1
|
Zamora-Vinaroz AM, de Vera P, Abril I, Garcia-Molina R. Simulation of depth-dose curves and water equivalent ratios of energetic proton beams in cortical bone. Phys Rev E 2024; 110:034405. [PMID: 39425433 DOI: 10.1103/physreve.110.034405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/14/2024] [Indexed: 10/21/2024]
Abstract
We have determined the depth-dose curve, penetration range, and water equivalent ratio for proton beams of clinical energies in cortical bone by means of a detailed and accurate simulation that combines molecular dynamics and Monte Carlo techniques. The fundamental input quantities (stopping power and energy loss straggling) for the simulation were obtained from a reliable electronic excitation spectrum of the condensed-phase target, which takes into account the organic and mineral phases that form it. Our simulations with these inputs, which are in excellent agreement with the scarce data available for a cortical bone target, deviate from simulations performed using other stopping quantities, such as those provided by the International Commission on Radiation Units and Measurements in its widely used Report No. 49 [M. J. Berger et al., Stopping powers and ranges for protons and alpha particles, International Commission on Radiation Units and Measurements, Bethesda, Maryland, 1993]. The results of this paper emphasize the importance of an accurate determination of the stopping quantities of cortical bone to advance towards the millimetric precision for the proton penetration ranges and deposited dose needed in radiotherapy.
Collapse
|
2
|
Reshetnyak I, Lorin A, Pasquarello A. Many-body screening effects in liquid water. Nat Commun 2023; 14:2705. [PMID: 37169764 PMCID: PMC10175292 DOI: 10.1038/s41467-023-38420-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
The screening arising from many-body excitations is a crucial quantity for describing absorption and inelastic X-ray scattering (IXS) of materials. Similarly, the electron screening plays a critical role in state-of-the-art approaches for determining the fundamental band gap. However, ab initio studies of the screening in liquid water have remained limited. Here, we use a combined analysis based on the Bethe-Salpeter equation and time-dependent density functional theory. We first show that absorption spectra at near-edge energies are insufficient to assess the accuracy by which the screening is described. Next, when the energy range under scrutiny is extended, we instead find that the IXS spectra are highly sensitive and allow for the selection of the optimal theoretical scheme. This leads to good agreement with experiment over a large range of transferred energies and momenta, and enables establishing the elusive fundamental band gap of liquid water at 9.3 eV.
Collapse
Affiliation(s)
- Igor Reshetnyak
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Arnaud Lorin
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Margis S, Kyriakou I, Incerti S, Bordage MC, Emfietzoglou D. Sub-keV corrections to binary encounter cross section models for electron ionization of liquid water with application to the Geant4-DNA Monte Carlo code. Appl Radiat Isot 2023; 194:110693. [PMID: 36731390 DOI: 10.1016/j.apradiso.2023.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The electron ionization cross section of water is one of the most important input in Monte Carlo studies of cellular radiobiological effects. Analytical cross section models of the binary-encounter type have the potential of reducing simulation time and facilitate application to a variety of biological materials (other than water). The Binary-Encounter-Bethe (BEB) and Binary-Encounter-Dipole (BED) models of NIST are perhaps the most popular of such models giving reliable results for atoms and molecules in the gas-phase over a wide energy range. However, the use of such models to sub-keV electron energies in liquid water raises concerns due to the neglect of condensed phase effects that leads to a significant overestimation when compared to medium-specific dielectric models. PURPOSE To modify the BEB and BED models towards better agreement with the recommended low-energy dielectric model of Geant4-DNA (Option 4). To implement the new modifications to the existing BEB model of the Option 6 physics constructor of Geant4-DNA and re-evaluate fundamental transport quantities for sub-keV electrons. METHODS In analogy to a Yukawa potential a simple, yet physically-motivated, modification of the Burgess correction term is proposed to account for the reduction of the Coulomb interaction due to the polarizability of the target. The magnitude of the correction is guided by the dielectric-based ionization cross section implemented in Option 4. RESULTS Differential, total and stopping ionization cross sections for low-energy electrons in liquid water are presented. When combined with the Vriens correction (which is not included in Option 6), the proposed modification to the BEB and BED models brings the ionization and stopping cross sections in much better agreement against those used in the Option 4 dielectric model of Geant4-DNA, with up to 30% and 10% deviation, respectively. Implementation of the new correction to the Option 6 constructor of Geant4-DNA and re-evaluation of fundamental transport quantities, such as electron penetration ranges and dose-point-kernels, reduced the discrepancies from Option 4 at sub-keV energies from 20 to 100% (or more) to well below 10% in most cases. CONCLUSIONS A simple modification to the BEB and BED analytic models was found to improve their performance for sub-keV electrons in liquid water medium. Implementation of the new modification to the Option 6 constructor of Geant4-DNA significantly improved the agreement with the recommended low-energy Option 4 constructor for a variety of fundamental quantities related to electron transport.
Collapse
Affiliation(s)
- Stefanos Margis
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece
| | - Ioanna Kyriakou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece
| | - Sebastien Incerti
- Bordeaux University, CNRS/IN2P3, CENBG, UMR 5797, F-33170, Gradignan, France
| | | | - Dimitris Emfietzoglou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece.
| |
Collapse
|
4
|
Pietrzak M, Nettelbeck H, Perrot Y, Villagrasa C, Bancer A, Bug M, Incerti S. Intercomparison of nanodosimetric distributions in nitrogen simulated with Geant4 and PTra track structure codes. Phys Med 2022; 102:103-109. [PMID: 36162229 DOI: 10.1016/j.ejmp.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
To facilitate the use of Geant4-DNA for radiation transport simulations in micro- and nanodosimeters, which are physically operated with tissue-equivalent gases such as nitrogen (and propane), this work aims to extend the cross section data available in Geant4-DNA to include those of nitrogen for electron energies ranging from 1 MeV down to the ionisation threshold. To achieve this, interaction cross section data for nitrogen that have been used with the in-house PTB PTra track structure code have been implemented in the current state-of-the-art Geant4-DNA simulation toolkit. An intercomparison has been performed between the two codes to validate this implementation. To quantify the agreement between the cross section models for nitrogen adopted in PTra and those implemented in Geant4-DNA, the simulation results of both codes were analysed using three physical parameters describing the ionisation cluster size distribution (ICSD): mean ionisation cluster size, variance of the cluster size and the probability to obtain a single ionisation within the target. Statistical analysis of the results indicates that the interaction cross section models for nitrogen used in PTra (elastic scattering, impact ionisations and electronic excitations) have been successfully implemented in Geant4-DNA. In addition, simulated ICSDs were compared to those measured with the Jet Counter nanodosimeter for energies between 100 and 2000 eV. For greater energies, the ICRP data for LET and particle range were used as a reference. The modified Geant4-DNA code and data successfully passed all these benchmarks fulfilling the requirement for their public release in the next version of the Geant4 toolkit.
Collapse
Affiliation(s)
- Marcin Pietrzak
- National Centre for Nuclear Research (NCBJ), Andrzeja Sołtana 7, 05400 Otwock, Poland; European Radiation Dosimetry Group e.V. (Eurados), Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany.
| | - Heidi Nettelbeck
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany; European Radiation Dosimetry Group e.V. (Eurados), Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 31 Avenue de la Division Leclerc, 92260 Fontenay-Aux-Roses, France; European Radiation Dosimetry Group e.V. (Eurados), Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany; Geant4-DNA Collaboration
| | - Carmen Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 31 Avenue de la Division Leclerc, 92260 Fontenay-Aux-Roses, France; European Radiation Dosimetry Group e.V. (Eurados), Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany; Geant4-DNA Collaboration
| | - Aleksandr Bancer
- National Centre for Nuclear Research (NCBJ), Andrzeja Sołtana 7, 05400 Otwock, Poland; European Radiation Dosimetry Group e.V. (Eurados), Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Marion Bug
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany; European Radiation Dosimetry Group e.V. (Eurados), Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany
| | - Sebastien Incerti
- Université de Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 19 Chemin du Solarium, 33170 Gradignan, France; Geant4-DNA Collaboration
| |
Collapse
|
5
|
A model for Geant4-DNA to simulate ionization and excitation of liquid water by protons travelling above 100 MeV. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Energy Deposition around Swift Carbon-Ion Tracks in Liquid Water. Int J Mol Sci 2022; 23:ijms23116121. [PMID: 35682798 PMCID: PMC9181504 DOI: 10.3390/ijms23116121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Energetic carbon ions are promising projectiles used for cancer radiotherapy. A thorough knowledge of how the energy of these ions is deposited in biological media (mainly composed of liquid water) is required. This can be attained by means of detailed computer simulations, both macroscopically (relevant for appropriately delivering the dose) and at the nanoscale (important for determining the inflicted radiobiological damage). The energy lost per unit path length (i.e., the so-called stopping power) of carbon ions is here theoretically calculated within the dielectric formalism from the excitation spectrum of liquid water obtained from two complementary approaches (one relying on an optical-data model and the other exclusively on ab initio calculations). In addition, the energy carried at the nanometre scale by the generated secondary electrons around the ion's path is simulated by means of a detailed Monte Carlo code. For this purpose, we use the ion and electron cross sections calculated by means of state-of-the art approaches suited to take into account the condensed-phase nature of the liquid water target. As a result of these simulations, the radial dose around the ion's path is obtained, as well as the distributions of clustered events in nanometric volumes similar to the dimensions of DNA convolutions, contributing to the biological damage for carbon ions in a wide energy range, covering from the plateau to the maximum of the Bragg peak.
Collapse
|
7
|
Koval NE, Koval P, Da Pieve F, Kohanoff J, Artacho E, Emfietzoglou D. Inelastic scattering of electrons in water from first principles: cross sections and inelastic mean free path for use in Monte Carlo track-structure simulations of biological damage. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 35619995 DOI: 10.5061/dryad.d51c5b057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Modelling the inelastic scattering of electrons in water is fundamental, given their crucial role in biological damage. In Monte Carlo track-structure (MC-TS) codes used to assess biological damage, the energy loss function (ELF), from which cross sections are extracted, is derived from different semi-empirical optical models. Only recently have first ab initio results for the ELF and cross sections in water become available. For benchmarking purpose, in this work, we present ab initio linear-response time-dependent density functional theory calculations of the ELF of liquid water. We calculated the inelastic scattering cross sections, inelastic mean free paths, and electronic stopping power and compared our results with recent calculations and experimental data showing a good agreement. In addition, we provide an in-depth analysis of the contributions of different molecular orbitals, species and orbital angular momenta to the total ELF. Moreover, we present single-differential cross sections computed for each molecular orbital channel, which should prove useful for MC-TS simulations.
Collapse
Affiliation(s)
| | - Peter Koval
- Simune Atomistics SL, 20018 Donostia-San Sebastián, Spain
| | - Fabiana Da Pieve
- Royal Belgian Institute for Space Aeronomy BIRA-IASB, 1180 Brussels, Belgium
| | - Jorge Kohanoff
- Queen's University Belfast, Belfast BT7 1NN, UK
- Instituto de Fusion Nuclear 'Guillermo Velarde', Universidad Politecnica de Madrid, 28006 Madrid, Spain
| | - Emilio Artacho
- CIC Nanogune BRTA, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center DIPC, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece
| |
Collapse
|
8
|
Koval NE, Koval P, Da Pieve F, Kohanoff J, Artacho E, Emfietzoglou D. Inelastic scattering of electrons in water from first principles: cross sections and inelastic mean free path for use in Monte Carlo track-structure simulations of biological damage. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212011. [PMID: 35619995 PMCID: PMC9115040 DOI: 10.1098/rsos.212011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
Modelling the inelastic scattering of electrons in water is fundamental, given their crucial role in biological damage. In Monte Carlo track-structure (MC-TS) codes used to assess biological damage, the energy loss function (ELF), from which cross sections are extracted, is derived from different semi-empirical optical models. Only recently have first ab initio results for the ELF and cross sections in water become available. For benchmarking purpose, in this work, we present ab initio linear-response time-dependent density functional theory calculations of the ELF of liquid water. We calculated the inelastic scattering cross sections, inelastic mean free paths, and electronic stopping power and compared our results with recent calculations and experimental data showing a good agreement. In addition, we provide an in-depth analysis of the contributions of different molecular orbitals, species and orbital angular momenta to the total ELF. Moreover, we present single-differential cross sections computed for each molecular orbital channel, which should prove useful for MC-TS simulations.
Collapse
Affiliation(s)
| | - Peter Koval
- Simune Atomistics SL, 20018 Donostia-San Sebastián, Spain
| | - Fabiana Da Pieve
- Royal Belgian Institute for Space Aeronomy BIRA-IASB, 1180 Brussels, Belgium
| | - Jorge Kohanoff
- Queen’s University Belfast, Belfast BT7 1NN, UK
- Instituto de Fusion Nuclear ‘Guillermo Velarde’, Universidad Politecnica de Madrid, 28006 Madrid, Spain
| | - Emilio Artacho
- CIC Nanogune BRTA, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center DIPC, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Shinotsuka H, Tanuma S, Powell CJ. Calculations of electron inelastic mean free paths. XIII. Data for 14 organic compounds and water over the 50 eV to 200 keV range with the relativistic full Penn algorithm. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroshi Shinotsuka
- Materials Data Platform Center National Institute for Materials Science Ibaraki Japan
| | - Shigeo Tanuma
- Materials Data Platform Center National Institute for Materials Science Ibaraki Japan
| | - Cedric J. Powell
- Associate, Materials Measurement Science Division National Institute of Standards and Technology Gaithersburg MD USA
| |
Collapse
|
10
|
Villagrasa C, Rabus H, Baiocco G, Perrot Y, Parisi A, Struelens L, Qiu R, Beuve M, Poignant F, Pietrzak M, Nettelbeck H. Intercomparison of micro- and nanodosimetry Monte Carlo simulations: An approach to assess the influence of different cross-sections for low-energy electrons on the dispersion of results. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2021.106675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Moazzami Gudarzi M, Aboutalebi SH. Self-consistent dielectric functions of materials: Toward accurate computation of Casimir-van der Waals forces. SCIENCE ADVANCES 2021; 7:7/22/eabg2272. [PMID: 34039608 PMCID: PMC8153719 DOI: 10.1126/sciadv.abg2272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Research on theoretical calculation of Casimir-van der Waals (vdW) forces is characterized by a great number of inconsistencies and conflicting reports with widely differing results for many known materials, including water, contradicting experimental measurements. Despite its importance for conceptual advances in both fundamental aspects and practical applications, a universal framework for the accurate determination of Casimir-vdW forces is lacking. Here, we propose a universal theoretical platform for computing Casimir-vdW forces, accounting for the electronic dielectric constant, optical bandgap, density, and chemical composition. Using this methodology, we determine the dielectric function for 55 materials, over a wide range of photon energies, covering an extensive list of common metals, organic and inorganic semiconductors, and insulators. Internal consistency of the compiled data is validated using optical sum rules and Kramers-Kronig relations. We demonstrate that the calculated vdW forces based on these data match remarkably well with the experimentally measured vdW forces.
Collapse
Affiliation(s)
| | - Seyed Hamed Aboutalebi
- Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, Tehran 19395-5531, Iran.
| |
Collapse
|
12
|
Dhali R, Phan Huu DKA, Terenziani F, Sissa C, Painelli A. Thermally activated delayed fluorescence: A critical assessment of environmental effects on the singlet-triplet energy gap. J Chem Phys 2021; 154:134112. [PMID: 33832272 DOI: 10.1063/5.0042058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The effective design of dyes optimized for thermally activated delayed fluorescence (TADF) requires the precise control of two tiny energies: the singlet-triplet gap, which has to be maintained within thermal energy, and the strength of spin-orbit coupling. A subtle interplay among low-energy excited states having dominant charge-transfer and local character then governs TADF efficiency, making models for environmental effects both crucial and challenging. The main message of this paper is a warning to the community of chemists, physicists, and material scientists working in the field: the adiabatic approximation implicitly imposed to the treatment of fast environmental degrees of freedom in quantum-classical and continuum solvation models leads to uncontrolled results. Several approximation schemes were proposed to mitigate the issue, but we underline that the adiabatic approximation to fast solvation is inadequate and cannot be improved; rather, it must be abandoned in favor of an antiadiabatic approach.
Collapse
Affiliation(s)
- Rama Dhali
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - D K Andrea Phan Huu
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Terenziani
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Anna Painelli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Malerz S, Trinter F, Hergenhahn U, Ghrist A, Ali H, Nicolas C, Saak CM, Richter C, Hartweg S, Nahon L, Lee C, Goy C, Neumark DM, Meijer G, Wilkinson I, Winter B, Thürmer S. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Phys Chem Chem Phys 2021; 23:8246-8260. [PMID: 33710216 DOI: 10.1039/d1cp00430a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the effects of electron collision and indirect ionization processes, occurring at photoexcitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes. The associated cross-over point from predominant (known) electronically inelastic to quasi-elastic scattering seems to arise at surprisingly large electron kinetic energies, of approximately 10-14 eV. Concomitantly, we present evidence for the onset of indirect, autoionization phenomena (occurring via superexcited states) within a few eV of the primary and secondary ionization thresholds. These processes are inferred to compete with the direct ionization channels and primarily produce low-energy photoelectrons at photon and electron impact excitation energies below ∼15 eV. Our results highlight that vibrational inelastic electron scattering processes and neutral photoexcitation and autoionization channels become increasingly important when photon and electron kinetic energies are decreased towards the ionization threshold. Correspondingly, we show that for neat water and aqueous solutions, great care must be taken when quantitatively analyzing photoelectron spectra measured too close to the ionization threshold. Such care is essential for the accurate determination of solvent and solute ionization energies as well as photoelectron branching ratios and peak magnitudes.
Collapse
Affiliation(s)
- Sebastian Malerz
- Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Taioli S, Trevisanutto PE, de Vera P, Simonucci S, Abril I, Garcia-Molina R, Dapor M. Relative Role of Physical Mechanisms on Complex Biodamage Induced by Carbon Irradiation. J Phys Chem Lett 2021; 12:487-493. [PMID: 33373242 DOI: 10.1021/acs.jpclett.0c03250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effective use of swift ion beams in cancer treatment (known as hadrontherapy) as well as appropriate protection in manned space missions rely on the accurate understanding of the energy delivery to cells that damages their genetic information. The key ingredient characterizing the response of a medium to the perturbation induced by charged particles is its electronic excitation spectrum. By using linear-response time-dependent density functional theory, we obtained the energy and momentum transfer excitation spectrum (the energy-loss function, ELF) of liquid water (the main constituent of biological tissues), which was in excellent agreement with experimental data. The inelastic scattering cross sections obtained from this ELF, together with the elastic scattering cross sections derived by considering the condensed phase nature of the medium, were used to perform accurate Monte Carlo simulations of the energy deposited by swift carbon ions in liquid water and carried away by the generated secondary electrons, producing inelastic events such as ionization, excitation, and dissociative electron attachment (DEA). The latter are strongly correlated with cellular death, which is scored in sensitive volumes with the size of two DNA convolutions. The sizes of the clusters of damaging events for a wide range of carbon-ion energies, from those relevant to hadrontherapy up to those for cosmic radiation, predict with unprecedented statistical accuracy the nature and relative magnitude of the main inelastic processes contributing to radiation biodamage, confirming that ionization accounts for the vast majority of complex damage. DEA, typically regarded as a very relevant biodamage mechanism, surprisingly plays a minor role in carbon-ion induced clusters of harmful events.
Collapse
Affiliation(s)
- Simone Taioli
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Paolo E Trevisanutto
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Center for Information Technology, Bruno Kessler Foundation, 38123 Trento, Italy
| | - Pablo de Vera
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
- Departamento de Física, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain
| | - Stefano Simonucci
- School of Science and Technology, University of Camerino, 62032 Camerino, Italy
- INFN, Sezione di Perugia, 06123 Perugia, Italy
| | - Isabel Abril
- Departament de Física Aplicada, Universitat d'Alacant, 03080 Alacant, Spain
| | - Rafael Garcia-Molina
- Departamento de Física, Centro de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain
| | - Maurizio Dapor
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), 38123 Trento, Italy
| |
Collapse
|
15
|
de Vera P, Abril I, Garcia-Molina R. Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blocks. Phys Chem Chem Phys 2021; 23:5079-5095. [DOI: 10.1039/d0cp04951d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A model is presented for computing electron-impact electronic excitation and ionisation cross-sections for arbitrary condensed-phase biomaterials in a wide energy range, showing a general good agreement with the available experimental data.
Collapse
Affiliation(s)
- Pablo de Vera
- Departamento de Física – Centro de Investigación en Óptica y Nanofísica
- Universidad de Murcia
- Murcia
- Spain
- Currently at European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*)
| | - Isabel Abril
- Departament de Física Aplicada
- Universitat d’Alacant
- Alacant
- Spain
| | - Rafael Garcia-Molina
- Departamento de Física – Centro de Investigación en Óptica y Nanofísica
- Universidad de Murcia
- Murcia
- Spain
| |
Collapse
|
16
|
Yamamoto YI, Suzuki T. Ultrafast Dynamics of Water Radiolysis: Hydrated Electron Formation, Solvation, Recombination, and Scavenging. J Phys Chem Lett 2020; 11:5510-5516. [PMID: 32551690 DOI: 10.1021/acs.jpclett.0c01468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ultrafast formation, solvation, and geminate recombination of hydrated electrons upon vacuum ultraviolet photoexcitation of liquid water and the static and dynamic scavenging by NO3- are investigated using femtosecond time-resolved photoelectron spectroscopy. The solvation time constant for excess electrons is typical of that for liquid water but increases slightly with increasing excitation energy. The electron survival probability for geminate recombination is found to be much lower than the literature values owing to previously unobserved ultrafast geminate recombination in a period of 5 ps. NO3- induces the ultrafast (static) scavenging of photoexcited electronic states of liquid water and the dynamic scavenging of detached electrons with a reaction rate that is dependent on the excitation energy. The formation of hydrated electrons at 7.7 eV is ascribed to a H-atom-transfer process, but it is plausible that additional formation channels open at higher energies.
Collapse
Affiliation(s)
- Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Orrill M, Abele D, Wagner M, LeBlanc S. Ink synthesis and inkjet printing of electrostatically stabilized multilayer graphene nanoshells. J Colloid Interface Sci 2020; 566:454-462. [PMID: 32028207 DOI: 10.1016/j.jcis.2020.01.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Most functional inkjet inks are sterically stabilized nanoparticle dispersions that require a post-printing-process to remove stabilizing materials and gain functionality. This post-process limits material selection and increases fabrication time and complexity for printed devices. By optimizing the electrostatic stability of a carbon nanomaterial dispersed in water or ethylene glycol via pH adjustment, a stable and printable ink should be attainable without a steric stabilizing material and hence the post-process may be avoided. EXPERIMENTS The electrostatic stability of multilayer graphene nanoshells (MGNS)-an inexpensive and net carbon-negative nanomaterial-dispersed in water and ethylene glycol was studied by measuring zeta potential as a function of pH and modeling energetic potentials between particles. Requirements for electrical percolation of printed MGNS were analyzed and corroborated with electrical measurements. FINDINGS Electrostatic stability improved with increased zeta potential caused by an increased pH. Ionic strength also increased with pH, causing strong destabilization. By increasing zeta potential while minimizing ionic strength, the maximum solid-loading of MGNS in DI water and ethylene glycol was increased up to 20%. For the MGNS solid-loading achieved here, electrical percolation occurs with 20-30 consecutively printed layers producing a resistivity of 30 Ω-cm. The inexpensive, environmentally-friendly MGNS are a promising material for printed, flexible electronics.
Collapse
Affiliation(s)
- Michael Orrill
- The George Washington University, 800 22nd St NW Suite 3000, Washington, DC 20052, USA.
| | - Dustin Abele
- The George Washington University, 800 22nd St NW Suite 4000, Washington, DC 20052, USA.
| | - Michael Wagner
- The George Washington University, 800 22nd St NW Suite 4000, Washington, DC 20052, USA.
| | - Saniya LeBlanc
- The George Washington University, 800 22nd St NW Suite 3000, Washington, DC 20052, USA.
| |
Collapse
|
18
|
Flores-Mancera M, Villarrubia JS, Massillon-JL G. Electron Inelastic Mean Free Paths for LiF, CaF 2, Al 2O 3, and Liquid Water from 433 keV down to the Energy Gap. ACS OMEGA 2020; 5:4139-4147. [PMID: 32149243 PMCID: PMC7057712 DOI: 10.1021/acsomega.9b03872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
We report new calculations, which include the influence of the band gap and exciton states, of the electron inelastic mean free path (IMFP) for liquid water, LiF, CaF2, and Al2O3 from the band gap to 433 keV. Among compounds, liquid water is the most studied due to its role in radiobiological research, whereas LiF and CaF2 are the most widely used thermoluminescent dosimeters in environmental monitoring and medical and space dosimetry. Due to its sensitivity, the optically stimulated luminescent dosimeter, Al2O3, has recently begun to be used for personnel monitoring. Previous treatments have modified the integration domain to consider the indistinguishability between the incident electron and the ejected one or the bandgap energy for nonconductors but not to accommodate exciton states within the band gap, and no published IMFP data are available for CaF2. Our calculation was carried out using an electron-beam-solid-state interaction model through the relativistic full Penn algorithm. Integration limits that consider the band gap, the valence band width, and exciton interactions have been used. The results suggest that, at electron energies below 100 eV, the different choices of models for integration limits and the exciton interaction can affect the IMFP by 9-29%. At higher energies, the differences associated with the choice of energy-loss function and other input parameters are around 2.5-7.5%.
Collapse
Affiliation(s)
| | - John S. Villarrubia
- Microsystems
and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Guerda Massillon-JL
- Instituto
de Física, Universidad Nacional Autónoma
de México, 04510 Coyoacán, México
City, México
| |
Collapse
|
19
|
Li WB, Belchior A, Beuve M, Chen YZ, Di Maria S, Friedland W, Gervais B, Heide B, Hocine N, Ipatov A, Klapproth AP, Li CY, Li JL, Multhoff G, Poignant F, Qiu R, Rabus H, Rudek B, Schuemann J, Stangl S, Testa E, Villagrasa C, Xie WZ, Zhang YB. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys Med 2020; 69:147-163. [PMID: 31918367 DOI: 10.1016/j.ejmp.2019.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Targeted radiation therapy has seen an increased interest in the past decade. In vitro and in vivo experiments showed enhanced radiation doses due to gold nanoparticles (GNPs) to tumors in mice and demonstrated a high potential for clinical application. However, finding a functionalized molecular formulation for actively targeting GNPs in tumor cells is challenging. Furthermore, the enhanced energy deposition by secondary electrons around GNPs, particularly by short-ranged Auger electrons is difficult to measure. Computational models, such as Monte Carlo (MC) radiation transport codes, have been used to estimate the physical quantities and effects of GNPs. However, as these codes differ from one to another, the reliability of physical and dosimetric quantities needs to be established at cellular and molecular levels, so that the subsequent biological effects can be assessed quantitatively. METHODS In this work, irradiation of single GNPs of 50 nm and 100 nm diameter by X-ray spectra generated by 50 and 100 peak kilovoltages was simulated for a defined geometry setup, by applying multiple MC codes in the EURADOS framework. RESULTS The mean dose enhancement ratio of the first 10 nm-thick water shell around a 100 nm GNP ranges from 400 for 100 kVp X-rays to 600 for 50 kVp X-rays with large uncertainty factors up to 2.3. CONCLUSIONS It is concluded that the absolute dose enhancement effects have large uncertainties and need an inter-code intercomparison for a high quality assurance; relative properties may be a better measure until more experimental data is available to constrain the models.
Collapse
Affiliation(s)
- W B Li
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - A Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - M Beuve
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - Y Z Chen
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - S Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - W Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - B Gervais
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| | - B Heide
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - N Hocine
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - A Ipatov
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
| | - A P Klapproth
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Y Li
- Department of Engineering Physics, Tsinghua University, Beijing, China; Nuctech Company Limited, Beijing, China
| | - J L Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - G Multhoff
- TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - F Poignant
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - R Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - H Rabus
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - B Rudek
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - J Schuemann
- Massachusetts General Hospital & Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - S Stangl
- TranslaTUM, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - E Testa
- Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3 UMR 5822, Villeurbanne, France
| | - C Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - W Z Xie
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Y B Zhang
- Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
20
|
Dang DTX, Nguyen HTD, Thoai N, Kuo JL, Nguyen NTT, Nguyen-Manh D. Mechano-chemical stability and water effect on gas selectivity in mixed-metal zeolitic imidazolate frameworks: a systematic investigation from van der Waals corrected density functional theory. Phys Chem Chem Phys 2020; 22:1598-1610. [DOI: 10.1039/c9cp04199k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A series of Zn/Cu Zeolitic Imidazolate Frameworks (ZIFs) ZIF-202, -203, and -204 are systematically investigated by Density Functional Theory (DFT) with and without van der Waals (vdW) corrections.
Collapse
Affiliation(s)
- Diem Thi-Xuan Dang
- Center for Innovative Materials and Architectures (INOMAR)
- Vietnam National University – Ho Chi Minh City
- Ho Chi Minh City 721337
- Vietnam
| | - Huong Thi-Diem Nguyen
- Faculty of Chemistry
- University of Science
- Vietnam National University – Ho Chi Minh City
- Ho Chi Minh City 721337
- Vietnam
| | - Nam Thoai
- High Performance Computing Lab and Faculty of Computer Science & Engineering
- University of Technology
- Vietnam National University – Ho Chi Minh City
- Ho Chi Minh City 721337
- Vietnam
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | | | - Duc Nguyen-Manh
- Culham Center for Fusion Energy
- United Kingdom Atomic Energy Authority
- UK
| |
Collapse
|
21
|
Mehnaz, Yang LH, Zou YB, Da B, Mao SF, Li HM, Zhao YF, Ding ZJ. A comparative study on Monte Carlo simulations of electron emission from liquid water. Med Phys 2019; 47:759-771. [PMID: 31702062 DOI: 10.1002/mp.13913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Liquid water being the major constituent of the human body, is of fundamental importance in radiobiological research. Hence, the knowledge of electron-water interaction physics and particularly the secondary electron yield is essential. However, to date, only very little is known experimentally on the low energy electron interaction with liquid water because of certain practical limitations. The purpose of this study was to gain some useful information about electron emission from water using a Monte Carlo (MC) simulation technique that can numerically model electron transport trajectories in water. METHODS In this study, we have performed MC simulations of electron emission from liquid water in the primary energy range of 50 eV-30 keV by using two different codes, i.e., a classical trajectory MC (CMC) code developed in our laboratory and the Geant4-DNA (G4DNA) code. The calculated secondary electron yield and electron backscattering coefficient are compared with experimental results wherever applicable to verify the validity of physical models for the electron-water interaction. RESULTS The secondary electron yield vs. primary energy curves calculated using the two codes present the same generic curve shape as that of metals but in rather different absolute values. G4DNA underestimates the secondary electron yield due to the application of one step thermalization model by setting a cutoff energy at 10 eV so that the low energy losses due to phonon excitations are omitted. Our CMC code, using a full energy loss spectrum to model electron inelastic scattering, allows the simulation of individual phonon scattering events for very low energy losses down to 10 meV, which then enables the calculated secondary electron yields much closer to the experimental data and also gives quite reasonable energy distribution curve of secondary electrons. CONCLUSIONS It is concluded that full dielectric function data at low energy loss values below 10 eV are recommended for modeling of low energy electrons in liquid water.
Collapse
Affiliation(s)
- Mehnaz
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - L H Yang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Y B Zou
- School of Physics & Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang, 830054, P.R. China
| | - B Da
- Center for Materials Research by Information Integration (CMI2), Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - S F Mao
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - H M Li
- Supercomputing Center, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Y F Zhao
- Radiotherapy Department, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Z J Ding
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
22
|
de Vera P, Abril I, Garcia-Molina R. Energy Spectra of Protons and Generated Secondary Electrons around the Bragg Peak in Materials of Interest in Proton Therapy. Radiat Res 2018; 190:282-297. [PMID: 29995591 DOI: 10.1667/rr14988.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The number and energy of secondary electrons generated around the trajectories of swift protons interacting with biological materials are highly relevant in proton therapy, due to the prominent role of low-energy electrons in the production of biodamage. For a given material, electron energy distributions are determined by the proton energy; and it is imperative that the distribution of proton energy at depths around the Bragg peak region be described as accurately as possible. With this objective, we simulated the energy distributions of proton beams of clinically relevant energies (50-300 MeV) at depths around the Bragg peak in liquid water and the water-equivalent polymer poly(methyl methacrylate) (PMMA). By using a simple model, this simulation has been conveniently extended to account for nuclear fragmentation reactions, providing depth-dose curves in excellent agreement with available experimental data. Special care has been taken to describe the electronic excitation spectrum of the target, taking into account its condensed phase nature. A predictive formula has been obtained for the mean value and the width of the proton energy distribution at the Bragg peak depth, quantities which are found to grow linearly with the initial energy of the beam, in good agreement with available data. To accurately characterize (in number and energy) the electrons generated around the proton paths, the energy distributions of the latter at each depth have been convoluted with the energy-dependent ionization inverse mean free paths. This results in a number of low-energy electrons around the Bragg peak larger than when only the proton beam average energy at the given depths is considered. The convoluted ionization inverse mean free path closely resembles the Bragg curve shape. The average energy of the secondary electrons is nearly constant (∼55 eV for liquid water and ∼43 eV for PMMA) in the plateau of the Bragg curve, independent of the proton incident energy and suddenly decaying once the Bragg peak is reached. These findings highlight the importance of a precise calculation of the proton beam energy distribution as a function of the target depth to reliably characterize the secondary electrons generated around the Bragg peak region.
Collapse
Affiliation(s)
- Pablo de Vera
- a Departamento de Física - Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
| | - Isabel Abril
- b Departament de Física Aplicada, Universitat d'Alacant, E-03080 Alacant, Spain
| | - Rafael Garcia-Molina
- a Departamento de Física - Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
23
|
Abstract
We determine the ionization potential (IP) and the electron affinity (EA) of liquid water together with the absolute redox level of the standard hydrogen electrode (SHE) by combining advanced electronic-structure calculations, ab initio molecular dynamics simulations, thermodynamic integration, and potential alignment at the water-vacuum interface. The calculated SHE level lies at 4.56 eV below the vacuum level, close to the experimental reference of 4.44 eV inferred by Trasatti. The band edges are determined through a hybrid functional designed to reproduce the band gap achieved with highly accurate GW calculations. Our analysis yields IP = 9.7 eV and EA = 0.8 eV, consistent with both photoemission spectra of liquid water and thermodynamical data for the hydrated electron.
Collapse
Affiliation(s)
- Francesco Ambrosio
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Zhendong Guo
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Alfredo Pasquarello
- Chaire de Simulation à l'Echelle Atomique (CSEA) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
24
|
Ziaei V, Bredow T. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:215502. [PMID: 29667601 DOI: 10.1088/1361-648x/aabefa] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe-Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.
Collapse
Affiliation(s)
- Vafa Ziaei
- Mulliken Center for Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | | |
Collapse
|
25
|
Tan HQ, Mi Z, Bettiol AA. Simple and universal model for electron-impact ionization of complex biomolecules. Phys Rev E 2018; 97:032403. [PMID: 29776024 DOI: 10.1103/physreve.97.032403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 11/07/2022]
Abstract
We present a simple and universal approach to calculate the total ionization cross section (TICS) for electron impact ionization in DNA bases and other biomaterials in the condensed phase. Evaluating the electron impact TICS plays a vital role in ion-beam radiobiology simulation at the cellular level, as secondary electrons are the main cause of DNA damage in particle cancer therapy. Our method is based on extending the dielectric formalism. The calculated results agree well with experimental data and show a good comparison with other theoretical calculations. This method only requires information of the chemical composition and density and an estimate of the mean binding energy to produce reasonably accurate TICS of complex biomolecules. Because of its simplicity and great predictive effectiveness, this method could be helpful in situations where the experimental TICS data are absent or scarce, such as in particle cancer therapy.
Collapse
Affiliation(s)
- Hong Qi Tan
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117551
| | - Zhaohong Mi
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117551
| | - Andrew A Bettiol
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117551
| |
Collapse
|
26
|
Nguyen-Truong HT. Low-energy electron inelastic mean free paths for liquid water. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:155101. [PMID: 29504941 DOI: 10.1088/1361-648x/aab40a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We improve the Mermin-Penn algorithm (MPA) for determining the energy loss function (ELF) within the dielectric formalism. The present algorithm is applicable not only to real metals, but also to materials that have an energy gap in the excitation spectrum. Applying the improved MPA to liquid water, we show that the present algorithm is able to address the ELF overestimation at the energy gap, and the calculated results are in good agreement with experimental data.
Collapse
Affiliation(s)
- Hieu T Nguyen-Truong
- Theoretical Physics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
27
|
Lampe N, Karamitros M, Breton V, Brown JMC, Kyriakou I, Sakata D, Sarramia D, Incerti S. Mechanistic DNA damage simulations in Geant4-DNA part 1: A parameter study in a simplified geometry. Phys Med 2018; 48:135-145. [PMID: 29628360 DOI: 10.1016/j.ejmp.2018.02.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023] Open
Abstract
Mechanistic modelling of DNA damage in Monte Carlo simulations is highly sensitive to the parameters that define DNA damage. In this work, we use a simple testing geometry to investigate how different choices of physics models and damage model parameters can change the estimation of DNA damage in a mechanistic DNA damage simulation built in Geant4-DNA. The choice of physics model can lead to variations by up to a factor of two in the yield of physically induced strand breaks, and the parameters that determine scavenging, and physical and chemical single strand break induction can have even larger consequences. Using low energy electrons as primary particles, a variety of parameters are tested in this geometry in order to arrive at a parameter set consistent with past simulation studies. We find that the modelling of scavenging can play an important role in determining results, and speculate that high-scavenging regimes, where only chemical radicals within 1 nm of DNA are simulated, could provide a good means of testing mechanistic DNA simulations.
Collapse
Affiliation(s)
- Nathanael Lampe
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France; Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | | | - Vincent Breton
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France
| | - Jeremy M C Brown
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, Delft 26295B, The Netherlands
| | - Ioanna Kyriakou
- Medical Physics Laboratory, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Dousatsu Sakata
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | - David Sarramia
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France
| | - Sébastien Incerti
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France.
| |
Collapse
|
28
|
Wang J, Nguyen AV. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces. Adv Colloid Interface Sci 2017; 250:54-63. [PMID: 29100682 DOI: 10.1016/j.cis.2017.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/26/2022]
Abstract
Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra. In this paper we review the available predictions of water dielectric spectra for calculating colloidal and surface van der Waals forces. Specifically, the available experimental data for the real and imaginary parts of the complex dielectric function of liquid water in the microwave, IR and UV regions and various corresponding predictions of the water spectra are critically reviewed. The data in the UV region are critical, but the available predictions are still based on the outdated data obtained in 1974 (for frequency only up to 25.5eV). We also reviewed and analysed the experimental data obtained for the UV region in 2000 (for frequency up to 50eV) and 2015 (for frequency up to 100eV). The 1974 and 2000 data require extrapolations to higher frequencies needed for calculating the van der Waals forces but remain inaccurate. Our analysis shows that the latest data of 2015 do not require the extrapolation and can be used to reliably calculate van der Waals forces. The most recent water dielectric spectra gives the (non-retarded) Hamaker constant, A=5.20×10-20J, for foam films of liquid water. This review provides the most updated and reliable water dielectric spectra to compute van der Waals forces in aqueous systems.
Collapse
|
29
|
Water tetrahedron intercalated with hydronium ion (H 3 O + ) as molecular reactor producing deuterium under X-ray absorption. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Emfietzoglou D, Papamichael G, Nikjoo H. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New Model Dielectric Response Function. Radiat Res 2017. [PMID: 28650774 DOI: 10.1667/rr14705.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Monte Carlo track structure codes provide valuable information for understanding radiation effects down to the DNA level, where experimental measurements are most difficult or unavailable. It is well recognized that the performance of such codes, especially at low energies and/or subcellular level, critically depends on the reliability of the interaction cross sections that are used as input in the simulation. For biological media such as liquid water, one of the most challenging issues is the role of condensed-phase effects. For inelastic scattering, such effects can be conveniently accounted for through the complex dielectric response function of the media. However, for this function to be useful it must fulfill some important sum rules and have a simple analytic form for arbitrary energy- and momentum-transfer. The Emfietzoglou-Cucinotta-Nikjoo (ECN) model offers a practical, self-consistent and fully analytic parameterization of the dielectric function of liquid water based on the best available experimental data. An important feature of the ECN model is that it includes, in a phenomenological manner, exchange and correlation effects among the screening electrons, thus, going beyond the random-phase approximation implicit in earlier models. In this work, inelastic cross sections beyond the plane wave Born approximation are calculated for low-energy electrons (10 eV-10 keV) based on the ECN model, and used for Monte Carlo track structure simulations of physical quantities relevant to the microdosimetry of low-energy electrons in liquid water. Important new developments in the physics of inelastic scattering are discussed and their effect on electron track structure is investigated by a comparison against simulations (under otherwise identical conditions) using the Born approximation and a simpler form of the dielectric function based on the Oak Ridge National Laboratory model. The results reveal that both the dielectric function and the corrections to the Born approximation may have a sizeable effect on track structure calculations at the nanometer scale (DNA level), where the details of inelastic scattering and the role of low-energy electrons are most critical.
Collapse
Affiliation(s)
- Dimitris Emfietzoglou
- a Medical Physics Laboratory, University of Ioannina Medical School, Ioannina 45110, Greece
| | - George Papamichael
- a Medical Physics Laboratory, University of Ioannina Medical School, Ioannina 45110, Greece.,b Division of Applied Statistics, Institute of Labor (GSEE), Athens 10681, Greece
| | - Hooshang Nikjoo
- c Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260, SE-171 76 Stockholm, Sweden
| |
Collapse
|
31
|
Marin TW, Janik I, Bartels DM, Chipman DM. Vacuum ultraviolet spectroscopy of the lowest-lying electronic state in subcritical and supercritical water. Nat Commun 2017; 8:15435. [PMID: 28513601 PMCID: PMC5442368 DOI: 10.1038/ncomms15435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/29/2017] [Indexed: 11/10/2022] Open
Abstract
The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381 °C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as the water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. Using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching. The link between hydrogen bonding and the optical properties of water has been debated for many years, but not fully understood. Here, the authors report vacuum ultraviolet absorption spectra for subcritical and supercritical water, providing insight into the electronic structure of water and its relation to hydrogen bonding.
Collapse
Affiliation(s)
- Timothy W Marin
- Department of Chemistry, Benedictine University, 5700 College Road, Lisle, Illinois 60532, USA
| | - Ireneusz Janik
- Notre Dame Radiation Laboratory, Notre Dame, Indiana 46556, USA
| | - David M Bartels
- Notre Dame Radiation Laboratory, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
32
|
Shinotsuka H, Da B, Tanuma S, Yoshikawa H, Powell CJ, Penn DR. Calculations of Electron Inelastic Mean Free Paths. XI. Data for Liquid Water for Energies from 50 eV to 30 keV. SURF INTERFACE ANAL 2017; 49:238-252. [PMID: 28751796 PMCID: PMC5524379 DOI: 10.1002/sia.6123] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We calculated electron inelastic mean free paths (IMFPs) for liquid water from its optical energy-loss function (ELF) for electron energies from 50 eV to 30 keV. These calculations were made with the relativistic full Penn algorithm (FPA) that has been used for previous IMFP and electron stopping-power calculations for many elemental solids. We also calculated IMFPs of water with three additional algorithms: the relativistic single-pole approximation (SPA), the relativistic simplified SPA, and the relativistic extended Mermin method. These calculations were made using the same optical ELF in order to assess any differences of the IMFPs arising from choice of the algorithm. We found good agreement among the IMFPs from the four algorithms for energies over 300 eV. For energies less than 100 eV, however, large differences became apparent. IMFPs from the relativistic TPP-2M equation for predicting IMFPs were in good agreement with IMFPs from the four algorithms for energies between 300 eV and 30 keV but there was poorer agreement for lower energies. We calculated values of the static structure factor as a function of momentum transfer from the FPA. The resulting values were in good agreement with results from first-principles calculations and with inelastic X-ray scattering spectroscopy experiments. We made comparisons of our IMFPs with earlier calculations from authors who had used different algorithms and different ELF data sets. IMFP differences could then be analyzed in terms of the algorithms and the data sets. Finally, we compared our IMFPs with measurements of IMFPs and of a related quantity, the effective attenuation length (EAL). There were large variations in the measured IMFPs and EALs (as well as their dependence on electron energy). Further measurements are therefore required to establish consistent data sets and for more detailed comparisons with calculated IMFPs.
Collapse
Affiliation(s)
- H. Shinotsuka
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - B. Da
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - S. Tanuma
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - H. Yoshikawa
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - C. J. Powell
- National Institute of Standards and Technology, Gaithersburg, MD 20899-8370, USA
| | - D. R. Penn
- National Institute of Standards and Technology, Gaithersburg, MD 20899-8370, USA
| |
Collapse
|
33
|
Liu W, Tan Z, Zhang L, Champion C. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:99-110. [PMID: 28185000 DOI: 10.1007/s00411-016-0681-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 12/30/2016] [Indexed: 06/06/2023]
Abstract
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
Collapse
Affiliation(s)
- Wei Liu
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China
| | - Zhenyu Tan
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China.
| | - Liming Zhang
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China
- Electric Power Research Institute of Tianjin Electric Power Corporation, Tianjin, 300384, People's Republic of China
| | - Christophe Champion
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS/IN2P3, BP 120, 33175, Gradignan, France
| |
Collapse
|
34
|
Duchemin I, Jacquemin D, Blase X. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach. J Chem Phys 2017; 144:164106. [PMID: 27131530 DOI: 10.1063/1.4946778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have implemented the polarizable continuum model within the framework of the many-body Green's function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.
Collapse
Affiliation(s)
- Ivan Duchemin
- INAC, SP2M/L_Sim, CEA/UJF Cedex 09, 38054 Grenoble, France
| | - Denis Jacquemin
- Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | | |
Collapse
|
35
|
|
36
|
Reeves KG, Kanai Y. Electronic Excitation Dynamics in Liquid Water under Proton Irradiation. Sci Rep 2017; 7:40379. [PMID: 28084420 PMCID: PMC5233951 DOI: 10.1038/srep40379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/05/2016] [Indexed: 12/03/2022] Open
Abstract
Molecular behaviour of liquid water under proton irradiation is of great importance to a number of technological and medical applications. The highly energetic proton generates a time-varying field that is highly localized and heterogeneous at the molecular scale, and massive electronic excitations are produced as a result of the field-matter interaction. Using first-principles quantum dynamics simulations, we reveal details of how electrons are dynamically excited through non-equilibrium energy transfer from highly energetic protons in liquid water on the atto/femto-second time scale. Water molecules along the path of the energetic proton undergo ionization at individual molecular level, and the excitation primarily derives from lone pair electrons on the oxygen atom of water molecules. A reduced charge state on the energetic proton in the condensed phase of water results in the strongly suppressed electronic response when compared to water molecules in the gas phase. These molecular-level findings provide important insights into understanding the water radiolysis process under proton irradiation.
Collapse
Affiliation(s)
- Kyle G Reeves
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
37
|
Udal’tsov AV. Polaronic exciton in self-organized assemblies of protonated meso-tetraphenylporphine dimers and water at room temperature. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Nikjoo H, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D, Uehara S. Radiation track, DNA damage and response-a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:116601. [PMID: 27652826 DOI: 10.1088/0034-4885/79/11/116601] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with 'low-hanging fruit', but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors' work.
Collapse
Affiliation(s)
- H Nikjoo
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260, P9-02, Stockholm 17176, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Nikjoo H, Taleei R, Liamsuwan T, Liljequist D, Emfietzoglou D. Perspectives in radiation biophysics: From radiation track structure simulation to mechanistic models of DNA damage and repair. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Ziaei V, Bredow T. Red and blue shift of liquid water’s excited states: A many body perturbation study. J Chem Phys 2016. [DOI: 10.1063/1.4960561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Vafa Ziaei
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
41
|
Kyriakou I, Incerti S, Francis Z. Technical Note: Improvements in geant4 energy-loss model and the effect on low-energy electron transport in liquid water. Med Phys 2016; 42:3870-6. [PMID: 26133588 DOI: 10.1118/1.4921613] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The geant4-DNA physics models are upgraded by a more accurate set of electron cross sections for ionization and excitation in liquid water. The impact of the new developments on low-energy electron transport simulations by the geant4 Monte Carlo toolkit is examined for improving its performance in dosimetry applications at the subcellular and nanometer level. METHODS The authors provide an algorithm for an improved implementation of the Emfietzoglou model dielectric response function of liquid water used in the geant4-DNA existing model. The algorithm redistributes the imaginary part of the dielectric function to ensure a physically motivated behavior at the binding energies, while retaining all the advantages of the original formulation, e.g., the analytic properties and the fulfillment of the f-sum-rule. In addition, refinements in the exchange and perturbation corrections to the Born approximation used in the geant4-DNA existing model are also made. RESULTS The new ionization and excitation cross sections are significantly different from those of the geant4-DNA existing model. In particular, excitations are strongly enhanced relative to ionizations, resulting in higher W-values and less diffusive dose-point-kernels at sub-keV electron energies. CONCLUSIONS An improved energy-loss model for the excitation and ionization of liquid water by low-energy electrons has been implemented in geant4-DNA. The suspiciously low W-values and the unphysical long tail in the dose-point-kernel have been corrected owing to a different partitioning of the dielectric function.
Collapse
Affiliation(s)
- I Kyriakou
- Medical Physics Laboratory, University of Ioannina Medical School, Ioannina 45110, Greece
| | - S Incerti
- Centre d'Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du Solarium, Université de Bordeaux, Gradignan 33175, France and Centre d'Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du Solarium, CNRS/IN2P3, Gradignan 33175, France
| | - Z Francis
- Department of Physics, Faculty of Sciences, Saint Joseph University, Mkalles, Beirut, Lebanon
| |
Collapse
|
42
|
Garcia-Molina R, Abril I, Kyriakou I, Emfietzoglou D. Inelastic scattering and energy loss of swift electron beams in biologically relevant materials. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.5947] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rafael Garcia-Molina
- Departamento de Física - Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence “Campus Mare Nostrum”; Universidad de Murcia; Murcia 30100 Spain
| | - Isabel Abril
- Departament de Física Aplicada; Universitat d'Alacant; Alacant E-03080 Spain
| | - Ioanna Kyriakou
- Medical Physics Laboratory; University of Ioannina Medical School; Ioannina 45110 Greece
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory; University of Ioannina Medical School; Ioannina 45110 Greece
| |
Collapse
|
43
|
Xu LQ, Liu YW, Kang X, Ni DD, Yang K, Hiraoka N, Tsuei KD, Zhu LF. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium. Sci Rep 2015; 5:18350. [PMID: 26678298 PMCID: PMC4683586 DOI: 10.1038/srep18350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/17/2015] [Indexed: 01/23/2023] Open
Abstract
The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s2 → 1 snp(n = 3 − 7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.
Collapse
Affiliation(s)
- Long-Quan Xu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Ya-Wei Liu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xu Kang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dong-Dong Ni
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Ke Yang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Nozomu Hiraoka
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Ku-Ding Tsuei
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Lin-Fan Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
44
|
Kuncic Z. Advances in Computational Radiation Biophysics for Cancer Therapy: Simulating Nano-Scale Damage by Low-Energy Electrons. ACTA ACUST UNITED AC 2015. [DOI: 10.1142/s1793048014500040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computational radiation biophysics is a rapidly growing area that is contributing, alongside new hardware technologies, to ongoing developments in cancer imaging and therapy. Recent advances in theoretical and computational modeling have enabled the simulation of discrete, event-by-event interactions of very low energy (≪ 100 eV) electrons with water in its liquid thermodynamic phase. This represents a significant advance in our ability to investigate the initial stages of radiation induced biological damage at the molecular level. Such studies are important for the development of novel cancer treatment strategies, an example of which is given by microbeam radiation therapy (MRT). Here, new results are shown demonstrating that when excitations and ionizations are resolved down to nano-scales, their distribution extends well outside the primary microbeam path, into regions that are not directly irradiated. This suggests that radiation dose alone is insufficient to fully quantify biological damage. These results also suggest that the radiation cross-fire may be an important clue to understanding the different observed responses of healthy cells and tumor cells to MRT.
Collapse
Affiliation(s)
- Zdenka Kuncic
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Hayashi H, Hiraoka N. Accurate Measurements of Dielectric and Optical Functions of Liquid Water and Liquid Benzene in the VUV Region (1-100 eV) Using Small-Angle Inelastic X-ray Scattering. J Phys Chem B 2015; 119:5609-23. [PMID: 25835527 DOI: 10.1021/acs.jpcb.5b01567] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a third-generation synchrotron source (the BL12XU beamline at SPring-8), inelastic X-ray scattering (IXS) spectra of liquid water and liquid benzene were measured at energy losses of 1-100 eV with 0.24 eV resolution for small momentum transfers (q) of 0.23 and 0.32 au with ±0.06 au uncertainty for q. For both liquids, the IXS profiles at these values of q converged well after we corrected for multiple scattering, and these results confirmed the dipole approximation for q ≤ ∼0.3 au. Several dielectric and optical functions [including the optical oscillator strength distribution (OOS), the optical energy-loss function (OLF), the complex dielectric function, the complex index of refraction, and the reflectance] in the vacuum ultraviolet region were derived and tabulated from these small-angle (small q) IXS spectra. These new data were compared with previously obtained results, and this comparison demonstrated the strong reproducibility and accuracy of IXS spectroscopy. For both water and benzene, there was a notable similarity between the OOSs of the liquids and amorphous solids, and there was no evidence of plasmon excitation in the OLF. The static structure factor [S(q)] for q ≤ ∼0.3 au was also deduced and suggests that molecular models that include electron correlation effects can serve as a good approximation for the liquid S(q) values over the full range of q.
Collapse
Affiliation(s)
- Hisashi Hayashi
- ‡Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| | - Nozomu Hiraoka
- †National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
46
|
Kai T, Yokoya A, Ukai M, Watanabe R. Cross sections, stopping powers, and energy loss rates for rotational and phonon excitation processes in liquid water by electron impact. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
de Vera P, Garcia-Molina R, Abril I. Angular and energy distributions of electrons produced in arbitrary biomaterials by proton impact. PHYSICAL REVIEW LETTERS 2015; 114:018101. [PMID: 25615504 DOI: 10.1103/physrevlett.114.018101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 06/04/2023]
Abstract
We present a simple method for obtaining reliable angular and energy distributions of electrons ejected from arbitrary condensed biomaterials by proton impact. Relying on a suitable description of the electronic excitation spectrum and a physically motivated relation between the ion and electron scattering angles, it yields cross sections in rather good agreement with experimental data in a broad range of ejection angles and energies, by only using as input the target composition and density. The versatility and simplicity of the method, which can be also extended to other charged particles, make it especially suited for obtaining ionization data for any complex biomaterial present in realistic cellular environments.
Collapse
Affiliation(s)
- Pablo de Vera
- Departament de Física Aplicada, Universitat d'Alacant, E-03080 Alacant, Spain
| | - Rafael Garcia-Molina
- Departamento de Física-Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, E-30100 Murcia, Spain
| | - Isabel Abril
- Departament de Física Aplicada, Universitat d'Alacant, E-03080 Alacant, Spain
| |
Collapse
|
48
|
Palmans H, Rabus H, Belchior AL, Bug MU, Galer S, Giesen U, Gonon G, Gruel G, Hilgers G, Moro D, Nettelbeck H, Pinto M, Pola A, Pszona S, Schettino G, Sharpe PHG, Teles P, Villagrasa C, Wilkens JJ. Future development of biologically relevant dosimetry. Br J Radiol 2014; 88:20140392. [PMID: 25257709 DOI: 10.1259/bjr.20140392] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Proton and ion beams are radiotherapy modalities of increasing importance and interest. Because of the different biological dose response of these radiations as compared with high-energy photon beams, the current approach of treatment prescription is based on the product of the absorbed dose to water and a biological weighting factor, but this is found to be insufficient for providing a generic method to quantify the biological outcome of radiation. It is therefore suggested to define new dosimetric quantities that allow a transparent separation of the physical processes from the biological ones. Given the complexity of the initiation and occurrence of biological processes on various time and length scales, and given that neither microdosimetry nor nanodosimetry on their own can fully describe the biological effects as a function of the distribution of energy deposition or ionization, a multiscale approach is needed to lay the foundation for the aforementioned new physical quantities relating track structure to relative biological effectiveness in proton and ion beam therapy. This article reviews the state-of-the-art microdosimetry, nanodosimetry, track structure simulations, quantification of reactive species, reference radiobiological data, cross-section data and multiscale models of biological response in the context of realizing the new quantities. It also introduces the European metrology project, Biologically Weighted Quantities in Radiotherapy, which aims to investigate the feasibility of establishing a multiscale model as the basis of the new quantities. A tentative generic expression of how the weighting of physical quantities at different length scales could be carried out is presented.
Collapse
Affiliation(s)
- H Palmans
- 1 Acoustics and Ionising Radiation Division, National Physical Laboratory (NPL), Teddington, Middlesex, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Suzuki YI, Nishizawa K, Kurahashi N, Suzuki T. Effective attenuation length of an electron in liquid water between 10 and 600 eV. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:010302. [PMID: 25122237 DOI: 10.1103/physreve.90.010302] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Indexed: 05/03/2023]
Abstract
The absolute values of the effective attenuation length of an electron in liquid water are determined using soft x-ray O1s photoemission spectroscopy of a liquid beam of water without employing any theoretical estimation or computationally obtained value. The effective attenuation length is greater than 1 nm in the entire electron kinetic energy region and exhibits very flat energy dependence in the 10-100 eV region.
Collapse
Affiliation(s)
- Yoshi-Ichi Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | | | - Naoya Kurahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan and RIKEN Center for Advanced Photonics, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
50
|
Rahm JM, Baek WY, Rabus H, Hofsäss H. Stopping power of liquid water for carbon ions in the energy range between 1 MeV and 6 MeV. Phys Med Biol 2014; 59:3683-95. [DOI: 10.1088/0031-9155/59/14/3683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|