of replication error and erroneous cleavage.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
8
|
Abstract
Replication of DNA is carried out by the replisome, a multiprotein complex responsible for the unwinding of parental DNA and the synthesis of DNA on each of the two DNA strands. The impressive speed and processivity with which the replisome duplicates DNA are a result of a set of tightly regulated interactions between the replication proteins. The transient nature of these protein interactions makes it challenging to study the dynamics of the replisome by ensemble-averaging techniques. This review describes single-molecule methods that allow the study of individual replication proteins and their functioning within the replisome. The ability to mechanically manipulate individual DNA molecules and record the dynamic behavior of the replisome while it duplicates DNA has led to an improved understanding of the molecular mechanisms underlying DNA replication.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
9
|
Xie P. A possible mechanism for the dynamics of transition between polymerase and exonuclease sites in a high-fidelity DNA polymerase. J Theor Biol 2009; 259:434-9. [PMID: 19389410 DOI: 10.1016/j.jtbi.2009.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 02/02/2009] [Accepted: 04/06/2009] [Indexed: 11/19/2022]
Abstract
The fidelity of DNA synthesis by DNA polymerase is significantly increased by a mechanism of proofreading that is performed at the exonuclease active site separate from the polymerase active site. Thus, the transition of DNA between the two active sites is an important activity of DNA polymerase. Here, based on our proposed model, the rates of DNA transition between the two active sites are theoretically studied. With the relevant parameters, which are determined from the available crystal structure and other experimental data, the calculated transfer rate of correctly base-paired DNA from the polymerase to exonuclease sites and the transfer rate after incorporation of a mismatched base are in good agreement with the available experimental data. The transfer rates in the presence of two and three mismatched bases are also consistent with the previous experimental data. In addition, the calculated transfer rate from the exonuclease to polymerase sites has a large value even with the high binding affinity of 3'-5' ssDNA for the exonuclease site, which is also consistent with the available experimental value. Moreover, we also give some predictive results for the transfer rate of DNA containing only A:T base pairs and that of DNA containing only G:C base pairs.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100790, China.
| |
Collapse
|
10
|
Obermayer B, Möbius W, Hallatschek O, Frey E, Kroy K. Freely relaxing polymers remember how they were straightened. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:021804. [PMID: 19391769 DOI: 10.1103/physreve.79.021804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 12/15/2008] [Indexed: 05/27/2023]
Abstract
The relaxation of initially straight semiflexible polymers has been discussed mainly with respect to the longest relaxation time. The biologically relevant nonequilibrium dynamics on shorter times is comparatively poorly understood, partly because "initially straight" can be realized in manifold ways. Combining Brownian dynamics simulations and systematic theory, we demonstrate how different experimental preparations give rise to specific short-time and universal long-time dynamics. We also discuss boundary effects and the onset of the stretch-coil transition.
Collapse
Affiliation(s)
- Benedikt Obermayer
- Arnold Sommerfeld Center and Center of NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | | | | | | | | |
Collapse
|
11
|
Sahu S, LaBean TH, Reif JH. A DNA nanotransport device powered by polymerase phi29. NANO LETTERS 2008; 8:3870-3878. [PMID: 18939810 DOI: 10.1021/nl802294d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polymerases are a family of enzymes responsible for copying or replication of nucleic acids (DNA or RNA) templates and hence sustenance of life processes. In this paper, we present a method to exploit a strand-displacing polymerase phi29 as a driving force for nanoscale transportation devices. The principal idea behind the device is strong strand displacement ability of phi29, which can displace any DNA strand from its template while extending a primer hybridized to the template. This capability of phi29 is used to power the movement of a target nanostructure on a DNA track. The major advantage of using a polymerase driven nanotransportation device as compared to other existing nanorobotical devices is its speed. phi29 polymerase can travel at the rate of 2000 nucleotides per minute at room temperature, which translates to approximately 680 nm min(-1) on a nanostructure. We also demonstrate transportation of a DNA cargo on a DNA track with the help of fluorescence resonance electron transfer data.
Collapse
Affiliation(s)
- Sudheer Sahu
- Department of Computer Science, Box 90129, 3101 French Family Sciences Center, Box 90345, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
12
|
Goel A, Vogel V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. NATURE NANOTECHNOLOGY 2008; 3:465-475. [PMID: 18685633 DOI: 10.1038/nnano.2008.190] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Living systems use biological nanomotors to build life's essential molecules--such as DNA and proteins--as well as to transport cargo inside cells with both spatial and temporal precision. Each motor is highly specialized and carries out a distinct function within the cell. Some have even evolved sophisticated mechanisms to ensure quality control during nanomanufacturing processes, whether to correct errors in biosynthesis or to detect and permit the repair of damaged transport highways. In general, these nanomotors consume chemical energy in order to undergo a series of shape changes that let them interact sequentially with other molecules. Here we review some of the many tasks that biomotors perform and analyse their underlying design principles from an engineering perspective. We also discuss experiments and strategies to integrate biomotors into synthetic environments for applications such as sensing, transport and assembly.
Collapse
Affiliation(s)
- Anita Goel
- Nanobiosym Labs, 200 Boston Avenue, Suite 4700, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
13
|
Spetzler D, York J, Dobbin C, Martin J, Ishmukhametov R, Day L, Yu J, Kang H, Porter K, Hornung T, Frasch WD. Recent developments of bio-molecular motors as on-chip devices using single molecule techniques. LAB ON A CHIP 2007; 7:1633-1643. [PMID: 18030381 DOI: 10.1039/b711066a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The integration of microfluidic devices with single molecule motor detection techniques allows chip based devices to reach sensitivity levels previously unattainable.
Collapse
Affiliation(s)
- D Spetzler
- Molecular and Cellular Biology Graduate Program, and Faculty of Biomedicine and Biotechnology, School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
van Oijen AM. Single-molecule studies of complex systems: the replisome. MOLECULAR BIOSYSTEMS 2006; 3:117-25. [PMID: 17245491 DOI: 10.1039/b612545j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A complete, system-level understanding of biological processes requires comprehensive information on the kinetics and thermodynamics of the underlying biochemical reactions. A wide variety of structural, biochemical, and molecular biological techniques have led to a quantitative understanding of the molecular properties and mechanisms essential to the processes of life. Yet, the ensemble averaging inherent to these techniques limits us in understanding the dynamic behavior of the molecular participants. Recent advances in imaging and molecular manipulation techniques have made it possible to observe the activity of individual enzymes and record "molecular movies" that provide insight into their dynamics and reaction mechanisms. An important future goal is extending the applicability of single-molecule techniques to the study of larger, more complex multi-protein systems. In this review, the DNA replication machinery will be used as an example to illustrate recent progress in the development of various single-molecule techniques and its contribution to our understanding of the orchestration of multiple enzymatic processes in large biomolecular systems.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Harvard Medical School, Dept. of Biological Chemistry and Molecular Pharmacology, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Watkins JC. Microsatellite evolution: Markov transition functions for a suite of models. Theor Popul Biol 2006; 71:147-59. [PMID: 17123560 DOI: 10.1016/j.tpb.2006.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 10/02/2006] [Accepted: 10/03/2006] [Indexed: 10/24/2022]
Abstract
This paper takes from the collection of models considered by Whittaker et al. [2003. Likelihood-based estimation of microsatellite mutation rates. Genetics 164, 781-787] derived from direct observation of microsatellite mutation in parent-child pairs and provides analytical expressions for the probability distributions for the change in number of repeats over any given number of generations. The mathematical framework for this analysis is the theory of Markov processes. We find these expressions using two approaches, approximating by circulant matrices and solving a partial differential equation satisfied by the generating function. The impact of the differing choice of models is examined using likelihood estimates for time to most recent common ancestor. The analysis presented here may play a role in elucidating the connections between these two approaches and shows promise in reconciling differences between estimates for mutation rates based on Whittaker's approach and methods based on phylogenetic analyses.
Collapse
Affiliation(s)
- Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
16
|
Xie P. Model for forward polymerization and switching transition between polymerase and exonuclease sites by DNA polymerase molecular motors. Arch Biochem Biophys 2006; 457:73-84. [PMID: 17055996 DOI: 10.1016/j.abb.2006.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 09/20/2006] [Accepted: 09/20/2006] [Indexed: 11/15/2022]
Abstract
Based on the available crystal structure a model is presented for the polymerization activity and switching transition between polymerase and exonuclease sites of a DNA polymerase molecular motor. Using the model, the fast polymerization rate for correctly base-paired DNA and much reduced polymerization rate after an incorporation of a mismatched base can be well explained. The dependences of the polymerization rate and exonuclease rate on mechanical tension acting on the DNA template are studied. The switching rates between the two sites are analyzed. All the results show good quantitative agreement with the available experimental results.
Collapse
Affiliation(s)
- Ping Xie
- Department of Physics, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Ritort F. Single-molecule experiments in biological physics: methods and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:R531-R583. [PMID: 21690856 DOI: 10.1088/0953-8984/18/32/r01] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
Collapse
Affiliation(s)
- F Ritort
- Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Dinu CZ, Opitz J, Pompe W, Howard J, Mertig M, Diez S. Parallel manipulation of bifunctional DNA molecules on structured surfaces using kinesin-driven microtubules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:1090-8. [PMID: 17193173 DOI: 10.1002/smll.200600112] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have developed a technique to manipulate bifunctional DNA molecules: One end is thiolated to bind to a patterned gold surface and the other end is biotinylated to bind to a microtubule gliding over a kinesin-coated surface. We found that DNA molecules can be stretched and overstretched between the gold pads and the motile microtubules, and that they can form dynamic networks. This serves as a proof-of-principle that biological machineries can be used in vitro to accomplish the parallel formation of structured DNA templates that will have applications in biophysics and nanoelectronics.
Collapse
Affiliation(s)
- Cerasela Zoica Dinu
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The realization that many essential functions of living cells are performed by nanoscale motors consisting of protein complexes has given rise to an intense effort to understand their mechanisms. Considerable progress has been made in the past two years by a combination of biophysical techniques and theoretical analysis. Single-molecule studies have played a spectacular role for a variety of motors including kinesin, myosin, and polymerases. The understanding of F(1)-ATPase, the smallest biomolecular rotary motor, has made particular progress by the interplay of experimental and theoretical studies; the latter have provided information not available from experiment.
Collapse
Affiliation(s)
- Martin Karplus
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
20
|
Kafri Y, Lubensky DK, Nelson DR. Dynamics of molecular motors and polymer translocation with sequence heterogeneity. Biophys J 2005; 86:3373-91. [PMID: 15189841 PMCID: PMC1304246 DOI: 10.1529/biophysj.103.036152] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of sequence heterogeneity on polynucleotide translocation across a pore and on simple models of molecular motors such as helicases, DNA polymerase/exonuclease, and RNA polymerase is studied in detail. Pore translocation of RNA or DNA is biased due to the different chemical environments on the two sides of the membrane, whereas the molecular motor motion is biased through a coupling to chemical energy. An externally applied force can oppose these biases. For both systems we solve lattice models exactly both with and without disorder. The models incorporate explicitly the coupling to the different chemical environments for polymer translocation and the coupling to the chemical energy (as well as nucleotide pairing energies) for molecular motors. Using the exact solutions and general arguments, we show that the heterogeneity leads to anomalous dynamics. Most notably, over a range of forces around the stall force (or stall tension for DNA polymerase/exonuclease systems) the displacement grows sublinearly as t(micro), with micro < 1. The range over which this behavior can be observed experimentally is estimated for several systems and argued to be detectable for appropriate forces and buffers. Similar sequence heterogeneity effects may arise in the packing of viral DNA.
Collapse
Affiliation(s)
- Yariv Kafri
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
21
|
Cohen RN, Rashkin MJ, Wen X, Szoka FC. Molecular motors as drug delivery vehicles. DRUG DISCOVERY TODAY. TECHNOLOGIES 2005; 2:111-118. [PMID: 24981763 DOI: 10.1016/j.ddtec.2005.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Molecular motors that make up the intracellular transport system are akin to subway cars and trains that ply the rails of cities. The inner workings of these extraordinarily complicated systems are being explicated at the atomic level at a phenomenal rate, and it is becoming apparent that we are on the verge of bioengineering these motors for specialized applications. These systems might be the key to yet unsolved biomedical applications that include non-viral gene therapy and interneuron drug delivery.:
Collapse
Affiliation(s)
- Richard N Cohen
- Joint Graduate Group in Bioengineering, UC San Francisco/UC Berkeley, 513 Parnassus Avenue Box 0446, San Francisco, CA 94143, USA
| | - Mark J Rashkin
- Biopharmaceutical Sciences, School of Pharmacy, University of California at San Francisco, 513 Parnassus Avenue Box 0446, San Francisco, CA 94143, USA
| | - Xin Wen
- Biopharmaceutical Sciences, School of Pharmacy, University of California at San Francisco, 513 Parnassus Avenue Box 0446, San Francisco, CA 94143, USA
| | - Francis C Szoka
- Biopharmaceutical Sciences, School of Pharmacy, University of California at San Francisco, 513 Parnassus Avenue Box 0446, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Abstract
Active transport by microtubule motors has a plethora of crucial roles in eukaryotic cells. Organelles often move bidirectionally, employing both plus-end and minus-end directed motors. Bidirectional motion is widespread and may allow dynamic regulation, error correction and the establishment of polarized organelle distributions. Emerging evidence suggests that motors for both directions are simultaneously present on cellular 'cargo', but that their activity is coordinated so that when plus-end motors are active, minus-end motors are not, and vice versa. Both the dynein cofactor dynactin and the Klarsicht (Klar) protein appear to be important for such coordination. The direction of net transport depends on the balance between plus-end directed and minus-end directed motion. In several model systems, factors crucial for setting this balance have now been identified, setting the stage for a molecular dissection of the underlying regulatory mechanisms. These analyses will likely provide insight into motor cooperation in general.
Collapse
Affiliation(s)
- Michael A Welte
- Rosenstiel Biomedical Research Center and Department of Biology, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|