1
|
Hesami M, Baiton A, Alizadeh M, Pepe M, Torkamaneh D, Jones AMP. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int J Mol Sci 2021; 22:5671. [PMID: 34073522 PMCID: PMC8197860 DOI: 10.3390/ijms22115671] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | | |
Collapse
|
2
|
Pal S, Rastogi S, Nagegowda DA, Gupta MM, Shasany AK, Chanotiya CS. RNAi of Sterol Methyl Transferase1 Reveals its Direct Role in Diverting Intermediates Towards Withanolide/Phytosterol Biosynthesis in Withania somnifera. PLANT & CELL PHYSIOLOGY 2019; 60:672-686. [PMID: 30541044 DOI: 10.1093/pcp/pcy237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The medicinal properties of Ashwagandha (Withania somnifera) are accredited to a group of compounds called withanolides. 24-Methylene cholesterol is the intermediate for sterol biosynthesis and a proposed precursor of withanolide biogenesis. However, conversion of 24-methylene cholesterol to withaferin A and other withanolides has not yet been biochemically dissected. Hence, in an effort to fill this gap, an important gene, encoding S-adenosyl l-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1), involved in the first committed step of sterol biosynthesis, from W. somnifera was targeted in the present study. Though SMT1 has been characterized in model plants such as Nicotiana tabacum and Arabidopsis thaliana, its functional role in phytosterol and withanolide biosynthesis was demonstrated for the first time in W. somnifera. Since SMT1 acts at many steps preceding the withanolide precursor, the impact of this gene in channeling of metabolites for withanolide biosynthesis and its regulatory nature was illustrated by suppressing the gene in W. somnifera via the RNA interference (RNAi) approach. Interestingly, down-regulation of SMT1 in W. somnifera led to reduced levels of campesterol, sitosterol and stigmasterol, with an increase of cholesterol content in the transgenic RNAi lines. In contrast, SMT1 overexpression in transgenic N. tabacum enhanced the level of all phytosterols except cholesterol, which was not affected. The results established that SMT1 plays a crucial role in W. somnifera withanolide biosynthesis predominantly through the campesterol and stigmasterol routes.
Collapse
Affiliation(s)
- Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Postal Staff College Area, Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, India
| | - Shubhra Rastogi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Allalasandra, GKVK Post, Bangalore, Karnataka, India
| | - Madan Mohan Gupta
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, Uttar Pradesh, India
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Postal Staff College Area, Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, India
| | - Chandan Singh Chanotiya
- Laboratory of Aromatic Plants and Chiral Separation, Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Gressel J. Dealing with transgene flow of crop protection traits from crops to their relatives. PEST MANAGEMENT SCIENCE 2015; 71:658-667. [PMID: 24977384 DOI: 10.1002/ps.3850] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Genes regularly move within species, to/from crops, as well as to their con- specific progenitors, feral and weedy forms ('vertical' gene flow). Genes occasionally move to/from crops and their distantly related, hardly sexually interbreeding relatives, within a genus or among closely related genera (diagonal gene flow). Regulators have singled out transgene flow as an issue, yet non-transgenic herbicide resistance traits pose equal problems, which cannot be mitigated. The risks are quite different from genes flowing to natural (wild) ecosystems versus ruderal and agroecosystems. Transgenic herbicide resistance poses a major risk if introgressed into weedy relatives; disease and insect resistance less so. Technologies have been proposed to contain genes within crops (chloroplast transformation, male sterility) that imperfectly prevent gene flow by pollen to the wild. Containment does not prevent related weeds from pollinating crops. Repeated backcrossing with weeds as pollen parents results in gene establishment in the weeds. Transgenic mitigation relies on coupling crop protection traits in a tandem construct with traits that lower the fitness of the related weeds. Mitigation traits can be morphological (dwarfing, no seed shatter) or chemical (sensitivity to a chemical used later in a rotation). Tandem mitigation traits are genetically linked and will move together. Mitigation traits can also be spread by inserting them in multicopy transposons which disperse faster than the crop protection genes in related weeds. Thus, there are gene flow risks mainly to weeds from some crop protection traits; risks that can and should be dealt with.
Collapse
|
4
|
Lombardo L. Genetic use restriction technologies: a review. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:995-1005. [PMID: 25185773 DOI: 10.1111/pbi.12242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 05/23/2023]
Abstract
Genetic use restriction technologies (GURTs), developed to secure return on investments through protection of plant varieties, are among the most controversial and opposed genetic engineering biotechnologies as they are perceived as a tool to force farmers to depend on multinational corporations' seed monopolies. In this work, the currently proposed strategies are described and compared with some of the principal techniques implemented for preventing transgene flow and/or seed saving, with a simultaneous analysis of the future perspectives of GURTs taking into account potential benefits, possible impacts on farmers and local plant genetic resources (PGR), hypothetical negative environmental issues and ethical concerns related to intellectual property that have led to the ban of this technology.
Collapse
Affiliation(s)
- Luca Lombardo
- Department of Crop Systems, Forestry and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
5
|
Gressel J, Valverde BE. A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds. PEST MANAGEMENT SCIENCE 2009; 65:723-31. [PMID: 19367567 DOI: 10.1002/ps.1754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transgenic herbicide-resistant rice is needed to control weeds that have evolved herbicide resistance, as well as for the weedy (feral, red) rice problem, which has been exacerbated by shifting to direct seeding throughout the world-firstly in Europe and the Americas, and now in Asia, as well as in parts of Africa. Transplanting had been the major method of weedy rice control. Experience with imidazolinone-resistant rice shows that gene flow to weedy rice is rapid, negating the utility of the technology. Transgenic technologies are available that can contain herbicide resistance within the crop (cleistogamy, male sterility, targeting to chloroplast genome, etc.), but such technologies are leaky. Mitigation technologies tandemly couple (genetically link) the gene of choice (herbicide resistance) with mitigation genes that are neutral or good for the crop, but render hybrids with weedy rice and their offspring unfit to compete. Mitigation genes confer traits such as non-shattering, dwarfism, no secondary dormancy and herbicide sensitivity. It is proposed to use glyphosate and glufosinate resistances separately as genes of choice, and glufosinate, glyphosate and bentazone susceptibilities as mitigating genes, with a six-season rotation where each stage kills transgenic crop volunteers and transgenic crop x weed hybrids from the previous season.
Collapse
|
6
|
Kempe K, Rubtsova M, Gils M. Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:283-97. [PMID: 19222807 DOI: 10.1111/j.1467-7652.2008.00399.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Engineering traits by the assembly of non-functional gene products is a promising tool for modern plant biotechnology. In this article, we describe the establishment of male sterility and herbicide resistance in wheat (Triticum aestivum) by complementing inactive precursor protein fragments through a split intein system. N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from the Synechocystis sp. gene DnaB and delivered into the wheat genome via biolistic particle bombardment. Both barnase fragments were expressed under the control of a tapetum-specific promoter. High efficiency of the split barnase system was achieved by introducing GGGGS linkers between the fusion domains of the assembled protein. Depending on the vector version that was transformed, up to 51% of primary transformed plants produced sterile pollen. In the F(1) progeny, the male-sterile phenotype segregated with both barnase gene fragments. Expression of the cytotoxic barnase in the tapetum did not apparently affect the vegetative phenotype and remained stable under increased temperatures. In addition, the reconstitution of sulphonylurea resistance was achieved by DnaE intein-mediated assembly of a mutated acetolactate synthase (ALS) protein from rice. The impacts of the technical advances revealed in this study on the concepts for trait control, transgene containment and hybrid breeding are discussed.
Collapse
Affiliation(s)
- Katja Kempe
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben, Corrensstr. 3, 06466 Gatersleben, Germany
| | | | | |
Collapse
|
7
|
Singh DP, Jermakow AM, Swain SM. Preliminary development of a genetic strategy to prevent transgene escape by blocking effective pollen flow from transgenic plants. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1055-1060. [PMID: 32689435 DOI: 10.1071/fp06323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 10/15/2007] [Indexed: 06/11/2023]
Abstract
Genetic modification (GM) of plants has great potential in the production of food and industrial compounds, and in molecular pharming. One of the greatest public concerns regarding this technology is effective pollen flow, in which wind- or insect-borne transgenic pollen is able to fertilise either non-GM crops of the same species, or closely related weed species, and lead to viable seed formation. In this paper we describe a novel concept, based on epigenetic inheritance (imprinting) and post-transcriptional gene silencing (PTGS)/RNA interference (RNAi), designed to prevent transgene escape via pollen flow from transgenic plants. A key advantage of this strategy is that it would allow all seeds from self-pollinated transgenic plants to be harvested and re-sown, without the need for specific treatments, while retaining all of the transgenes present in the parent. Thus, this strategy is not a Genetic Use Restriction Technology (GURT) and if implemented would not prevent seed saving by end-users.
Collapse
|
8
|
Blais DR, Altosaar I. Humanizing infant milk formula to decrease postnatal HIV transmission. Trends Biotechnol 2007; 25:376-84. [PMID: 17659799 DOI: 10.1016/j.tibtech.2007.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/21/2007] [Accepted: 07/18/2007] [Indexed: 01/03/2023]
Abstract
There are currently no safe methods for feeding babies born from the 16 million HIV-infected women living in resource-constrained countries. Breast milk can transmit HIV, and formula feeding can lead to gastrointestinal illnesses owing to unsanitary conditions and the composition of milk formulations. There is therefore a need to ensure that breast milk substitutes provide optimal health outcomes. Given that the immune properties of several breast milk proteins are known, transgenic food crops could facilitate inexpensive and safe reconstitution of the beneficial breast milk proteome in infant formulae, while keeping the HIV virus at bay. At least seven breast milk immune proteins have already been produced in food crops, and dozens more proteins could potentially be produced if fortified formula proves effective in nursing newborns born to HIV-infected mothers.
Collapse
Affiliation(s)
- David R Blais
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
9
|
Hills MJ, Hall L, Arnison PG, Good AG. Genetic use restriction technologies (GURTs): strategies to impede transgene movement. TRENDS IN PLANT SCIENCE 2007; 12:177-83. [PMID: 17360223 DOI: 10.1016/j.tplants.2007.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/22/2007] [Accepted: 02/26/2007] [Indexed: 05/14/2023]
Abstract
No clear consensus has emerged in the debate about the risks posed by transgenic crops and how to assess these risks accurately. In the meantime, interest is growing in strategies to impede transgene movement. This attention is being driven, in part, by expanding interest in using transgenic crops to produce pharmaceutical and industrial products. Potential strategies to impede transgene movement have been published in the scientific literature, and numerous patents have been submitted; however, the efficacy of such strategies has still to be evaluated in a field situation. In this review, we discuss some of the genetic strategies that could be used to restrict the spread of transgenes, although at present many of these technologies are still largely at a theoretical stage of development.
Collapse
Affiliation(s)
- Melissa J Hills
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6H 2X6, Canada
| | | | | | | |
Collapse
|
10
|
Chang-Ming L, Ling X, Yu-Hua W. Transgenic rapeseed: environmental release and its biosafety relevance in China. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/cjb200580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractResearch into, and the environmental release of, transgenic rapeseed in China are overviewed and the environmental risks are assessed, focusing on competitive survival ability, gene dispersal and biodiversity impact of transgenic rapeseed. It is concluded that transgenic rapeseed has a higher probability of gene dispersal when compared with other major crops. Brassica napus may transfer genes through pollen and seeds to vegetables and wild species of B. rapa and B. juncea, for which China is the biodiversity centre and also the country of highest consumption. It is considered that the risk of gene dispersal is present, but can be reduced to an acceptable limit. Commercialization of transgenic rapeseed should not be stopped, but should be built on a safe and sound basis by building a reasonable management system. Awarenes of biosafety considerations for transgenic rapeseed should be strengthened, and a technical platform of genetically modified organism (GMO) detection and monitoring should be properly established. Countermeasures against environmental risks are also discussed.
Collapse
|
11
|
Abstract
L’adoption à grande échelle des cultures transgéniques depuis dix ans a soulevé de nombreuses questions quant aux impacts possibles de ces nouvelles lignées végétales sur les écosystèmes agricoles et naturels. Des questions ont été soulevées, en particulier, sur le devenir des transgènes dans le milieu et sur une possible « pollution » du patrimoine génétique des organismes vivants à l’échelle des écosystèmes. Après une énumération des impacts environnementaux associés aux végétaux transgéniques, cet article de synthèse dresse un aperçu des connaissances actuelles sur le devenir – ou la migration – des transgènes dans le milieu. Les phénomènes d’hybridation et d’introgression génique en direction d’espèces ou de lignées apparentées sont d’abord abordés, après quoi sont considérés les phénomènes de transfert horizontal des transgènes en direction d’organismes non apparentés. Un article complémentaire publié dans ce même numéro traite de l’impact environnemental des protéines recombinantes encodées par les transgènes (Michaud 2005).
Collapse
|
12
|
Al-Ahmad H, Galili S, Gressel J. Poor competitive fitness of transgenically mitigated tobacco in competition with the wild type in a replacement series. PLANTA 2005; 222:372-85. [PMID: 15931502 DOI: 10.1007/s00425-005-1540-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/02/2005] [Indexed: 05/02/2023]
Abstract
Transgenic crops can interbreed with other crop cultivars or with related weeds, increasing the potential of the hybrid progeny for competition. To prevent generating competitive hybrids, we previously tested tobacco (Nicotiana tabacum L.) as a model for validating the transgenic mitigation (TM) concept using tandem constructs where a gene of choice is linked to mitigating genes that are positive or neutral to the crop, but deleterious to a recipient under competition. Here, we examine the efficacy of the TM concept at various ratios of transgenically mitigated tobacco in competition with the wild type tobacco in an ecological replacement series. The dwarf/herbicide-resistant TM transgenic plants cultivated alone under self-competition grew well and formed many more flowers than the tall wild type, which is an indication of greater reproductivity. In contrast to the wild type, TM flowering was almost completely suppressed in mixed cultures at most TM/wild type ratios up to 75% transgenic, as the TM plants were extremely unfit to reproduce. In addition, homozygous TM progeny had an even lower competitive fitness against the wild type than hemizygous/homozygous TM segregants. Thus, the TM technology was effective in reducing the risk of transgene establishment of intraspecific transgenic hybrids at different competitive levels, at the close spacing typical of weed populations.
Collapse
Affiliation(s)
- Hani Al-Ahmad
- Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
13
|
Davison J. Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 2005; 32:639-50. [PMID: 15973534 DOI: 10.1007/s10295-005-0242-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
While the possible advantages of bioremediation and phytoremediation, by both recombinant microbes and plants, have been extensively reviewed, the biosafety concerns have been less extensively treated. This article reviews the possible risks associated with the use of recombinant bacteria and plants for bioremediation, with particular emphasis on ways in which molecular genetics could contribute to risk mitigation. For example, genetic techniques exist that permit the site-specific excision of unnecessary DNA, so that only the transgenes of interest remain. Other mechanisms exist whereby the recombinant plants or bacteria contain conditional suicide genes that may be activated under certain conditions. These methods act to prevent the spread and survival of the transgenic bacteria or plants in the environment, and to prevent horizontal gene flow to wild or cultivated relatives. Ways in which these genetic technologies may be applied to risk mitigation in bioremediation and phytoremediation are discussed.
Collapse
Affiliation(s)
- John Davison
- Laboratory of Cellular Biology, Institut National de la Recherche Agronomique, Route de St Cyr, Versailles, 78026, France.
| |
Collapse
|
14
|
Kuvshinov V, Anisimov A, Yahya BM, Kanerva A. Double recoverable block of function--a molecular control of transgene flow with enhanced reliability. ENVIRONMENTAL BIOSAFETY RESEARCH 2005; 4:103-12. [PMID: 16402665 DOI: 10.1051/ebr:2005015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Despite all the achieved benefits and potential promises from recombinant DNA technology of plants, the potential of transgene spread to wild relatives and to non-transgenic crops is still of a wide-spread concern. We continue to develop recoverable block of function (RBF) technology for gene flow control in transgenic plants. RBF consists of two elements: blocking construct (BC) and recovering construct (RC). Natural expression of the BC (barnase) in embryos and sprouts blocks a physiological function essential for survival or reproduction of the transgenic plant (mRNA synthesis and germination). Artificially induced (heat shock treatment) RC (barstar) recovers the blocked function enabling transgenic plant to reproduce. In natural conditions without artificial induction of RC the transgenic plant can not reproduce itself. However, a single RBF may still fail because of the potential for mutations and gene silencing of the inserted constructs. To minimize the frequency of such an inactivation, we developed a double RBF, in which a single insert comprising two BC, flanking a transgene of interest, was constructed and transferred into tobacco (Nicotiana tabacum (L.)). We used a barstar gene driven by a heat shock or 35S promoter as a RC, and two different promoters were used for barnase genes in the BC. One BC contained a seed germination specific cysteine endopeptidase promoter (BC1) and the other contained the cruciferin promoter (BC2), which is active during fruit development and embryogenesis. Three alternative constructs of double RBF are described, and a segregating two-insert as well as a one-insert cassettes, were compared. One-insert system comprising two BC with different nucleotide sequences but degenerate codons that expressed the same Barnase protein appeared to be the most reliable choice. The biological and molecular data obtained suggest that double RBF is a potent transgene containment technique that can safely be applied in agriculture.
Collapse
Affiliation(s)
- Viktor Kuvshinov
- UniCrop Ltd, Helsinki Business & Science Park, Viikinkaari 4, FIN-00790, Helsinki, Finland.
| | | | | | | |
Collapse
|
15
|
Légère A. Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L) as a case study. PEST MANAGEMENT SCIENCE 2005; 61:292-300. [PMID: 15593291 DOI: 10.1002/ps.975] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Data from the literature and recent experiments with herbicide-resistant (HR) canola (Brassica napus L) repeatedly confirm that genes and transgenes will flow and hybrids will form if certain conditions are met. These include sympatry with a compatible relative (weedy, wild or crop), synchrony of flowering, successful fertilization and viable offspring. The chance of these events occurring is real; however, it is generally low and varies with species and circumstances. Plants of the same species (non-transgenic or with a different HR transgene) in neighbouring fields may inherit the new HR gene, potentially generating plants with single and multiple HR. For canola, seed losses at harvest and secondary dormancy ensures the persistence over time of the HR trait(s) in the seed bank, and the potential presence of crop volunteers in subsequent crops. Although canola has many wild/weedy relatives, the risk of gene flow is quite low for most of these species, except with Brassica rapa L. Introgression of genes and transgenes in B rapa populations occurs with apparently little or no fitness costs. Consequences of HR canola gene flow for the agro-ecosystem include contamination of seed lots, potentially more complex and costly control strategy, and limitations in cropping system design. Consequences for non-agricultural habitats may be minor but appear largely undocumented.
Collapse
Affiliation(s)
- Anne Légère
- Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, 2560 boul Hochelaga, Sainte-Foy, QC, G1V 2J3, Canada.
| |
Collapse
|
16
|
Schäfer UA, Hegedus DD, Bate NJ, Hannoufa A. A ROS repressor-mediated binary regulation system for control of gene expression in transgenic plants. Transgenic Res 2004; 13:109-18. [PMID: 15198199 DOI: 10.1023/b:trag.0000026058.84385.5b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We describe a novel binary system to control transgene expression in plants. The system is based on the prokaryotic repressor, ROS, from Agrobacterium tumefaciens, optimized for plant codon usage and for nuclear targeting (synROS). The ROS protein bound in vitro to double stranded DNA comprising the ROS operator sequence, as well as to single stranded ROS operator DNA sequences, in an orientation-independent manner. A synROS-GUS fusion protein was localized to the nucleus, whereas wtROS-GUS fusion remained in the cytoplasm. The ability of synROS to repress transgene expression was validated in transgenic Arabidopsis thaliana and Brassica napus. When expressed constitutively under the actin2 promoter, synROS repressed the expression of the reporter gene gusA linked to a modified CaMV35S promoter containing ROS operator sequences in the vicinity of the TATA box and downstream of the transcription initiation signal. Repression ranged from 32 to 87% in A. thaliana, and from 23 to 76% in B. napus. These results are discussed in relation to the potential application of synROS in controlling the expression of transgenes and endogenous genes in plants and other organisms.
Collapse
Affiliation(s)
- Ulrike A Schäfer
- Molecular Genetics Section, Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Sask., Canada S7N 0X2
| | | | | | | |
Collapse
|
17
|
Abstract
Some transgenic crops can introgress genes into other varieties of the crop, to related weeds or themselves remain as 'volunteer' weeds, potentially enhancing the invasiveness or weediness of the resulting offspring. The presently suggested mechanisms for transgene containment allow low frequency of gene release (leakage), requiring the mitigation of continued spread. Transgenic mitigation (TM), where a desired primary gene is tandemly coupled with mitigating genes that are positive or neutral to the crop but deleterious to hybrids and their progeny, was tested as a mechanism to mitigate transgene introgression. Dwarfism, which typically increases crop yield while decreasing the ability to compete, was used as a mitigator. A construct of a dominant ahasR (acetohydroxy acid synthase) gene conferring herbicide resistance in tandem with the semidominant mitigator dwarfing Delta gai (gibberellic acid-insensitive) gene was transformed into tobacco (Nicotiana tabacum). The integration and the phenotypic stability of the tandemly linked ahasR and Delta gai genomic inserts in later generations were confirmed by polymerase chain reaction. The hemizygous semidwarf imazapyr-resistant TM T1 (= BC1) transgenic plants were weak competitors when cocultivated with wild type segregants under greenhouse conditions and without using the herbicide. The competition was most intense at close spacings typical of weed offspring. Most dwarf plants interspersed with wild type died at 1-cm, > 70% at 2.5-cm and 45% at 5-cm spacing, and the dwarf survivors formed no flowers. At 10-cm spacing, where few TM plants died, only those TM plants growing at the periphery of the large cultivation containers formed flowers, after the wild type plants terminated growth. The highest reproductive TM fitness relative to the wild type was 17%. The results demonstrate the suppression of crop-weed hybrids when competing with wild type weeds, or such crops as volunteer weeds, in seasons when the selector (herbicide) is not used. The linked unfitness would be continuously manifested in future generations, keeping the transgene at a low frequency.
Collapse
Affiliation(s)
- Hani Al-Ahmad
- Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
18
|
Stewart CN, Halfhill MD, Warwick SI. Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 2003; 4:806-17. [PMID: 14526376 DOI: 10.1038/nrg1179] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transgenes engineered into annual crops could be unintentionally introduced into the genomes of their free-living wild relatives. The fear is that these transgenes might persist in the environment and have negative ecological consequences. Are some crops or transgenic traits of more concern than others? Are there natural genetic barriers to minimize gene escape? Can the genetic transformation process be exploited to produce new barriers to gene flow? Questions abound, but luckily so do answers.
Collapse
Affiliation(s)
- C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | |
Collapse
|