1
|
Das E, Le L, Sokolova V, Orth JD, Park S. Spatial mechanisms of quality control during chaperone-mediated assembly of the proteasome. Nat Commun 2025; 16:3358. [PMID: 40204796 PMCID: PMC11982566 DOI: 10.1038/s41467-025-58703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Cellular protein degradation requires a complex molecular machine, the proteasome. To mitigate the fundamental challenge of assembling the 66-subunit proteasome, cells utilize dedicated chaperones to order subunit addition. However, recent evidence suggests that proteasome assembly is not simply a series of subunit additions, but each step may be scrutinized so that only correct assembly events advance to proteasomes. Here, we find an unexpected mechanism of quality control (QC) during proteasome assembly-via the proteasomal nuclear localization signal (NLS). This mechanism specifically sequesters defective assembly intermediates to the nucleus, away from ongoing assembly in the cytoplasm, thereby antagonizing defective proteasome formation. This NLS, a bona fide proteasomal component, provides continuous surveillance throughout proteasome assembly. Even a single incorrect event activates spatial QC. Our findings illuminate a two-decade-old mystery in proteasome regulation; proteasomal NLSs, dispensable for proteasome localization, instead provide QC by compartmentalizing assembly defects to ensure that only correct proteasomes form.
Collapse
Affiliation(s)
- Eshita Das
- MCDB Department, University of Colorado Boulder, Boulder, CO, USA
| | - Linh Le
- MCDB Department, University of Colorado Boulder, Boulder, CO, USA
| | - Vladyslava Sokolova
- MCDB Department, University of Colorado Boulder, Boulder, CO, USA
- Department of Pharmacological Sciences, Stony Brook University Medical School, Stony Brook, NY, USA
| | - James D Orth
- MCDB Department, University of Colorado Boulder, Boulder, CO, USA
| | - Soyeon Park
- MCDB Department, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Brown MT, McMurray MA. Stepwise order in protein complex assembly: approaches and emerging themes. Open Biol 2025; 15:240283. [PMID: 39809320 PMCID: PMC11732423 DOI: 10.1098/rsob.240283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits. One aspect that is particularly understudied is assembly order, the idea that there is a stepwise order to the subunit-subunit associations that underlies the efficient assembly of the quaternary structure. Here, we integrate a review of the methodological approaches commonly used to query assembly order within a discussion of studies of the 20S proteasome core particle, septin protein complexes, and the histone octamer. We highlight shared and distinct properties of these complexes that illustrate general themes applicable to most other multisubunit assemblies.
Collapse
Affiliation(s)
- Michael T. Brown
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| | - Michael A. McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| |
Collapse
|
3
|
Németh-Szatmári O, Nagy-Mikó B, Györkei Á, Varga D, Kovács BBH, Igaz N, Bognár B, Rázga Z, Nagy G, Zsindely N, Bodai L, Papp B, Erdélyi M, Kiricsi M, Blastyák A, Collart MA, Boros IM, Villányi Z. Phase-separated ribosome-nascent chain complexes in genotoxic stress response. RNA (NEW YORK, N.Y.) 2023; 29:1557-1574. [PMID: 37460154 PMCID: PMC10578487 DOI: 10.1261/rna.079755.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 09/20/2023]
Abstract
Assemblysomes are EDTA- and RNase-resistant ribonucleoprotein (RNP) complexes of paused ribosomes with protruding nascent polypeptide chains. They have been described in yeast and human cells for the proteasome subunit Rpt1, and the disordered amino-terminal part of the nascent chain was found to be indispensable for the accumulation of the Rpt1-RNP into assemblysomes. Motivated by this, to find other assemblysome-associated RNPs we used bioinformatics to rank subunits of Saccharomyces cerevisiae protein complexes according to their amino-terminal disorder propensity. The results revealed that gene products involved in DNA repair are enriched among the top candidates. The Sgs1 DNA helicase was chosen for experimental validation. We found that indeed nascent chains of Sgs1 form EDTA-resistant RNP condensates, assemblysomes by definition. Moreover, upon exposure to UV, SGS1 mRNA shifted from assemblysomes to polysomes, suggesting that external stimuli are regulators of assemblysome dynamics. We extended our studies to human cell lines. The BLM helicase, ortholog of yeast Sgs1, was identified upon sequencing assemblysome-associated RNAs from the MCF7 human breast cancer cell line, and mRNAs encoding DNA repair proteins were overall enriched. Using the radiation-resistant A549 cell line, we observed by transmission electron microscopy that 1,6-hexanediol, an agent known to disrupt phase-separated condensates, depletes ring ribosome structures compatible with assemblysomes from the cytoplasm of cells and makes the cells more sensitive to X-ray treatment. Taken together, these findings suggest that assemblysomes may be a component of the DNA damage response from yeast to human.
Collapse
Affiliation(s)
- Orsolya Németh-Szatmári
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Bence Nagy-Mikó
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Ádám Györkei
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Dániel Varga
- Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary
| | - Bálint Barna H Kovács
- Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Bence Bognár
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Zsolt Rázga
- Department of Pathology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Balázs Papp
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, 6720 Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - András Blastyák
- Institute of Genetics, Biological Research Centre, 6726 Szeged, Hungary
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| | - Zoltán Villányi
- Department of Biochemistry and Molecular Biology, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
4
|
Betancourt D, Lawal T, Tomko RJ. Wiggle and Shake: Managing and Exploiting Conformational Dynamics during Proteasome Biogenesis. Biomolecules 2023; 13:1223. [PMID: 37627288 PMCID: PMC10452565 DOI: 10.3390/biom13081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The 26S proteasome is the largest and most complicated protease known, and changes to proteasome assembly or function contribute to numerous human diseases. Assembly of the 26S proteasome from its ~66 individual polypeptide subunits is a highly orchestrated process requiring the concerted actions of both intrinsic elements of proteasome subunits, as well as assistance by extrinsic, dedicated proteasome assembly chaperones. With the advent of near-atomic resolution cryo-electron microscopy, it has become evident that the proteasome is a highly dynamic machine, undergoing numerous conformational changes in response to ligand binding and during the proteolytic cycle. In contrast, an appreciation of the role of conformational dynamics during the biogenesis of the proteasome has only recently begun to emerge. Herein, we review our current knowledge of proteasome assembly, with a particular focus on how conformational dynamics guide particular proteasome biogenesis events. Furthermore, we highlight key emerging questions in this rapidly expanding area.
Collapse
Affiliation(s)
| | | | - Robert J. Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA; (D.B.); (T.L.)
| |
Collapse
|
5
|
Sekaran S, Park S. The penultimate step of proteasomal ATPase assembly is mediated by a switch dependent on the chaperone Nas2. J Biol Chem 2023; 299:102870. [PMID: 36621624 PMCID: PMC9922823 DOI: 10.1016/j.jbc.2023.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The proteasome holoenzyme is a complex molecular machine that degrades most proteins. In the proteasome holoenzyme, six distinct ATPase subunits (Rpt1 through Rpt6) enable protein degradation by injecting protein substrates into it. Individual Rpt subunits assemble into a heterohexameric "Rpt ring" in a stepwise manner, by binding to their cognate chaperones. Completion of the heterohexameric Rpt ring correlates with release of a specific chaperone, Nas2; however, it is unclear whether and how this event may ensure proper Rpt ring assembly. Here, we examined the action of Nas2 by capturing the poorly characterized penultimate step of heterohexameric Rpt ring assembly. For this, we used a heterologous Escherichia coli system coexpressing all Rpt subunits and assembly chaperones as well as Saccharomyces cerevisiae to track Nas2 actions during endogenous Rpt ring assembly. We show that Nas2 uses steric hindrance to block premature progression of the penultimate step into the final step of Rpt ring assembly. Importantly, Nas2 can activate an assembly checkpoint via its steric activity, when the last ATPase subunit, Rpt1, cannot be added in a timely manner. This checkpoint can be relieved via Nas2 release, when Nas2 recognizes proper addition of Rpt1 to one side of its cognate Rpt5, and ATP hydrolysis by Rpt4 on the other side of Rpt5, allowing completion of Rpt ring assembly. Our findings reveal dual criteria for Nas2 release, as a mechanism to ensure both the composition and functional competence of a newly assembled proteasomal ATPase, to generate the proteasome holoenzyme.
Collapse
Affiliation(s)
- Suganya Sekaran
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Soyeon Park
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
6
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
7
|
Suppahia A, Itagi P, Burris A, Kim FMG, Vontz A, Kante A, Kim S, Im W, Deeds EJ, Roelofs J. Cooperativity in Proteasome Core Particle Maturation. iScience 2020; 23:101090. [PMID: 32380419 PMCID: PMC7210456 DOI: 10.1016/j.isci.2020.101090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Proteasomes are multi-subunit protease complexes found in all domains of life. The maturation of the core particle (CP), which harbors the active sites, involves dimerization of two half CPs (HPs) and an autocatalytic cleavage that removes β propeptides. How these steps are regulated remains poorly understood. Here, we used the Rhodococcus erythropolis CP to dissect this process in vitro. Our data show that propeptides regulate the dimerization of HPs through flexible loops we identified. Furthermore, N-terminal truncations of the propeptides accelerated HP dimerization and decelerated CP auto-activation. We identified cooperativity in autocatalysis and found that the propeptide can be partially cleaved by adjacent active sites, potentially aiding an otherwise strictly autocatalytic mechanism. We propose that cross-processing during bacterial CP maturation is the underlying mechanism leading to the observed cooperativity of activation. Our work suggests that the bacterial β propeptide plays an unexpected and complex role in regulating dimerization and autocatalytic activation.
Collapse
Affiliation(s)
- Anjana Suppahia
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Pushpa Itagi
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA
| | - Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Faith Mi Ge Kim
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Alexander Vontz
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Anupama Kante
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA; Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Seonghoon Kim
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18105, USA
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18105, USA; Department of Bioengineering, Lehigh University, Bethlehem, PA 18105, USA; Department of Chemistry, Lehigh University, Bethlehem, PA 18105, USA
| | - Eric J Deeds
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 99024, USA.
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA.
| |
Collapse
|
8
|
An Allosteric Interaction Network Promotes Conformation State-Dependent Eviction of the Nas6 Assembly Chaperone from Nascent 26S Proteasomes. Cell Rep 2020; 26:483-495.e5. [PMID: 30625330 PMCID: PMC6344052 DOI: 10.1016/j.celrep.2018.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/15/2018] [Accepted: 12/11/2018] [Indexed: 12/04/2022] Open
Abstract
The 26S proteasome is the central ATP-dependent protease in eukaryotes and is essential for organismal health. Proteasome assembly is mediated by several dedicated, evolutionarily conserved chaperone proteins. These chaperones associate transiently with assembly intermediates but are absent from mature proteasomes. Chaperone eviction upon completion of proteasome assembly is necessary for normal proteasome function, but how they are released remains unresolved. Here, we demonstrate that the Nas6 assembly chaperone, homolog of the human oncogene gankyrin, is evicted from nascent proteasomes during completion of assembly via a conformation-specific allosteric interaction of the Rpn5 subunit with the proteasomal ATPase ring. Subsequent ATP binding by the ATPase subunit Rpt3 promotes conformational remodeling of the ATPase ring that evicts Nas6 from the nascent proteasome. Our study demonstrates how assembly-coupled allosteric signals promote chaperone eviction and provides a framework for understanding the eviction of other chaperones from this bio-medically important molecular machine. Nemec et al. report how the evolutionarily conserved Nas6 assembly chaperone is evicted from nascent 26S proteasomes. Nucleotide binding events within the nascent proteasome trigger formation of conformation-specific intersubunit contacts that expel Nas6. This mechanism may serve a quality control function by blocking formation of 26S proteasomes from defective components.
Collapse
|
9
|
Abstract
The proteasome degrades most cellular proteins in a controlled and tightly regulated manner and thereby controls many processes, including cell cycle, transcription, signalling, trafficking and protein quality control. Proteasomal degradation is vital in all cells and organisms, and dysfunction or failure of proteasomal degradation is associated with diverse human diseases, including cancer and neurodegeneration. Target selection is an important and well-established way to control protein degradation. In addition, mounting evidence indicates that cells adjust proteasome-mediated degradation to their needs by regulating proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones. Central to the regulation of proteasome assembly is TOR complex 1 (TORC1), which is the master regulator of cell growth and stress. This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasome and autophagy pathways. Understanding these mechanisms has potential implications for disease therapy, as the misregulation of proteasome function contributes to human diseases such as cancer and neurodegeneration.
Collapse
|
10
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
11
|
Wendler P, Enenkel C. Nuclear Transport of Yeast Proteasomes. Front Mol Biosci 2019; 6:34. [PMID: 31157235 PMCID: PMC6532418 DOI: 10.3389/fmolb.2019.00034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Proteasomes are key proteases in regulating protein homeostasis. Their holo-enzymes are composed of 40 different subunits which are arranged in a proteolytic core (CP) flanked by one to two regulatory particles (RP). Proteasomal proteolysis is essential for the degradation of proteins which control time-sensitive processes like cell cycle progression and stress response. In dividing yeast and human cells, proteasomes are primarily nuclear suggesting that proteasomal proteolysis is mainly required in the nucleus during cell proliferation. In yeast, which have a closed mitosis, proteasomes are imported into the nucleus as immature precursors via the classical import pathway. During quiescence, the reversible absence of proliferation induced by nutrient depletion or growth factor deprivation, proteasomes move from the nucleus into the cytoplasm. In the cytoplasm of quiescent yeast, proteasomes are dissociated into CP and RP and stored in membrane-less cytoplasmic foci, named proteasome storage granules (PSGs). With the resumption of growth, PSGs clear and mature proteasomes are transported into the nucleus by Blm10, a conserved 240 kDa protein and proteasome-intrinsic import receptor. How proteasomes are exported from the nucleus into the cytoplasm is unknown.
Collapse
Affiliation(s)
- Petra Wendler
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Nahar A, Fu X, Polovin G, Orth JD, Park S. Two alternative mechanisms regulate the onset of chaperone-mediated assembly of the proteasomal ATPases. J Biol Chem 2019; 294:6562-6577. [PMID: 30814255 DOI: 10.1074/jbc.ra118.006298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
The proteasome holoenzyme is a molecular machine that degrades most proteins in eukaryotes. In the holoenzyme, its heterohexameric ATPase injects protein substrates into the proteolytic core particle, where degradation occurs. The heterohexameric ATPase, referred to as 'Rpt ring', assembles through six ATPase subunits (Rpt1-Rpt6) individually binding to specific chaperones (Rpn14, Nas6, Nas2, and Hsm3). Here, our findings suggest that the onset of Rpt ring assembly can be regulated by two alternative mechanisms. Excess Rpt subunits relative to their chaperones are sequestered into multiple puncta specifically during early-stage Rpt ring assembly. Sequestration occurs during stressed conditions, for example heat, which transcriptionally induce Rpt subunits. When the free Rpt pool is limited experimentally, Rpt subunits are competent for proteasome assembly even without their cognate chaperones. These data suggest that sequestration may regulate amounts of individual Rpt subunits relative to their chaperones, allowing for proper onset of Rpt ring assembly. Indeed, Rpt subunits in the puncta can later resume their assembly into the proteasome. Intriguingly, when proteasome assembly resumes in stressed cells or is ongoing in unstressed cells, excess Rpt subunits are recognized by an alternative mechanism-degradation by the proteasome holoenzyme itself. Rpt subunits undergo proteasome assembly until the holoenzyme complex is generated at a sufficient level. The fully-formed holoenzyme can then degrade any remaining excess Rpt subunits, thereby regulating its own Rpt ring assembly. These two alternative mechanisms, degradation and sequestration of Rpt subunits, may help control the onset of chaperone-mediated Rpt ring assembly, thereby promoting proper proteasome holoenzyme formation.
Collapse
Affiliation(s)
- Asrafun Nahar
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Xinyi Fu
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - George Polovin
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - James D Orth
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Soyeon Park
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
13
|
Co-translational assembly of proteasome subunits in NOT1-containing assemblysomes. Nat Struct Mol Biol 2019; 26:110-120. [PMID: 30692646 DOI: 10.1038/s41594-018-0179-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/06/2018] [Indexed: 01/31/2023]
Abstract
The assembly of large multimeric complexes in the crowded cytoplasm is challenging. Here we reveal a mechanism that ensures accurate production of the yeast proteasome, involving ribosome pausing and co-translational assembly of Rpt1 and Rpt2. Interaction of nascent Rpt1 and Rpt2 then lifts ribosome pausing. We show that the N-terminal disordered domain of Rpt1 is required to ensure efficient ribosome pausing and association of nascent Rpt1 protein complexes into heavy particles, wherein the nascent protein complexes escape ribosome quality control. Immunofluorescence and in situ hybridization studies indicate that Rpt1- and Rpt2-encoding messenger RNAs co-localize in these particles that contain, and are dependent on, Not1, the scaffold of the Ccr4-Not complex. We refer to these particles as Not1-containing assemblysomes, as they are smaller than and distinct from other RNA granules such as stress granules and GW- or P-bodies. Synthesis of Rpt1 with ribosome pausing and Not1-containing assemblysome induction is conserved from yeast to human cells.
Collapse
|
14
|
Ubiquitin-dependent switch during assembly of the proteasomal ATPases mediated by Not4 ubiquitin ligase. Proc Natl Acad Sci U S A 2018; 115:13246-13251. [PMID: 30530678 DOI: 10.1073/pnas.1805353115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the proteasome holoenzyme, the hexameric ATPases (Rpt1-Rpt6) enable degradation of ubiquitinated proteins by unfolding and translocating them into the proteolytic core particle. During early-stage proteasome assembly, individual Rpt proteins assemble into the hexameric "Rpt ring" through binding to their cognate chaperones: Nas2, Hsm3, Nas6, and Rpn14. Here, we show that Rpt ring assembly employs a specific ubiquitination-mediated control. An E3 ligase, Not4, selectively ubiquitinates Rpt5 during Rpt ring assembly. To access Rpt5, Not4 competes with Nas2 until the penultimate step and then with Hsm3 at the final step of Rpt ring completion. Using the known Rpt-chaperone cocrystal structures, we show that Not4-mediated ubiquitination sites in Rpt5 are obstructed by Nas2 and Hsm3. Thus, Not4 can distinguish a Rpt ring that matures without these chaperones, based on its accessibility to Rpt5. Rpt5 ubiquitination does not destabilize the ring but hinders incorporation of incoming subunits-Rpn1 ubiquitin receptor and Ubp6 deubiquitinase-thereby blocking progression of proteasome assembly and ubiquitin regeneration from proteasome substrates. Our findings reveal an assembly checkpoint where Not4 monitors chaperone actions during hexameric ATPase ring assembly, thereby ensuring the accuracy of proteasome holoenzyme maturation.
Collapse
|
15
|
Levin A, Minis A, Lalazar G, Rodriguez J, Steller H. PSMD5 Inactivation Promotes 26S Proteasome Assembly during Colorectal Tumor Progression. Cancer Res 2018; 78:3458-3468. [PMID: 29716915 PMCID: PMC6030489 DOI: 10.1158/0008-5472.can-17-2296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/29/2017] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
Protein degradation by the ubiquitin-proteasome system (UPS) is central to protein homeostasis and cell survival. The active 26S proteasome is a large protease complex consisting of a catalytic 20S subunit and 19S regulatory particles. Cancer cells are exposed to considerable protein overload due to high metabolic rates, reprogrammed energy metabolism, and aneuploidy. Here we report a mechanism that facilitates the assembly of active 26S proteasomes in malignant cells. Upon tumorigenic transformation of the gut epithelium, 26S proteasome assembly was significantly enhanced, but levels of individual subunits were not changed. This enhanced assembly of 26S proteasomes increased further with tumor progression and was observed specifically in transformed cells, but not in other rapidly dividing cells. Moreover, expression of PSMD5, an inhibitor of proteasome assembly, was reduced in intestinal tumors and silenced with tumor progression. Reexpression of PSMD5 in tumor cells caused decreased 26S assembly and accumulation of polyubiquitinated proteins. These results suggest that inhibition of cancer-associated proteasome assembly may provide a novel therapeutic strategy to selectively kill cancer cells.Significance: Enhanced cancer-associated proteasome assembly is a major stress response that allows tumors to adapt to and to withstand protein overload.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3458/F1.large.jpg Cancer Res; 78(13); 3458-68. ©2018 AACR.
Collapse
Affiliation(s)
- Avi Levin
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, New York.
- Division of Gastroenterology, University of Iowa, Iowa City, Iowa
| | - Adi Minis
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, New York
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Jose Rodriguez
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, New York
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, New York.
| |
Collapse
|
16
|
Abstract
Proteasomes are complex molecular machines that consist of 66 subunits. The assembly of these complexes is highly coordinated in a process that requires at least ten proteasome-specific molecular chaperones. One of the challenges in studying assembly intermediates is their relatively low abundance as compared to the proteasome holoenzyme. Therefore, superior separating techniques are crucial for analyses of proteasomal complexes in general and studies in the assembly in particular. For this reason, native gel analyses have been abundantly used in studying proteasomes, as they provide a high resolution. Native gels are very versatile and can be used in various combinatorial approaches. In this chapter, we outline two approaches to prepare samples for native gels. The first is a yeast cryogrinding method and the second a core particle (CP)-base reconstitution approach. We describe the native gel electrophoresis, as well as various downstream analyses, including 2D native-SDS-PAGE. These techniques and approaches can all be used, often in parallel, to gain a variety of information about activity and composition of the complexes separated by native gel. The potential combined approaches are discussed in this review.
Collapse
|
17
|
Structural insights on the dynamics of proteasome formation. Biophys Rev 2017; 10:597-604. [PMID: 29243089 DOI: 10.1007/s12551-017-0381-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular organization in biological systems comprises elaborately programmed processes involving metastable complex formation of biomolecules. This is exemplified by the formation of the proteasome, which is one of the largest and most complicated biological supramolecular complexes. This biomolecular machinery comprises approximately 70 subunits, including structurally homologous, but functionally distinct, ones, thereby exerting versatile proteolytic functions. In eukaryotes, proteasome formation is non-autonomous and is assisted by assembly chaperones, which transiently associate with assembly intermediates, operating as molecular matchmakers and checkpoints for the correct assembly of proteasome subunits. Accumulated data also suggest that eukaryotic proteasome formation involves scrap-and-build mechanisms. However, unlike the eukaryotic proteasome subunits, the archaeal subunits show little structural divergence and spontaneously assemble into functional machinery. Nevertheless, the archaeal genomes encode homologs of eukaryotic proteasome assembly chaperones. Recent structural and functional studies of these proteins have advanced our understanding of the evolution of molecular mechanisms involved in proteasome biogenesis. This knowledge, in turn, provides a guiding principle in designing molecular machineries using protein engineering approaches and de novo synthesis of artificial molecular systems.
Collapse
|
18
|
Léger T, Garcia C, Collomb L, Camadro JM. A Simple Light Isotope Metabolic Labeling (SLIM-labeling) Strategy: A Powerful Tool to Address the Dynamics of Proteome Variations In Vivo. Mol Cell Proteomics 2017; 16:2017-2031. [PMID: 28821603 DOI: 10.1074/mcp.m117.066936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/19/2017] [Indexed: 01/13/2023] Open
Abstract
Many quantitative proteomics strategies rely on in vivo metabolic incorporation of amino acids with modified stable isotope profiles into proteins. These methods give rise to multiple ions for each peptide, with possible distortion of the isotopolog distribution, making the overall analytical process complex. We validated an alternative strategy, simple light isotope metabolic labeling (SLIM-labeling), which alleviates many of these problems. SLIM-labeling is based on the in vivo reduction of the isotopic composition of proteins using metabolic precursors with a unique light isotope composition to label all amino acids. This brings a new dimension to in-depth, high resolution MS-based quantitative proteomics. Here, we describe a 12C-based SLIM-labeling strategy using U-[12C]-glucose as the metabolic precursor of all amino acids in the pathogenic yeast Candida albicans Monoisotopic ion intensity increased exponentially following 12C enrichment, substantially improving peptide identification scores and protein sequence coverage in bottom-up analyses. Multiplexing samples of 12C composition varying from natural abundance (98.93%) to 100% makes it possible to address relative quantification issues, keeping all the critical information for each peptide within a single isotopolog cluster. We applied this method to measure, for the first time, protein turnover at the proteome scale in Candida albicans and its modulation by inhibitors of the proteasome and vacuolar protein degradation systems.
Collapse
Affiliation(s)
- Thibaut Léger
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
| | - Camille Garcia
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
| | - Laetitia Collomb
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
| | - Jean-Michel Camadro
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France; .,§Mitochondria, Metals, and Oxidative Stress Group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
| |
Collapse
|
19
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
20
|
Kurimoto E, Satoh T, Ito Y, Ishihara E, Okamoto K, Yagi‐Utsumi M, Tanaka K, Kato K. Crystal structure of human proteasome assembly chaperone PAC4 involved in proteasome formation. Protein Sci 2017; 26:1080-1085. [PMID: 28263418 PMCID: PMC5405420 DOI: 10.1002/pro.3153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/12/2023]
Abstract
The 26S proteasome is a large protein complex, responsible for degradation of ubiquinated proteins in eukaryotic cells. Eukaryotic proteasome formation is a highly ordered process that is assisted by several assembly chaperones. The assembly of its catalytic 20S core particle depends on at least five proteasome-specific chaperones, i.e., proteasome-assembling chaperons 1-4 (PAC1-4) and proteasome maturation protein (POMP). The orthologues of yeast assembly chaperones have been structurally characterized, whereas most mammalian assembly chaperones are not. In the present study, we determined a crystal structure of human PAC4 at 1.90-Å resolution. Our crystallographic data identify a hydrophobic surface that is surrounded by charged residues. The hydrophobic surface is complementary to that of its binding partner, PAC3. The surface also exhibits charge complementarity with the proteasomal α4-5 subunits. This will provide insights into human proteasome-assembling chaperones as potential anticancer drug targets.
Collapse
Affiliation(s)
- Eiji Kurimoto
- Faculty of PharmacyMeijo UniversityTempaku‐kuNagoya468‐8503Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- JST, PRESTOMizuho‐kuNagoya467‐8603Japan
| | - Yuri Ito
- Faculty of PharmacyMeijo UniversityTempaku‐kuNagoya468‐8503Japan
| | - Eri Ishihara
- Faculty of PharmacyMeijo UniversityTempaku‐kuNagoya468‐8503Japan
| | - Kenta Okamoto
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- Present address: The laboratory of Molecular Biophysics, Department of Cell and Molecular BiologyUppsala UniversityHusargatan 3Uppsala75123Sweden
| | - Maho Yagi‐Utsumi
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural SciencesMyodaijiOkazakiAichi444‐8787Japan
| | - Keiji Tanaka
- Laboratory of Protein MetabolismTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuTokyo156‐8506Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural SciencesMyodaijiOkazakiAichi444‐8787Japan
| |
Collapse
|
21
|
Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone. Proc Natl Acad Sci U S A 2017; 114:1548-1553. [PMID: 28137839 DOI: 10.1073/pnas.1612922114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome is assembled via the nine-subunit lid, nine-subunit base, and 28-subunit core particle (CP). Previous work has shown that the chaperones Rpn14, Nas6, Hsm3, and Nas2 each bind a specific ATPase subunit of the base and antagonize base-CP interaction. Here, we show that the Nas6 chaperone also obstructs base-lid association. Nas6 alternates between these two inhibitory modes according to the nucleotide state of the base. When ATP cannot be hydrolyzed, Nas6 interferes with base-lid, but not base-CP, association. In contrast, under conditions of ATP hydrolysis, Nas6 obstructs base-CP, but not base-lid, association. Modeling of Nas6 into cryoelectron microscopy structures of the proteasome suggests that Nas6 controls both base-lid affinity and base-CP affinity through steric hindrance; Nas6 clashes with the lid in the ATP-hydrolysis-blocked proteasome, but clashes instead with the CP in the ATP-hydrolysis-competent proteasome. Thus, Nas6 provides a dual mechanism to control assembly at both major interfaces of the proteasome.
Collapse
|
22
|
Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Sci Rep 2016; 6:27873. [PMID: 27302526 PMCID: PMC4908598 DOI: 10.1038/srep27873] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
The proteasome degrades many short-lived proteins that are labeled with an ubiquitin chain. The identification of phosphorylation sites on the proteasome subunits suggests that degradation of these substrates can also be regulated at the proteasome. In yeast and humans, the unstructured C-terminal region of α7 contains an acidic patch with serine residues that are phosphorylated. Although these were identified more than a decade ago, the molecular implications of α7 phosphorylation have remained unknown. Here, we showed that yeast Ecm29, a protein involved in proteasome quality control, requires the phosphorylated tail of α7 for its association with proteasomes. This is the first example of proteasome phosphorylation dependent binding of a proteasome regulatory factor. Ecm29 is known to inhibit proteasomes and is often found enriched on mutant proteasomes. We showed that the ability of Ecm29 to bind to mutant proteasomes requires the α7 tail binding site, besides a previously characterized Rpt5 binding site. The need for these two binding sites, which are on different proteasome subcomplexes, explains the specificity of Ecm29 for proteasome holoenzymes. We propose that alterations in the relative position of these two sites in different conformations of the proteasome provides Ecm29 the ability to preferentially bind specific proteasome conformations.
Collapse
|
23
|
Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly. Sci Rep 2015; 5:14909. [PMID: 26449534 PMCID: PMC4598862 DOI: 10.1038/srep14909] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022] Open
Abstract
In the proteasome, the proteolytic 20S core particle (CP) associates with the 19S regulatory particle (RP) to degrade polyubiquitinated proteins. Six ATPases (Rpt1-Rpt6) of the RP form a hexameric Rpt ring and interact with the heptameric α ring (α1–α7) of the CP via the Rpt C-terminal tails individually binding to the α subunits. Importantly, the Rpt6 tail has been suggested to be crucial for RP assembly. Here, we show that the interaction of the CP and Rpt6 tail promotes a CP-Rpt3 tail interaction, and that they jointly mediate proteasome activation via opening the CP gate for substrate entry. The Rpt6 tail forms a novel relationship with the Nas6 chaperone, which binds to Rpt3 and regulates the CP-Rpt3 tail interaction, critically influencing cell growth and turnover of polyubiquitinated proteins. CP-Rpt6 tail binding promotes the release of Nas6 from the proteasome. Based on disulfide crosslinking that detects cognate α3-Rpt6 tail and α2-Rpt3 tail interactions in the proteasome, decreased α3-Rpt6 tail interaction facilitates robust α2-Rpt3 tail interaction that is also strongly ATP-dependent. Together, our data support the reported role of Rpt6 during proteasome assembly, and suggest that its function switches from anchoring for RP assembly into promoting Rpt3-dependent activation of the mature proteasome.
Collapse
|
24
|
Burcoglu J, Zhao L, Enenkel C. Nuclear Import of Yeast Proteasomes. Cells 2015; 4:387-405. [PMID: 26262643 PMCID: PMC4588042 DOI: 10.3390/cells4030387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/28/2015] [Indexed: 01/16/2023] Open
Abstract
Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin αβ. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence.
Collapse
Affiliation(s)
- Julianne Burcoglu
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Liang Zhao
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Cordula Enenkel
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
25
|
Aufderheide A, Unverdorben P, Baumeister W, Förster F. Structural disorder and its role in proteasomal degradation. FEBS Lett 2015; 589:2552-60. [PMID: 26226424 DOI: 10.1016/j.febslet.2015.07.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
The ubiquitin proteasome system is responsible for the controlled degradation of a vast number of intracellular proteins. It targets misfolded or otherwise aberrant proteins as well as proteins no longer needed at a given point in time. The 26S proteasome is a large macromolecular machine comprising 33 distinct subunits as well as a number of transiently associating cofactors. Being essentially a non-specific protease, specificity is conferred by the ubiquitin system, which selects and marks substrates for degradation. Here, we review our current understanding of the structure and function of the 26S proteasome; in doing so we highlight the role of disordered protein regions. Disordered segments in substrates promote their degradation, whereas low complexity regions prevent their proteolysis. In the 26S proteasome itself a main role of disordered segments seems to be rendering the ubiquitin receptors mobile, possibly supporting recruitment of polyubiquitylated substrates. Thus, these structural features of substrates as well as of the 26S proteasome itself likely play important roles at different stages of the protein degradation process.
Collapse
Affiliation(s)
- Antje Aufderheide
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany
| | - Pia Unverdorben
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany
| | - Wolfgang Baumeister
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany.
| | - Friedrich Förster
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany.
| |
Collapse
|
26
|
Abstract
The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum ( ER) membranes. In prolonged quiescence, proteasome granules drop off the nuclear envelopeNE / ER membranes and migrate as droplet-like entitiesstable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells, which comprise the majority of our body’s cells.
Collapse
Affiliation(s)
- Maisha Chowdhury
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
27
|
Abstract
The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum ( ER) membranes. In prolonged quiescence, proteasome granules drop off the nuclear envelopeNE / ER membranes and migrate as droplet-like entitiesstable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells, which comprise the majority of our body's cells.
Collapse
Affiliation(s)
- Maisha Chowdhury
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
28
|
Wani PS, Rowland MA, Ondracek A, Deeds EJ, Roelofs J. Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun 2015; 6:6384. [PMID: 25812915 PMCID: PMC4380239 DOI: 10.1038/ncomms7384] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/25/2015] [Indexed: 01/09/2023] Open
Abstract
Proteasome assembly is a complex process, requiring 66 subunits distributed over several subcomplexes to associate in a coordinated fashion. Ten proteasome-specific chaperones have been identified that assist in this process. For two of these, the Pba1-Pba2 dimer, it is well established that they only bind immature core particles (CP) in vivo. In contrast, the regulatory particle (RP) utilizes the same binding surface but only interacts with the mature CP in vivo. It is unclear how these binding events are regulated. Here, we show that Pba1-Pba2 binds tightly to immature CP, preventing RP binding. Changes in the CP that occur upon maturation significantly reduce its affinity for Pba1-Pba2, enabling the RP to displace the chaperone. Mathematical modeling indicates that this “affinity switch” mechanism has likely evolved to improve assembly efficiency by preventing the accumulation of stable, non-productive intermediates. Our work thus provides mechanistic insights into a crucial step in proteasome biogenesis.
Collapse
Affiliation(s)
- Prashant S Wani
- Graduate Biochemistry Group, Department of Biochemistry and Molecular Biophysics, Kansas State University, 336 Ackert Hall, Manhattan, Kansas 66506, USA
| | - Michael A Rowland
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | - Alex Ondracek
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA
| | - Eric J Deeds
- 1] Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA [2] Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA [3] Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Jeroen Roelofs
- 1] Graduate Biochemistry Group, Department of Biochemistry and Molecular Biophysics, Kansas State University, 336 Ackert Hall, Manhattan, Kansas 66506, USA [2] Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA
| |
Collapse
|
29
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
30
|
Meurisse J, Bacquin A, Richet N, Charbonnier JB, Ochsenbein F, Peyroche A. Hug1 is an intrinsically disordered protein that inhibits ribonucleotide reductase activity by directly binding Rnr2 subunit. Nucleic Acids Res 2014; 42:13174-85. [PMID: 25378334 PMCID: PMC4245953 DOI: 10.1093/nar/gku1095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rad53 is a conserved protein kinase with a central role in DNA damage response and nucleotide metabolism. We observed that the expression of a dominant-lethal form of RAD53 leads to significant expression changes for at least 16 genes, including the RNR3 and the HUG1 genes, both of which are involved in the control of nucleotide metabolism. We established by multiple biophysical and biochemical approaches that Hug1 is an intrinsically disordered protein that directly binds to the small RNR subunit Rnr2. We characterized the surface of interaction involved in Hug1 binding to Rnr2, and we thus defined a new binding region to Rnr2. Moreover, we show that Hug1 is deleterious to cell growth in the context of reduced RNR activity. This inhibitory effect of Hug1 on RNR activity depends on the binding of Hug1 to Rnr2. We propose a model in which Hug1 modulates Rnr2-Rnr1 association by binding Rnr2. We show that Hug1 accumulates under various physiological conditions of high RNR induction. Hence, both the regulation and the mode of action of Hug1 are different from those of the small protein inhibitors Dif1 and Sml1, and Hug1 can be considered as a regulator for fine-tuning of RNR activity.
Collapse
Affiliation(s)
- Julie Meurisse
- CEA, iBiTecS, SBIGeM, Gif-sur-Yvette, F-91191, France CNRS-Université Paris Sud, FRE 3377, Gif-sur-Yvette, F-91191, France
| | - Agathe Bacquin
- CEA, iBiTecS, SBIGeM, Gif-sur-Yvette, F-91191, France CNRS-Université Paris Sud, FRE 3377, Gif-sur-Yvette, F-91191, France
| | - Nicolas Richet
- CEA, iBiTecS, SBSM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, F-91191, France CNRS, UMR8221, Gif-sur-Yvette, F-91191, France
| | - Jean-Baptiste Charbonnier
- CEA, iBiTecS, SBSM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, F-91191, France CNRS, UMR8221, Gif-sur-Yvette, F-91191, France
| | - Françoise Ochsenbein
- CEA, iBiTecS, SBSM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, F-91191, France CNRS, UMR8221, Gif-sur-Yvette, F-91191, France
| | - Anne Peyroche
- CEA, iBiTecS, SBIGeM, Gif-sur-Yvette, F-91191, France CNRS-Université Paris Sud, FRE 3377, Gif-sur-Yvette, F-91191, France
| |
Collapse
|
31
|
Crystal structure of archaeal homolog of proteasome-assembly chaperone PbaA. Biochem Biophys Res Commun 2014; 453:493-7. [PMID: 25285636 DOI: 10.1016/j.bbrc.2014.09.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
Abstract
Formation of the eukaryotic proteasome is not a spontaneous process but a highly ordered process assisted by several assembly chaperones. In contrast, archaeal proteasome subunits can spontaneously assemble into an active form. Recent bioinformatic analysis identified the proteasome-assembly chaperone-like proteins, PbaA and PbaB, in archaea. Our previous study showed that the PbaB homotetramer functions as a proteasome activator through its tentacle-like C-terminal segments. However, a functional role of the other homolog PbaA has remained elusive. Here we determined the 2.25-Å resolution structure of PbaA, illustrating its disparate tertiary and quaternary structures compared with PbaB. PbaA forms a homopentamer in which the C-terminal segments, with a putative proteasome-activating motif, are packed against the core. These findings offer deeper insights into the molecular evolution relationships between the proteasome-assembly chaperones and the proteasome activators.
Collapse
|
32
|
Andreani J, Guerois R. Evolution of protein interactions: From interactomes to interfaces. Arch Biochem Biophys 2014; 554:65-75. [DOI: 10.1016/j.abb.2014.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 12/16/2022]
|
33
|
Diao W, Yang X, Zhou H. Purification, crystallization and preliminary X-ray data collection of the N-terminal domain of the 26S proteasome regulatory subunit p27 and its complex with the ATPase domain of Rpt5 from Mus musculus. Acta Crystallogr F Struct Biol Commun 2014; 70:611-5. [PMID: 24817721 PMCID: PMC4014330 DOI: 10.1107/s2053230x14006815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/27/2014] [Indexed: 11/10/2022] Open
Abstract
The protein 26S proteasome regulatory subunit p27 is one of the four chaperones that help in the assembly of the 19S regulatory particle (RP) of the 26S proteasome. In the present work, the N-terminus of p27 (residues 1-128) from Mus musculus was cloned, expressed, purified and crystallized alone and in complex with the C-terminal ATPase domain of Rpt5 (residues 173-442). The crystals of p27((1-128)) diffracted to 1.7 Å resolution and belonged to space group P212121, with unit-cell parameters a = 26.79, b = 30.39, c = 145.06 Å. Resolution-dependent Matthews coefficient probability analysis suggested the presence of only one molecule per asymmetric unit, with 40.5% solvent content and a VM value of 2.02 Å(3) Da(-1). The crystal of the p27((1-128))-Rpt5((173-442)) complex diffracted to 4 Å resolution and belonged to space group P222, with unit-cell parameters a = 75.93, b = 76.08, c = 336.85 Å. The presence of four heterodimers in the asymmetric unit with 53.2% solvent content and a VM value of 2.63 Å(3) Da(-1) or five heterodimers in the asymmetric unit with 41.5% solvent content and a VM value of 2.10 Å(3) Da(-1) is assumed.
Collapse
Affiliation(s)
- Wentao Diao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, People’s Republic of China
| |
Collapse
|
34
|
Politis A, Stengel F, Hall Z, Hernández H, Leitner A, Walzthoeni T, Robinson CV, Aebersold R. A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat Methods 2014; 11:403-406. [PMID: 24509631 PMCID: PMC3972104 DOI: 10.1038/nmeth.2841] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/12/2013] [Indexed: 01/22/2023]
Abstract
We describe a method that integrates data derived from different mass spectrometry (MS)-based techniques with a modeling strategy for structural characterization of protein assemblies. We encoded structural data derived from native MS, bottom-up proteomics, ion mobility-MS and chemical cross-linking MS into modeling restraints to compute the most likely structure of a protein assembly. We used the method to generate near-native models for three known structures and characterized an assembly intermediate of the proteasomal base.
Collapse
Affiliation(s)
- Argyris Politis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Florian Stengel
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Zoe Hall
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Helena Hernández
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Thomas Walzthoeni
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Singh CR, Lovell S, Mehzabeen N, Chowdhury WQ, Geanes ES, Battaile KP, Roelofs J. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain. Acta Crystallogr F Struct Biol Commun 2014; 70:418-23. [PMID: 24699731 PMCID: PMC3976055 DOI: 10.1107/s2053230x14003884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 01/18/2023] Open
Abstract
The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.
Collapse
Affiliation(s)
- Chingakham R. Singh
- Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Del Shankel Structural Biology Center, Lawrence, KS 66047, USA
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, University of Kansas, Del Shankel Structural Biology Center, Lawrence, KS 66047, USA
| | - Wasimul Q. Chowdhury
- Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Eric S. Geanes
- Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| | - Kevin P. Battaile
- IMCA-CAT Hauptman–Woodward Medical Research Institute, 9700 South Cass Avenue, Building 435A, Argonne, IL 60439, USA
| | - Jeroen Roelofs
- Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
36
|
Satoh T, Saeki Y, Hiromoto T, Wang YH, Uekusa Y, Yagi H, Yoshihara H, Yagi-Utsumi M, Mizushima T, Tanaka K, Kato K. Structural basis for proteasome formation controlled by an assembly chaperone nas2. Structure 2014; 22:731-43. [PMID: 24685148 DOI: 10.1016/j.str.2014.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/30/2014] [Accepted: 02/21/2014] [Indexed: 11/18/2022]
Abstract
Proteasome formation does not occur due to spontaneous self-organization but results from a highly ordered process assisted by several assembly chaperones. The assembly of the proteasome ATPase subunits is assisted by four client-specific chaperones, of which three have been structurally resolved. Here, we provide the structural basis for the working mechanisms of the last, hereto structurally uncharacterized assembly chaperone, Nas2. We revealed that Nas2 binds to the Rpt5 subunit in a bivalent mode: the N-terminal helical domain of Nas2 masks the Rpt1-interacting surface of Rpt5, whereas its C-terminal PDZ domain caps the C-terminal proteasome-activating motif. Thus, Nas2 operates as a proteasome activation blocker, offering a checkpoint during the formation of the 19S ATPase prior to its docking onto the proteolytic 20S core particle.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takeshi Hiromoto
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Ying-Hui Wang
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yoshinori Uekusa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hidehito Yoshihara
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tsunehiro Mizushima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
37
|
Förster F, Unverdorben P, Śledź P, Baumeister W. Unveiling the Long-Held Secrets of the 26S Proteasome. Structure 2013; 21:1551-62. [DOI: 10.1016/j.str.2013.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/23/2023]
|
38
|
De La Mota-Peynado A, Lee SYC, Pierce BM, Wani P, Singh CR, Roelofs J. The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem 2013; 288:29467-81. [PMID: 23995839 DOI: 10.1074/jbc.m113.491662] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several proteasome-associated proteins regulate degradation by the 26 S proteasome using the ubiquitin chains that mark most substrates for degradation. The proteasome-associated protein Ecm29, however, has no ubiquitin-binding or modifying activity, and its direct effect on substrate degradation is unclear. Here, we show that Ecm29 acts as a proteasome inhibitor. Besides inhibiting the proteolytic cleavage of peptide substrates in vitro, it inhibits the degradation of ubiquitin-dependent and -independent substrates in vivo. Binding of Ecm29 to the proteasome induces a closed conformation of the substrate entry channel of the core particle. Furthermore, Ecm29 inhibits proteasomal ATPase activity, suggesting that the mechanism of inhibition and gate regulation by Ecm29 is through regulation of the proteasomal ATPases. Consistent with this, we identified through chemical cross-linking that Ecm29 binds to, or in close proximity to, the proteasomal ATPase subunit Rpt5. Additionally, we show that Ecm29 preferentially associates with both mutant and nucleotide depleted proteasomes. We propose that the inhibitory ability of Ecm29 is important for its function as a proteasome quality control factor by ensuring that aberrant proteasomes recognized by Ecm29 are inactive.
Collapse
|
39
|
Proteasome regulation by ADP-ribosylation. Cell 2013; 153:614-27. [PMID: 23622245 DOI: 10.1016/j.cell.2013.03.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/21/2013] [Accepted: 03/25/2013] [Indexed: 12/11/2022]
Abstract
Protein degradation by the ubiquitin-proteasome system is central to cell homeostasis and survival. Defects in this process are associated with diseases such as cancer and neurodegenerative disorders. The 26S proteasome is a large protease complex that degrades ubiquitinated proteins. Here, we show that ADP-ribosylation promotes 26S proteasome activity in both Drosophila and human cells. We identify the ADP-ribosyltransferase tankyrase (TNKS) and the 19S assembly chaperones dp27 and dS5b as direct binding partners of the proteasome regulator PI31. TNKS-mediated ADP-ribosylation of PI31 drastically reduces its affinity for 20S proteasome α subunits to relieve 20S repression by PI31. Additionally, PI31 modification increases binding to and sequestration of dp27 and dS5b from 19S regulatory particles, promoting 26S assembly. Inhibition of TNKS by either RNAi or a small-molecule inhibitor, XAV939, blocks this process to reduce 26S assembly. These results unravel a mechanism of proteasome regulation that can be targeted with existing small-molecule inhibitors.
Collapse
|
40
|
Ehlinger A, Walters KJ. Structural insights into proteasome activation by the 19S regulatory particle. Biochemistry 2013; 52:3618-28. [PMID: 23672618 DOI: 10.1021/bi400417a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since its discovery in the late 1970s, the ubiquitin-proteasome system (UPS) has become recognized as the major pathway for regulated cellular proteolysis. Processes such as cell cycle control, pathogen resistance, and protein quality control rely on selective protein degradation at the proteasome for homeostatic function. Perhaps as a consequence of the importance of this pathway, and the genesis of severe diseases upon its dysregulation, protein degradation by the UPS is highly controlled from the level of substrate recognition to proteolysis. Technological advances over the past decade have created an explosion of structural and mechanistic information that has underscored the complexity of the proteasome and its upstream regulatory factors. Significant insights have come from the study of the 19S proteasome regulatory particle (RP) responsible for recognition and processing of ubiquitinated substrates destined for proteolysis. Established as a highly dynamic proteasome activator, the RP has a large number of both permanent and transient components with specialized functional roles that are critical for proteasome function. In this review, we highlight recent mechanistic developments in the study of proteasome activation by the RP and how they provide context to our current understanding of the UPS.
Collapse
Affiliation(s)
- Aaron Ehlinger
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
41
|
Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 2013; 497:512-6. [PMID: 23644457 PMCID: PMC3687086 DOI: 10.1038/nature12123] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 03/27/2013] [Indexed: 01/18/2023]
Abstract
The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit. Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes, it inserts into the α2/α3-pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme.
Collapse
|
42
|
Conformational dynamics of the Rpt6 ATPase in proteasome assembly and Rpn14 binding. Structure 2013; 21:753-65. [PMID: 23562395 DOI: 10.1016/j.str.2013.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 11/20/2022]
Abstract
Juxtaposed to either or both ends of the proteasome core particle (CP) can exist a 19S regulatory particle (RP) that recognizes and prepares ubiquitinated proteins for proteolysis. RP triphosphatase proteins (Rpt1-Rpt6), which are critical for substrate translocation into the CP, bind chaperone-like proteins (Hsm3, Nas2, Nas6, and Rpn14) implicated in RP assembly. We used NMR and other biophysical methods to reveal that S. cerevisiae Rpt6's C-terminal domain undergoes dynamic helix-coil transitions enabled by helix-destabilizing glycines within its two most C-terminal α helices. Rpn14 binds selectively to Rpt6's four-helix bundle, with surprisingly high affinity. Loss of Rpt6's partially unfolded state by glycine substitution (Rpt6 G³⁶⁰,³⁸⁷A) disrupts holoenzyme formation in vitro, an effect enhanced by Rpn14. S. cerevisiae lacking Rpn14 and incorporating Rpt6 G³⁶⁰,³⁸⁷A demonstrate hallmarks of defective proteasome assembly and synthetic growth defects. Rpt4 and Rpt5 exhibit similar exchange, suggesting that conserved structural heterogeneity among Rpt proteins may facilitate RP-CP assembly.
Collapse
|
43
|
Abstract
The eukaryotic ubiquitin-proteasome system is responsible for most aspects of regulatory and quality-control protein degradation in cells. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6-MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. Although many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy, biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic-resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently emerged. Here we review these novel findings.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
44
|
Abstract
The proteasome refers to a collection of complexes centered on the 20S proteasome core particle (20S CP), a complex of 28 subunits that houses proteolytic sites in its hollow interior. Proteasomes are found in eukaryotes, archaea, and some eubacteria, and their activity is critical for many cellular pathways. Important recent advances include inhibitor binding studies and the structure of the immunoproteasome, whose specificity is altered by the incorporation of inducible catalytic subunits. The inherent repression of the 20S CP is relieved by the ATP-independent activators 11S and Blm10/PA200, whose structures reveal principles of proteasome mechanism. The structure of the ATP-dependent 19S regulatory particle, which mediates degradation of polyubiquitylated proteins, is being revealed by a combination of crystal or NMR structures of individual subunits and electron microscopy reconstruction of the intact complex. Other recent structural advances inform us about mechanisms of assembly and the role of conformational changes in the functional cycle.
Collapse
Affiliation(s)
- Erik Kish-Trier
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | |
Collapse
|
45
|
Masella M, Borgis D, Cuniasse P. A multiscale coarse-grained polarizable solvent model for handling long tail bulk electrostatics. J Comput Chem 2013; 34:1112-24. [PMID: 23382002 DOI: 10.1002/jcc.23237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/16/2012] [Accepted: 12/21/2012] [Indexed: 12/28/2022]
Abstract
A multiscale coarse-grained approach able to handle efficiently the solvation of microscopic solutes in extended chemical environment is described. That approach is able to compute readily and efficiently very long-range solute/solvent electrostatic microscopic interactions, up to the 1-μm scale, by considering a reduced amount of computational resources. All the required parameters are assigned to reproduce available data concerning the solvation of single ions. Such a strategy makes it possible to reproduce with good accuracy the solvation properties concerning simple ion pairs in solution (in particular, the asymptotic behavior of the ion pair potentials of mean force). This new method represents an extension of the polarizable pseudoparticle solvent model, which has been recently improved to account for the main features of hydrophobic effects in liquid water (Masella et al., J. Comput. Chem. 2011, 32, 2664). This multiscale approach is well suited to be used for computing the impact of charge changes in free energy computations, in terms of both accuracy and efficiency.
Collapse
Affiliation(s)
- Michel Masella
- Laboratoire de Chimie du Vivant, Service d'ingénierie moléculaire des protéines, Institut de biologie et de technologies de Saclay, Commissariat à l'énergie atomique, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | |
Collapse
|
46
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
47
|
Shim SM, Lee WJ, Kim Y, Chang JW, Song S, Jung YK. Role of S5b/PSMD5 in proteasome inhibition caused by TNF-α/NFκB in higher eukaryotes. Cell Rep 2012; 2:603-15. [PMID: 22921402 DOI: 10.1016/j.celrep.2012.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 05/18/2012] [Accepted: 07/30/2012] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-proteasome system is essential for maintaining protein homeostasis. However, proteasome dysregulation in chronic diseases is poorly understood. Through genome-wide cell-based screening using 5,500 cDNAs, a signaling pathway leading to NFκB activation was selected as an inhibitor of 26S proteasome. TNF-α increased S5b (HGNC symbol PSMD5; hereafter S5b/PSMD5) expression via NFκB, and the surplus S5b/PSMD5 directly inhibited 26S proteasome assembly and activity. Downregulation of S5b/PSMD5 abolished TNF-α-induced proteasome inhibition. TNF-α enhanced the interaction of S5b/PSMD5 with S7/PSMC2 in nonproteasome complexes, and interference of this interaction rescued TNF-α-induced proteasome inhibition. Transgenic mice expressing S5b/PSMD5 exhibited a reduced life span and premature onset of aging-related phenotypes, including reduced proteasome activity in their tissues. Conversely, S5b/PSMD5 deficiency in Drosophila melanogaster ameliorated the tau rough eye phenotype, enhanced proteasome activity, and extended the life span of tau flies. These results reveal the critical role of S5b/PSMD5 in negative regulation of proteasome by TNF-α/NFκB and provide insights into proteasome inhibition in human disease.
Collapse
Affiliation(s)
- Sang Mi Shim
- Global Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Hanna J, Waterman D, Boselli M, Finley D. Spg5 protein regulates the proteasome in quiescence. J Biol Chem 2012; 287:34400-9. [PMID: 22904326 DOI: 10.1074/jbc.m112.390294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ubiquitin-proteasome system is the major pathway for selective protein degradation in eukaryotes. Despite extensive study of this system, the mechanisms by which proteasome function and cell growth are coordinated remain unclear. Here, we identify Spg5 as a novel component of the ubiquitin-proteasome system. Spg5 binds the regulatory particle of the proteasome and the base subassembly in particular, but it is excluded from mature proteasomes. The SPG5 gene is strongly induced in the stationary phase of budding yeast, and spg5Δ mutants show a progressive loss of viability under these conditions. Accordingly, during logarithmic growth, Spg5 appears largely dispensable for proteasome function, but during stationary phase the proteasomes of spg5Δ mutants show both structural and functional defects. This loss of proteasome function is reflected in the accumulation of oxidized proteins preferentially in stationary phase in spg5Δ mutants. Thus, Spg5 is a positive regulator of the proteasome that is critical for survival of cells that have ceased to proliferate due to nutrient limitation.
Collapse
Affiliation(s)
- John Hanna
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|